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Abstract: Leveraging multi-view remote sensing images in scene classification tasks significantly
enhances the precision of such classifications. This approach, however, poses challenges due to the
simultaneous use of multi-view images, which often leads to a misalignment between the visual
content and semantic labels, thus complicating the classification process. In addition, as the number
of image viewpoints increases, the quality problem for remote sensing images further limits the effec-
tiveness of multi-view image classification. Traditional scene classification methods predominantly
employ SoftMax deep learning techniques, which lack the capability to assess the quality of remote
sensing images or to provide explicit explanations for the network’s predictive outcomes. To address
these issues, this paper introduces a novel end-to-end multi-view decision fusion network specifically
designed for remote sensing scene classification. The network integrates information from multi-
view remote sensing images under the guidance of image credibility and uncertainty, and when the
multi-view image fusion process encounters conflicts, it greatly alleviates the conflicts and provides
more reasonable and credible predictions for the multi-view scene classification results. Initially,
multi-scale features are extracted from the multi-view images using convolutional neural networks
(CNNs). Following this, an asymptotic adaptive feature fusion module (AAFFM) is constructed to
gradually integrate these multi-scale features. An adaptive spatial fusion method is then applied
to assign different spatial weights to the multi-scale feature maps, thereby significantly enhancing
the model’s feature discrimination capability. Finally, an evidence decision fusion module (EDFM),
utilizing evidence theory and the Dirichlet distribution, is developed. This module quantitatively
assesses the uncertainty in the multi-perspective image classification process. Through the fusing
of multi-perspective remote sensing image information in this module, a rational explanation for
the prediction results is provided. The efficacy of the proposed method was validated through
experiments conducted on the AiRound and CV-BrCT datasets. The results show that our method not
only improves single-view scene classification results but also advances multi-view remote sensing
scene classification results by accurately characterizing the scene and mitigating the conflicting nature
of the fusion process.

Keywords: multi-view scene classification; evidential deep learning; feature fusion; remote sensing
image; Dirichlet distribution

1. Introduction

In the realm of remote sensing, the burgeoning availability of big data and open
remote sensing image datasets has significantly enriched the information content in high-
resolution remote sensing images [1]. This development has rendered the rapid analysis of
inherent laws and characteristics of remote sensing images increasingly crucial, posing a
considerable challenge in the application of remote sensing imagery [2]. Remote sensing
scene classification, which focuses on extracting semantic features from remote sensing
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images and assigning appropriate labels based on the content, is pivotal in intelligently
interpreting these images. Its relevance is underscored by its extensive range of applications
in areas such as urban planning, natural disaster detection, environmental monitoring, and
land use classification [3,4].

Current scene classification methodologies encompass a range of features, including
manual, unsupervised learning, and deep learning features [5,6]. Methods based on man-
ual features typically concentrate on crafting various manual features to represent key
characteristics of scene images, such as color, texture [7,8], and shape [9]. However, these
features, designed from prior image knowledge, often fall short in capturing the abstract
semantic information in complex remote sensing images [10]. Unsupervised feature-based
learning focuses on learning the basis functions for feature encoding from manually created
feature descriptors and generating learned features such as raw component analysis, sparse
coding, or autoencoders [11]. This creates a new scheme in the place of human-based
features, and a large number of current scene classification methods based on unsupervised
learning are gradually appearing—e.g., using weighted inverse convolutional networks to
learn features from the remote sensing data itself and mapping [12], unsupervised remote
sensing analysis tasks based on superpixels and spatially regularized diffusion learning
(S2DL) [13], unsupervised representation learning based on multilayer feature fusion fused
with Wasserstein GAN [14], and unsupervised material clustering based on diffusion- and
volume-maximization-based image clustering (D-VIC) for the task of classifying vegetation
and other materials [15]—and have made substantial progress in scene classification. How-
ever, these features cannot fully utilize scene recognition information, resulting in poor
performance in classification and recognition tasks [16]. Deep learning-based methods
mainly utilize convolutional neural networks (CNNs) to automatically learn deep abstract
image representations. In recent years, ShipGeoNet [17], IA-Net [18], and other CNN-based
methods for feature extraction have also been increasingly proposed for applications in
remote sensing. Deep learning techniques are powerful in extracting image features and
providing learnable parameters and are gradually becoming a mainstream method for
remote sensing scene classification [19–21].

The application of multi-view remote sensing images and deep learning features for
scene classification is a burgeoning research area, aiming to effectively represent and inter-
pret remote sensing images [22–26]. Scene classification can be divided into single-view
and multi-view classifications based on the data source [23]. Single-view classification
involves categorizing ground objects from a solitary perspective [10,11,16,25,26], such
as using CNNs combined with Wasserstein distance for a novel loss function [25], or
multi-frequency and multi-scale features being extracted using multiscale feature fusion
covariance networks [26]. However, this approach often overlooks the complementary
nature of data from different perspectives, limiting its effectiveness in classifications with
weaker differentiation or stronger correlation [22–24]. Conversely, multi-view classification
integrates information from various perspectives for a more comprehensive categoriza-
tion. Fusion strategies at the data, feature, and decision levels are employed [27], with
feature-level strategies extracting and fusing intermediate features for classification [22–24].
However, these strategies are contingent on the image feature extraction method, with
inadequate feature learning leading to significant information loss and reduced accuracy.

Decision-level fusion strategies, which summarize predictions from multiple classifiers
using diverse fusion rules [28–30], have shown promise in multi-view classification [31].
This approach accommodates incorrect predictions from one perspective while still yielding
accurate fault-tolerant results, even with poor image quality from one viewpoint [32].

Despite advancements, challenges persist in multi-view remote sensing scene classi-
fication. Firstly, with the increase in the number of image views, the quality problem in
remote sensing images becomes an important factor limiting the effectiveness of multi-view
image classification. Different views, lighting conditions, and other factors may lead to dif-
ferences in image quality, thus affecting the classification effectiveness. Multi-view remote
sensing images need to be simultaneously utilized in the network classification process,
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and if the feature discrimination ability of the network is not strong, it cannot effectively
distinguish the features of remote sensing images from different views. In particular, when
images from different views of the same category present different feature elements, the
simple network will destroy the features of remote sensing images from different views to
a certain extent and cannot make full use of the complementary information of the remote
sensing images, which is contrary to the original intention of multi-view scene classification.
Secondly, in the process of multi-view information fusion, there will inevitably be conflicts
between aerial images and ground images, and the traditional evidence fusion rules cannot
effectively deal with this conflicting evidence, resulting in the classification process of
certain evidence values running contrary to common sense. Thus, there is a certain bias
in intuitive cognition, and the fusion of aerial evidence and ground evidence requires
better validity and adaptability and cannot provide a reasonable explanation for the final
prediction results. For instance, Zhao et al. [31] incorporated deep evidence learning theory
in multi-view classification, but issues remain in terms of inadequate feature expression
and unaddressed conflicts during evidence fusion.

In order to solve the above problems, this paper proposes a new multi-view fusion
architecture, the Multi-view Evidence Decision Fusion Network (MVEDFN). The main
contributions of this paper can be summarized as follows:

• The proposed MVEDFN method can process multi-view remote sensing images at the
same time, enhance the reliability and anti-interference level of scene classification,
realize multi-view scene classification end to end, and further improve the accuracy of
multi-view remote sensing scene classification.

• In order to reduce information loss from multi-view images and generate more dis-
criminative and robust classification features, an Asymptotic Adaptive Feature Fusion
Module (AAFFM) is proposed. The AAFFM can quickly fuse multi-scale features from
multi-view images, which is beneficial for the subsequent classification of multi-view
scenes.

• An Evidence Decision Fusion Module (EDFM) is proposed based on evidence theory.
The module can combine Dirichlet distributions to dynamically evaluate and integrate
multi-view feature information, effectively mitigating conflicts between aerial and
ground imagery information and rendering the evidentiary data more consistent, with
intuition and conclusions to accomplish a reliable classification task performance.

Tested on two public multi-view remote sensing image datasets, the proposed method
demonstrates the effective integration of multi-view information and improved accuracy
in scene classification compared to other methods.

2. Methods

In this section, we introduce MVEDFN, a novel framework for multi-view scene
classification. The discussion is divided into two parts: an overview of MVEDFN’s network
architecture (including its key modules) and the loss function used to train the network.

2.1. Methodology Overview

In this paper, the MVEDFN method is proposed for a multi-view remote sensing scene
classification task. The MVEDFN method mainly consists of two parts, the AAFFM and
the EDFM, which are shown in Figure 1.

The MVEDFN method utilizes aerial and ground images from the same category to
create multi-view image pairs as inputs. During the training process, aerial and ground
images undergo separate processing via a CNN and an AAFFM. Then, the EDFM is
applied to complete the classification of multi-view remote sensing scenes. Specifically,
the image is initially processed through a convolutional neural network, which generates
multi-scale feature vectors

{
jv
1 , jv

2 , jv
3
∣∣v = 1, 2

}
. These vectors are then subjected to feature

augmentation and fusion, resulting in the formation of feature vectors
{

Jv
1 , Jv

2 , Jv
3

∣∣v = 1, 2
}

.
Next, they pass through a fully connected (FC) layer with a non-negative activation function
to produce multi-layer feature vectors

{
f v
1 , f v

2 , f v
3
∣∣v = 1, 2

}
, which are subsequently fused
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in the softplus layer to generate evidence vectors with stronger directionality {ev|v = 1, 2}.
The evidence vector ev produced by the AAFFM is mapped to the Dirichlet distribution
αv in the EDFM, and the Dirichlet distribution models the credibility and uncertainty
of the images. Finally, considering the inherent conflicts that arise during the fusion
process from diverse perspectives, the conflict factors generated by the aerial and ground
images are determined according to the proportion of the aerial and ground images in the
classification of the multi-view scene, and decision-level information fusion is performed
on the confidence and uncertainty of the aerial and ground images. The entire process
utilizes complementary information from different view images end to end.
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2.1.1. Asymptotic Adaptive Feature Fusion Module (AAFFM)

The scene classification task requires features that capture both structural and semantic
information in the images to effectively represent the scenes [33]. Therefore, we propose
an AAFFM to enhance the performance of existing convolutional neural networks. The
AAFFM module integrates features from different scales of remote sensing images, enabling
the comprehensive representation of the scenes.

Presently, numerous researchers are dedicated to designing feature fusion modules
that enhance or refine the ability to express features to fully explore their potential in remote
sensing image scene classification tasks. However, most existing feature fusion modules
predominantly employ top–down or bottom–up connections for multi-scale feature fusion.
In this process of multi-scale feature propagation and interaction, lower-layer features
and high-level features may become lost or degraded, thereby impacting the fusion effect
among the lower layer, middle layer, and high-level features [34]. Furthermore, the final
three layers of the CNN feature map exemplify enhanced high-level and abstract expressive
proficiency, concurrently encompassing an augmented amount of contextual information
and semantic associations [33]. Opting for the final three layers of features to construct a
feature fusion module facilitates the more comprehensive capture of the interrelationships
among distinct segments of the image and full utilization of the network’s abstract features
acquired at a deeper level.

Therefore, in this study, we select the final three stages of convolutional features
extracted from a CNN as inputs for the AAFFM. We employ an asymptotic connectivity
approach to asymptotically integrate feature information across different levels through
hierarchical connections. The primary objective is to minimize information loss and mitigate
significant semantic gaps between non-adjacent hierarchical features in comparison to
adjacent ones.

Moreover, the majority of feature fusion modules, which typically involve a substantial
number of computational parameters during network training, are susceptible to overfitting.
Consequently, optimizing and adjusting the model becomes challenging, leading to limited
generalization capabilities across remote sensing scene images with varying sizes and
resolutions. During the end-to-end operation of multi-view scene classification, aerial
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images and ground images need to be processed at the same time, so, if the network
structure is too complex and the operation parameters are large, this will increase the burden
of the network, making the network run too slowly and reducing the stability of feature
extraction. Therefore, in this study, we employ Adaptive Spatial Fusion (ASFF) [35] to
assign distinct spatial weights to the multi-scale convolutional feature maps. This approach
aims to amplify the significance of key layers within the convolutional feature maps and
alleviate any conflicting information across different layers. The AAFFM initially selects
the high-level convolutional features (jv

1), mid-level convolutional features (jv2), and bottom-
level convolutional features (jv

3) from ResNet101 to construct a multi-scale convolutional
feature vector {jv

1 , jv
2 , jv

3} as inputs. Subsequently, these multi-scale convolutional feature
vectors {jv1 , jv

2 , jv3} are forwarded to the AAFFM to enhance and refine the features.
The AAFFM employs asymptotic fusion to link multi-scale features, which involves

two main steps: aligning the size and number of channels in convolutional features and
adaptively fusing multi-layer convolutional features. The alignment of feature sizes and
channel numbers is primarily achieved through up-sampling and down-sampling opera-
tions. Specifically, during the up-sampling and fusion process from high-level features

(
jv
1
)

to mid-level features (jv
2) and bottom-level features

(
jv
3
)
, the size and number of channels

in multi-scale feature maps are aligned using 1 × 1 convolutions and bilinear interpolation.
Specifically, each feature needs to be adjusted to the same size before fusion, and when
fusing high-level features and mid-level features, the up-sampling fusion process from
high-level features to mid-level features uses bilinear interpolation with a size scaling
factor of 2 to adjust the high-level features to the size of the mid-level features, and the
down-sampling fusion process from mid-level features to high-level features uses a 3 × 3
convolution kernel with a step size of 2 to adjust the mid-level features to the size of
the high-level features. The down-sampling fusion process from mid-level features to
high-level features uses a 3 × 3 convolution kernel with a step size of 2 to adjust the
mid-level features to the high-level feature size. Similarly, when fusing the high-level
features, mid-level features, and bottom-level features, the high-level features are adjusted
to the mid-level feature size and bottom-level feature size, respectively, using bilinear
interpolation with size scaling factors of 2 and 4, and the mid-level features are adjusted to
the mid-level and high-level feature sizes by using a 3 × 3 convolutional kernel with a step
size of 2. Finally, 1 × 1 convolution is used to adjust the number of channels of different
layer features to the same size.

After aligning the dimensions and number of channels across different layers of
features, the multi-scale convolutional features are weighted through adaptive spatial
fusion. The equations are as follows:

Jl
xy = αl

xy·j1→l
xy + βl

xy·j2→l
xy (1)

Ml
xy = δl

xy·m1→l
xy + θl

xy·m2→l
xy + γl

xy·m3→l
xy (2)

The high-level feature and mid-level feature are linearly combined using Equation (1)
during fusion. Additionally, the high-level feature, mid-level feature, and bottom-level
feature are linearly combined using Equation (2) during fusion, where Jl

xy and Ml
xy repre-

sents the l-th layer’s feature at position (x, y) in the image; let jn→l
xy and mn→l

xy denote the
feature vector at position (x, y) from level n to level l. The learnable weight parameters α, β,
δ, θ and γ are utilized to represent the importance of each layer’s feature map in different
levels of fusion, where αl

xy, βl
xy, δl

xy, θl
xy and γl

xy indicate their respective values at position
(x, y). Equation (1) satisfies αl

xy + βl
xy = 1 with αl

xy and βl
xy constrained within [0, 1], while

Equation (2) satisfies δl
xy + θl

xy + γl
xy = 1 with δl

xy, θl
xy, and γl

xy constrained within [0, 1].
Finally, after asymptotic fusion to obtain the high-, middle-, and bottom-level multi-

scale features
{

Jv
1 , Jv

2 , Jv
3
}

connected to the fully connected layer, respectively, they are
fused again in the softplus layer, which is used to initially output the evidence containing
category labels. The AAFFM enhances the adaptability of the convolutional neural network
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to both aerial and ground view images. Moreover, this fusion module introduces minimal
additional parameters, resulting in a lightweight structure and fast training speed. The
evidence vector obtained through the AAFFM exhibits enhanced feature expression, thereby
facilitating subsequent classification tasks.

2.1.2. Evidence Decision Fusion Module (EDFM)

Currently, in most scene classification tasks, the maximum output of the SoftMax
classification layer is commonly used as an indicator of confidence for predicting the target
value. However, it should be noted that SoftMax can only provide a single estimate of
the probability associated with an image category and fails to capture any uncertainty in
the prediction [36]. Consequently, this approach may lead to risky categorization results
with low confidence levels and a higher likelihood of erroneous predictions. The Dirichlet
distribution is increasingly being employed in diverse classification tasks owing to its
capacity to yield more plausible predictions [37]. The EDFM is employed to map the
credibility and uncertainty of multi-view remote sensing images by utilizing the Dirichlet
distribution [37,38].

Specifically, the evidence vector ev =
[
ev

1, ev
2, · · · , ev

n
]

is transformed into the Dirichlet
distribution αv =

[
αv

1, αv
2, · · · , αv

n
]
, based on the subjective logic theory. The parameters of

the Delicacy distribution and the evidence vector are specified as shown in the following
equation:

αv
n = ev

n + 1 (3)

where αv
n denotes the Dirichlet distribution of the v-th viewpoint image and ev

n denotes the
evidence vector of the v-th viewpoint image.

Secondly, the confidence and uncertainty of the aerial view and ground view images
are acquired utilizing the subjective logic theory, as depicted in the following equation:

∑n
n=1 bv

n + uv = 1 (4)

where v specifically denotes the number of views, v = 1 for aerial view images, v = 2 for
ground view images, n is the number of categories, bv

n denotes the confidence that the
classification result belongs to the n-th category, and uv denotes the overall uncertainty.

Therefore, the relationship between the image Dirichlet distribution and credibility
and uncertainty can be specifically written as shown in Equations (5) and (6):

bv
n =

ev
n

α0v =
αv

n − 1
∑n

i=1 αv
i

(5)

uv =
n

α0v =
n

∑n
i=1 αv

i
(6)

where α0
v = ∑n

i=1 (e v
i + 1

)
= ∑n

i=1 αv
i denotes the overall energy of the Dirichlet distri-

bution. Thus, the parameters of the Dirichlet distribution are interconnected with every
evidence point in the image.

Finally, a novel decision fusion rule is proposed based on Q1 and Q2 to accomplish the
integration of aerial and ground images, looking at each of the credibility and uncertainty
points in the aerial and ground imagery as a whole. From the initial point of how conflict
factors arise in the fusion process of the two perspectives, it is essential to devise a simple
and effective approach to assigning them. In the fusion process of aerial and ground images,
we propose the multiplication and addition of non-conflicting Q1 and Q2. Instead, Q1 and
Q2, which give rise to conflicts during the fusion of aerial and ground images, are allocated
to the corresponding viewpoint images in proportion to the conflict confidence percentage
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bv
n, thereby enhancing the confidence level and reducing uncertainty, specifically, as shown

in Equations (7) and (8):

bn = b1
nb2

n + b1
nu2 + b2

nu1 +

(
b1

n + b2
n
)
∑i ̸=j b1

i b2
i

2
(7)

u = u1u2 +

(
u1 + u2)∑i ̸=j b1

i b2
i

2
(8)

where ∑i ̸=j b1
i b2

i is the conflict factor generated when fusing aerial and ground images.
From Equations (7) and (8), it can be seen that when the uncertainty of the classification
results from two views is high, the confidence of the final classification results is low. When
the uncertainty of the classification result from one view is low, the confidence of the final
classification result is high.

2.2. Loss Function

The most commonly used loss function for scene classification tasks is the cross-
entropy loss function. Unlike the traditional scene classification task, the loss function of
MVEDFN is computed by integrating the Dirichlet distribution. To ensure that both per-
spectives can offer reasonable guidance for multi-view scene classification, the loss function
of MVEDFN incorporates a hybrid approach by combining the aerial view Dirichlet distri-
bution integral loss Lloss

(
α1

i
)
, the ground view Dirichlet distribution integral loss Lloss

(
α2

i
)
,

and the fusion of multi-view with the Dirichlet distribution integral loss Lloss

(
αi

f usion
)

during network training [31], specifically, as shown in Equations (9) and (10):

Loss = ∑K
i=1

[
Lloss

(
αi

f usion
)
+ Lloss

(
α1

i

)
+ Lloss

(
α2

i

)]
(9)

Lloss(αi) = −∑n
i=1 qi·[φ(αin)− φ(αi0)]− ∑n

i=1 (1 − qi)·
[

1
φ(αin)− φ(αi0)

]
(10)

where φ(·) denotes a monotonically increasing digamma function, n refers to the number
of image categories, K refers to the number of images, qi is the real label of the remotely
sensed image, and αin refers to the airborne, terrestrial, and fused Dirichlet distributions,
respectively.

3. Experiment and Result Analysis

In this section, we present the experimental results and analysis of the MVEDFN
method for classification. It is divided into three main sections: firstly, the dataset used
for the classification task is described; secondly, the experimental parameters of MVEDFN
are presented; and, finally, the results of the experiments are summarized and analyzed
(including the results and analysis of the MVEDFN classification, the results and analysis
of the ablation experiments, and the results and analysis of the comparison tests).

3.1. Dataset Descriptions

The experimental validation of MVEDFN involves two datasets provided by
Machado et al. [22]. The first, the AiRound dataset, encompasses 11 categories, featuring
11,753 images across various scenes such as airports, bridges, churches, forests, lakes,
rivers, skyscrapers, stadia, statues, towers, and urban parks. AiRound consists of images
from three different perspectives: ground images, high-resolution RGB aerial images, and
Sentinel-2 satellite images. The sizes of a Sentinel-2 image and an aerial image are 224 × 224
and 500 × 500 pixels, respectively. The ground images are obtained in two different ways,
in different sizes. In this paper, aerial images and ground images from the AiRound dataset
are selected for the multi-view scene classification task.

The second dataset, CV-BrCT, includes 9 categories with a total of 24,000 image
pairs, covering scenes like apartments, hospitals, houses, industrial areas, parking lots,
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religious sites, schools, stores, and vacant lots. Each category in this dataset comprises
images captured from two distinct perspectives, aerial and ground views, both of which
comprise 500 × 500 RGB images. Illustrations of selected image pairs from these datasets
are provided in Figures 2 and 3.
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3.2. Experimental Parameters

For dataset partitioning, 60% of the images from each category in the AiRound and
CV-BrCT datasets are randomly assigned to the training set, 20% to the validation set, and
the remaining 20% to the test set. The aerial and ground images are resized to dimensions
of 224 × 224. The deep learning framework PyTorch is employed to construct the MVEDFN.
Compared with other pre-trained networks, such as ResNet50 [39], ResNet101 [39] shows
better performance on the datasets used in our experiments (the results are not provided
in the article). Therefore, we selected ResNet101 pretrained on ImageNet as the backbone
of the AAFFM and kept its parameters as the initialized weights in our network. The
MVEDFN is trained using the stochastic gradient descent (SGD) optimizer, configured with
a momentum value of 0.9 and a weight decay coefficient of 0.0001. The specific number of
iterations, batch size, and learning rate for the training process are detailed in Table 1.

Table 1. Experimental training parameters.

Dataset Batch Size Learning Rate Iterations

AiRound 16
1 × 10−4 first 100

1 × 10−5 last 50

CV-BrCT 16
1 × 10−4 first 100

1 × 10−5 last 50

3.3. MVEDFN Classification Results and Analysis

The MVEDFN methodology employs an end-to-end approach to leverage the un-
certainty and confidence level inherent to both aerial and ground images for enhanced
multi-view scene classification. The outcomes of this process are systematically presented
in Table 2.

Table 2. MVEDFN classification results.

Dataset Algorithm Accuracy (%) Kappa (%)

AiRound MVEDFN 94.85% 93.86%

CV-BrCT MVEDFN 82.79% 78.47%
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Furthermore, Table 3 provides the outcomes of the deep evidence learning classifica-
tion utilizing single-view images. In this process, a single-view image serves as the input.
Features are extracted via the backbone network and the AAFFM. These features are then
transformed into measures of confidence and uncertainty based on the Dirichlet distri-
bution, specifically tailored for the single-view classification task. Notably, the backbone
network employed in this methodology is ResNet101.

Table 3. Single-view deep evidence learning scene classification results.

Single View

Dataset

AiRound CV-BrCT

Accuracy (%) Kappa (%) Accuracy (%) Kappa (%)

Aerial image 82.40% 78.98 78.11% 65.74%

Ground image 83.69% 80.03% 73.62% 56.76%

Tables 2 and 3 illustrate that the multi-view classification results consistently surpass
those of single-view classification. This suggests that integrating information from multi-
view imagery significantly enhances the accuracy of scene classification tasks. Moreover,
the t-SNE [40] algorithm is used to visualize the output features for single-view and
multi-view classification, and the specific visualization results are illustrated in Figures 4
and 5, respectively. These figures reveal that, in multi-view scene classification, features
belonging to the same category demonstrate a higher degree of aggregation, whereas
features from different categories are more distinctly separated, thus facilitating more
effective classification. Specifically, within the AiRound dataset, both single-view aerial
and ground images show proficient segregation of the ‘stadium’ category from others.
However, when utilizing the MVEDFN for multi-view categorization, there is a notable
improvement in classification, with a clear demarcation across all distinct categories and
a consolidation of similar categories. In contrast, for the CV-BrCT dataset, classifications
from single-view aerial and ground imagery, while generally dispersed, reveal a tendency
for the ‘school’ category to intermingle with other categories. This mixing is particularly
pronounced in ground images. Employing the MVEDFN for multi-view classification,
however, results in a distinct separation of the ‘school’ category from others. Overall, multi-
view scene categorization exhibits greater clustering for features within the same category
and increased dispersion for features in different categories. Additionally, in both the
AiRound and CV-BrCT datasets, aerial image features demonstrate superior aggregation
compared to ground image features for similar feature categories.

Moreover, the MVEDFN achieves a classification accuracy of up to 94.85% on the
AiRound dataset, with a kappa coefficient of 93.86%, which is better for classification and
means that the results predicted by MVEDFN are in perfect agreement with the actual
classification results, as depicted in Figure 6, which showcases the corresponding confusion
matrix. The confusion matrix indicates that the categories of airport, church, skyscraper,
stadium, statue, and tower exhibit the highest level of accuracy in classification.
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Figure 7 illustrates the uncertainty values associated with the classification process for
accurately identified images pertaining to airports, churches, skyscrapers, stadia, statues,
and towers. This figure highlights that both aerial and ground-view images demonstrate
significant uncertainty prior to the integration of multi-view classification, thereby compro-
mising the reliability and increasing the risk of direct predictions. Following the application
of the MVEDFN, there is a notable reduction in the uncertainty values for categorization.
Consequently, the final categorization outcomes for the airport, church, skyscraper, stadium,
statue, and tower categories become more credible and safer to predict.
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It is also important to note that the classification accuracy for lakes was comparatively
lower, with a 22% misclassification rate where lake category images were incorrectly
identified as rivers. Figure 8 presents the evidence vector values and corresponding
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uncertainty values observed during the classification of a pair of images within the lake
category. The figure clearly demonstrates that the evidence vector values for the aerial
image are more dispersed, while those for the ground image are notably concentrated. This
dispersion results in a higher uncertainty and increased classification risk for the aerial
view image. Additionally, the evidence vector values for both the aerial and ground images
in the lake category are disproportionately skewed towards the river category. This bias
fails to provide complementary information, leading to an inadequate evidence base for
the ensuing multi-view scene fusion process. As a consequence, this imbalance contributes
to a reduced classification accuracy.
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The categories of bridge, forest, river, and urban park also exhibit minor confusion
in their classification. Figure 9a displays the uncertainty values for correctly categorized
image pairs from these categories, whereas Figure 9b shows the uncertainty values for
incorrectly categorized image pairs from the same categories. Notably, the uncertainty
associated with the classification of bridge, forest, river, and park in Figure 9a is consid-
erably diminished following application of the MVEDFN, resulting in more trustworthy
outcomes. Conversely, the reduction in classification uncertainty observed in Figure 9b
post-MVEDFN application is marginal compared to Figure 9a. This suggests that the aerial
and ground images in Figure 9b have lower classification credibility during multi-view
scene analysis. Consequently, it implies that the image pairs in Figure 9b are characterized
by a higher uncertainty and a relatively inferior quality, rendering them more susceptible
to misclassification in the process.
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Figure Correction 
There were two errors in the original publication [1]. Figure 9 and Figure 11 were 

plotted with errors. 
Corrections have been made to figure 9 and figure 11. In Figure 9(a), the image cate-

gory label in the third column has been changed into "river" and the image in the second 
row of the third column has been redrawn. In Figure 9(b), the category label of the image 
in the third column has been changed into "river". In Figure 11, the image labels of the 
third and fourth images have been changed into "parking lot" and "industry", respectively. 
The corrected Figures are as follows: 

(a)                                       (b) 
Figure 9. (a) Uncertainty values for correct classification into the bridge, forest, river, and urban 
park categories; (b) uncertainty values for misclassification into the bridge, forest, river, and urban 
park categories. 

Figure 9. (a) Uncertainty values for correct classification into the bridge, forest, river, and urban park
categories; (b) uncertainty values for misclassification into the bridge, forest, river, and urban park
categories.

With the CV-BrCT dataset, the MVEDFN classification accuracy reaches 82.79%, with
a kappa coefficient of 78.47% and a high degree of agreement between the predicted and
actual classification results. Figure 10 demonstrates the confusion matrix for the CV-BrCT
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dataset. The confusion matrix reveals that the house category accuracy classification
shows the highest level, followed by the parking lot category, industrial category and the
apartment category.
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Figure 10. Confusion matrix for the multi-view classification of the CV-BrCT dataset.

Figure 11 depicts the uncertainty values associated with the classification process
for correctly identified images in the categories of house, parking lot, industrial, and
apartment. The figure shows a noticeable decrease in these uncertainty values following
the implementation of the MVEDFN method. However, the classification accuracy for
the hospital category is notably low, at only 23.68%, indicating the poorest performance
among the categories. Figure 12 further elaborates on this issue by displaying the evidence
vector values and uncertainty values for image pairs within the hospital category, which
are mistakenly classified as apartments. The figure reveals that the evidence vector values
for ground images display greater dispersion across categories, as opposed to the more
concentrated values seen in aerial images. This indicates that images taken from a ground
perspective are associated with a higher degree of uncertainty. Furthermore, both aerial
and ground images consistently show that the highest evidence vector values align more
with the apartment category rather than the expected hospital category. This observation
underscores a critical limitation: neither aerial nor ground images provide sufficiently
accurate evidence to support effective classification in subsequent tasks, thereby leading to
a lower overall classification accuracy.
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Figure 12. Evidence vector and uncertainty values for hospital misclassified as an apartment building.

In addition, the religious, school, store, and vacant lot categories also show a small
amount of confusion in categorization. Figure 13a illustrates the uncertainty values for the
correct category of categorization in some of the image pairs for the religious, school, store,
and vacant lot categories. Figure 13b illustrates the uncertainty values for the incorrect
category of categorization in some of the image pairs for the religious, school, store, and
vacant lot categories.
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The examination of imagery from the AiRound and CV-BrCT datasets elucidates a
significant correlation between image uncertainty and classification precision, with this
reduction in uncertainty paralleling an enhancement in image fidelity and thereby fostering
more accurate classification. This interplay between uncertainty and image quality is
further substantiated by instances of misclassification within both datasets. A pattern
emerges whereby images marked by elevated uncertainty frequently align with those
experiencing misclassifications. This trend suggests that the measure of uncertainty can
act as a proxy for gauging image quality and its consequential effect on classification
accuracy. Additionally, a comparative evaluation of the two datasets indicates a generally
lower degree of uncertainty in images from the CV-BrCT dataset in contrast to those in the
AiRound dataset. This difference implies that, on balance, the AiRound dataset comprises
images of a higher caliber, which bears significance for the effectiveness of the classification
methodologies utilized for these datasets.

3.4. Ablation Study

To further substantiate the efficacy of the Multi-view Evidence Decision Fusion Net-
work (MVEDFN) in classification tasks, a series of ablation studies were conducted. These
experiments maintained consistent parameter settings while focusing on two key variables:
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the inclusion or exclusion of the AAFFM and the utilization of the EDFM. The MVEDFN
ablation study compares three distinct decision-level fusion methodologies: Decision Sum
Classification [22], Decision Product Classification [22], and TMC Fusion Rule Decision
Classification [41]. In this context, ‘ResNet101 + AAFFM’ signifies the integration of the
AAFFM with the ResNet101 network. ‘SoftMax product’ denotes the application of the
SoftMax decision multiplication method in deep learning for multi-view image classifica-
tion, bypassing the evidential decision fusion module. Conversely, ‘SoftMax sum’ refers
to the use of the SoftMax decision sum method in deep learning for multi-view image
classification, also excluding the evidential decision fusion module. ‘TMC fusion’ indicates
the adoption of TMC fusion rules, as proposed by Han et al. [41], within the EDFM of this
study, rather than employing the original fusion rules of the EDFM method proposed in
this paper. The detailed results of these experiments are systematically presented in Table 4.

Table 4. Multi-view deep evidence learning ablation results.

Algorithms AiRound CV-BrCT

Resnet101 + SoftMax product 86.40% 78.98%

Resnet101 + SoftMax sum 90.13% 79.98%

Resnet101 + TMC fusion 91.84% 80.87%

Resnet101 + EDFM 92.70% 81.28%

Resnet101 + AAFMM + SoftMax product 87.27% 79.79%

Resnet101 + AAFMM + SoftMax sum 91.42% 80.56%

Resnet101 + AAFMM + TMC fusion 93.13% 81.94%

Resnet101 + AAFMM + EDFM (MVEDFN) 94.85% 82.79%

The results presented in Table 4 demonstrate that utilization of the EDFM and the
AAFFM yields higher classification accuracies compared to the other three decision fusion
strategies, thereby providing further empirical validation for the efficacy of the proposed
method in this study. In addition, Figures 14 and 15 illustrate the comparison of the fusion
rules of the EDFM method with the fusion rules of the TMC method [41] in this paper.
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In our analysis, we observed a notable conflict in the classification of ground and aerial
images. For instance, Figure 14 displays a conflict value of 0.3452, indicating a significant
discrepancy. Both aerial and ground images exhibit high credibility in the housing category.
However, the evidence value for this category, as computed using the TMC fusion rule,
appears to be excessively high. This discrepancy does not align with intuitive assessments
and complicates the derivation of convincing results from image quantization. Conversely,
application of the EDFM proposed in this study significantly mitigates this issue, yielding
predictions with enhanced authenticity and interpretability. A similar situation is presented
in Figure 15, where the conflict value between ground and aerial images is 0.4450, denoting a
high level of conflict. The aerial image registers a substantial evidence value in the industrial
category, while the ground image shows a significant evidence value in the parking lot
category. Intriguingly, the evidence value for the industrial category, as calculated via the
TMC fusion rule, exceeds the combined evidence for both the aerial and ground images.
Although the final classification is accurate, the interpretability of this result is limited. This
observation further substantiates the effectiveness of the EDFM fusion rule introduced in
this paper. It demonstrates our method’s capability to alleviate the inherent conflict in the
classification process of aerial and ground images, thereby rendering the predictions of
multi-view remote sensing scene classification more logical and reliable.

Additionally, this paper includes ablation experiments to further substantiate the effi-
cacy of the AAFFM and evidence-based deep learning for single-view image classification.
These experiments involve comparing scenarios with and without the use of the AAFFM, as
well as classifications conducted using both SoftMax deep learning methods and evidence
deep learning methods. The specific outcomes of these comparisons are detailed in Table 5.
The results from both Tables 4 and 5 consistently demonstrate higher accuracy levels
when employing the AAFFM method compared to scenarios where it is not used. This
underscores the effectiveness of the AAFFM in enhancing the adaptability of convolutional
neural networks to remote sensing images captured from varying viewpoints. Furthermore,
the AAFFM is shown to be adept at extracting more comprehensive features from these
images, which in turn contributes to an improved classification performance. Regarding
the comparison of deep learning methods in Table 4, the SoftMax deep learning approach
exhibits a slightly higher accuracy than the evidence deep learning method. This difference
can be attributed to the evidence deep learning method’s primary focus on accurately
estimating image uncertainty, especially in aerial or ground images with high uncertainty
levels. While this focus on uncertainty estimation is crucial, it can sometimes lead to a
compromise in classification accuracy. In cases where images exhibit high uncertainty, often
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indicative of poor quality, it becomes more meaningful to quantify the uncertainty of these
images rather than solely striving for accurate classification results.

Table 5. Single-view deep evidence learning ablation results.

Algorithms
AiRound CV-BrCT

Aerial
Image

Ground
Image

Aerial
Image

Ground
Image

ResNet101 + SoftMax 82.22% 83.31% 77.65% 64.77%

ResNet101 + AAFFM + SoftMax 83.26% 84.54% 78.98% 66.13%

ResNet101 + evidential 81.12% 81.40% 77.13% 63.57%

ResNet101 + AAFFM + evidential 82.40% 83.69% 78.11% 65.74%

3.5. Comparison Experiment

A comparison of the MVEDFN with the seven other methods is given in Table 6. The
existing methods for the fusion classification of multi-view remote sensing scene images
can be broadly classified into three levels: data level, feature level, and decision level.
Therefore, the MVEDFN method proposed in this paper is compared with a data-level
fusion method (the six-channel method [42]), two feature-level fusion methods (CILM [23]
and MSAN [24]), and four decision-level fusion methods (SoftMax product [22], SoftMax
sum [22], EFN [31], and TMC [41]). The following techniques are briefly outlined.

Table 6. Results for the comparison of MVEDFN with other fusion algorithms (%).

Algorithms
Datasets

AiRound CV-BrCT

Six-Ch. 77.68% 74.62%

MSAN 93.56% 81.69%

CILM 92.27% 81.28%

SoftMax product 87.27% 79.79%

SoftMax sum 91.42% 80.56%

EFN 91.84% 80.87%

TMC 92.70% 81.47%

MVEDFN 94.85% 82.79%

• Six-channel: The method involves fusing pairs of aerial and ground images into six
channels and then performing a multi-view remote sensing scene classification task.

• CILM: The proposed method integrates the cross-entropy loss function and contrast
loss function, presenting a novel information-based learning model for extracting and
fusing two viewpoint image features without weight sharing in a CNN.

• MSAN: The method is a convolutional neural network fusing multi-scale attention,
based on feature fusion and an attention mechanism to achieve multi-scale feature
extraction and fusion from aerial and ground images.

• SoftMax product: The method involves generating category probability vectors by
inputting aerial and ground images separately into CNNs. Subsequently, the view-
point probability vectors from both perspectives are fused using an element-wise
multiplication operation. Finally, the prediction is determined based on the largest
element in the fused vector.

• SoftMax sum: The method involves generating category probability vectors by in-
putting aerial and ground images separately into CNNs. Subsequently, the viewpoint
probability vectors from both perspectives are fused using an element-wise sum oper-
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ation. Finally, the prediction is determined based on the largest element in the fused
vector.

• EFN: The method proposes a simpler and easier-to-train loss function for multi-view
scene classification in conjunction with evidence theory.

• TMC: The method employs evidence fusion theory to generate plausible classification
decisions for aerial and ground image data, with a specific focus on decision making
through the integration of uncertainty from multiple-viewpoint images.

Analysis of the results in Table 6 indicates that among the seven methodologies evalu-
ated, the six-channel fusion approach yields the lowest accuracy, achieving only 77.68%
on the AiRound dataset. This underscores a substantial gap in fusion performance com-
pared to both feature-level and decision-level fusion techniques. The MSAN method,
with its advanced network fusion attention mechanism, demonstrates commendable ac-
curacy, achieving 93.56% on the AiRound dataset and 81.69% on the CV-BrCT dataset.
This method’s ability to extract and complementarily fuse multi-layer features contributes
to an enhanced scene classification accuracy. However, when juxtaposed with the seven
compared methods, the MVEDFN method proposed in this study emerges as the most
effective. It registers an impressive accuracy of 94.85% on the AiRound dataset, which is
1.29% higher than that of the MSAN method. Furthermore, on the CV-BrCT dataset, it
achieves an accuracy of 82.79%, surpassing that of the MSAN method by 1.1%. A notable
aspect of the MVEDFN method is its capability to quantify the credibility and uncertainty
of multi-view images, providing a rational and comprehensive explanation for the predic-
tion outcomes in multi-view scene classification tasks. This evidences the robustness and
reliability of the MVEDFN approach in handling complex multi-view remote sensing data.

4. Conclusions

Multi-view scene classification can achieve a more comprehensive and accurate clas-
sification task, but with the increase in the number of remote sensing image views, there
are difficulties and challenges in many aspects, such as the existence of differences in
image quality, the effectiveness of the multi-view image fusion strategy, uncertainty, and
interpretability between images. Solving these problems will help us to improve the accu-
racy and reliability of multi-view remote sensing scene classification. In this research, we
introduce a novel multi-view decision fusion network aimed at enhancing multi-view scene
classification. This method diverges from conventional scene classification techniques by
leveraging evidence deep learning theory. To address the above issues, we propose the
novel Multi-view Evidence Decision Fusion Network (MVEDFN) designed to enhance
multi-view scene classification. This approach differs from traditional scene classification
techniques in that it utilizes evidence-based deep learning theory to quantify the image
quality and effectively integrates the uncertainties inherent in aerial and ground imagery
to obtain more reliable decision classification. This approach maximizes the utility of
multi-view image data and provides insightful explanations for the prediction outcomes.

The structure of the network consists of two key components that process the corre-
sponding classes of aerial and ground images, respectively. Firstly, an Asymptotic Adaptive
Feature Fusion Module (AAFFM) is constructed to fuse the multi-scale features of remote
sensing images, enhance the discriminative ability of remote sensing image features, and
alleviate the quality difference between different images. Secondly, an Evidence Decision
Fusion Module (EDFM) is utilized to perform the decision-level fusion of aerial and ground
images, effectively integrating multi-view remote sensing image information and process-
ing and providing a clear explanation of the classification results. The empirical results
demonstrate the effectiveness of our method, with accuracy rates of 94.85% on the AiRound
dataset and 82.79% on the CV-BrCT dataset, respectively. These outcomes represent a
substantial improvement in the accuracy of multi-view remote sensing scene classification.
Looking ahead, our research will continue to investigate various methodologies applicable
to multi-view remote sensing scene classification, aiming to achieve more precise and
comprehensive results in this field.
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