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Abstract: Recent GIS technologies are shaping the direction of Precision Agriculture and Viticul-
ture. Sentinel-2 satellites and UAVs are key resources for multi-spectral analyses of vegetation.
Despite being extensively adopted in numerous applications and scenarios, the pros and cons of
both platforms are still debated. Researchers have currently investigated different aspects of these
sources, mainly comparing different vegetation indexes and exploring potential relationships with
agronomic variables. However, due to the costs and limitations of such an approach, a standardized
methodology for agronomic purposes is still missing. This study aims to fill such a methodology
gap by overcoming the potential flaws or shortages of previous works. To achieve this, an image
acquisition campaign covering 6 months and over 17 hectares was carried out, followed by an
NDVI comparison between Sentinel-2 and UAV to eventually explore relationships with agronomic
variables. Comparative analyses were performed by using both classical (Ordinary Least Squares
regression and Pearson Correlation) and spatial (Moran’s Index) statistical approaches: here, 90% of
cases show r and MI scores above 0.6 for plain images, with these scores expectedly lowering to 72%
and 52% when considering segmented images. Moreover, NDVI thematic maps were classified into
clusters and validated by the Chi-squared test. Finally, the relationship and distribution of agronomic
variables within NDVI and clustered maps were consistently validated through the ANOVA test.
The proposed open-source pipeline allows to strengthen existing UAV and satellite applications in
Precision Agriculture by integrating more agronomic variables.

Keywords: UAV; Sentinel-2 data validation; agronomical variables; precision agriculture; spatial
statistics

1. Introduction

Precision Agriculture (PA) has been shaping modern agriculture in the last decades.
PA is characterized by a wide number of techniques and technologies aimed at optimizing
crop management and resources [1]. What made the rise of PA possible was the emergence
of advanced modeling by Geographic Information Systems (GIS) and remote sensing
technologies combined; they can provide affordable and reliable instruments, such as
satellite platforms and devices for the acquisition of remote and field-based geospatial
data [2]. In particular, Precision Viticulture (PV), the specialization of PA techniques for
viticulture, started to develop significantly later than other crops (later in the middle of the
2000s decade), while experiencing rapid growth [3]. At present, the most recent technologies
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make it possible to carry out monitoring operations surveys through Unmanned Aerial
Vehicles, UAVs. The availability of multi-spectral sensors on a commercial scale, ready
to work on board these vehicles, makes it possible to perform spatial analyses by using
different vegetation indexes at a sub-meter pixel size resolution. However, in the current
fragmentation of the Italian wine-growing regions, being characterized by a mean size
of about 1 ha [4], the use of UAV technologies can still be expensive for the agricultural
business, both in terms of the monetary aspect and of the active effort required for the data
collection [5]. Furthermore, the effects of climate change at regional and local scales make it
more complex to collect historical data series that can be consistent over time and suitable
to perform predictive analysis [6]. An alternative to vehicle-based monitoring in PV is
represented by the European Program for Earth Observation represented by Copernicus.
The dedicated satellites of this program among the Sentinel families, (Sentinel-2), active
since 2015, are designed to collect multi-spectral images. This type of passive sensor
brings numerous advantages for PV: the very first is the effortless collection of open big
spatial data at a negligible monetary cost for the final users, able to perform territorial
analyses over time. In fact, Sentinel-2 continuously scans the Earth’s surface, capturing
multi-spectral images with a temporal frequency between 2 and 10 days depending on the
latitudes, delivering post-produced products with a spatial resolution ranging from 10 to
30 m pixel size. Moreover, the Copernicus program makes historical satellite data available,
allowing for both spatial and temporal analyses. The main downside of such a tool in PV
applications is its low spatial resolution, especially when compared with the centimeter
resolution provided by UAV platforms. Although more than sufficient for monitoring
operations on a global scale [7], a decametric spatial resolution can represent a relevant
issue for surveying operations on a scale such as that of single vineyards. Vineyards are
indeed characterized by a regular canopy distribution but with the disadvantage of not
being particularly dense and with inter-rows often covered by weeds or cover crops. This
means that a single Sentinel-2 pixel can contain all these elements: vines, inter-row bare
soil, weeds, or cover crops, with the latest representing a non-negligible source of noise
when focusing on vine vigor assessment.

So far in the scientific literature, the issue has generally been investigated by comparing
the Normalized Difference Vegetation Index (NDVI) values produced from both Satellite
and UAV images with the aim of measuring their relationship. In fact, NDVI is the most
widely adopted vegetation index in PV, and it can be useful for several purposes as a
tool at the farmers’ disposal [8,9]. Multiple studies have investigated and analyzed this
issue, with most of them focusing on different prominent aspects. This study takes into
account a sample of these studies in order to elaborate a synthesis of their best practices
and methodologies: Sozzi et al. (2020) considered a large area of about 42 hectares while
collecting UAV data only once for spatial analyses comparison by focusing on the impact
of border pixels and comparing data from both sources using Pearson Correlation and
an Ordinary Least Squares regression (OLS) model [10]. With the condition of removing
mixed pixels and edges, the authors concluded Sentinel-2 images to be comparable to
UAV images as a source for broad canopy and vine management decisions within and
between vineyard blocks, though currently unable to provide vine-specific information.
Nonni et al. (2018) surveyed two blocks for a total of two hectares using classical OLS
models for the comparison [11], noting how preliminary results show the potential for using
open-source Sentinel platforms to monitor vineyards. However, in this case, the authors
declared that further research was necessary in order to evaluate the possibility of using
Sentinel-2 data for the long-term monitoring of vineyards. Also, Di Gennaro et al. (2019)
preferred OLS methods for the comparison, while gathering insight about the relationship
with agronomic variables such as biomass, yield, and grape composition sampled within
different vigor zones at harvest time [12]. Here, the authors confirm the continuity of NDVI
maps at a visual inspection but refine the analysis by filtering out ground pixels from UAV
maps. The latter study also shows good correlation between NDVI maps elaborated from
both platforms, especially considering filtered UAV data and agronomic key parameters.
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Khaliq et al. (2019) performed four surveys over 2.5 hectares, performing comparisons
between maps using the Pearson Correlation before dividing them into different vigor
clusters and testing their variance with the ANOVA test [13]. This latter study also considers
vines-only maps to be most effective in describing the observed vineyard vigor. In fact, the
NDVI maps derived from the satellite imagery were found not to be in accordance with
the in-field crop vigor assessment. Instead, NDVI maps from UAV imagery, generated
by considering vines-only pixels, were observed to be effective in describing the vigor
of a vineyard. Pastonchi et al. (2020) collected images on a single 1.4-hectare block over
three different years for a total of six surveys while tracking data about yield and pruning
weight, putting emphasis on the need to move from classical statistical methods to spatially
savvy techniques [14]. Matese et al. (2019) surveyed a single block of 7.5 hectares once
per two years, using both OLS and spatial statistical methods for their comparison [15],
underlining how the use of the latter provides a more robust and powerful tool to evaluate
the implications of variability within vineyards. All covered studies tend to agree on the
necessity to overcome classical statistical techniques in favor of spatial statistical methods
since the latter proved to help prevent the overestimation of correlation when spatial
patterns are not present and are considered to constitute a more robust evaluation tool.
However, each study covered different portions of time and space, whereas studies that
covered a larger number of hectares were being held for fewer surveys, and vice versa.
Moreover, analysis of the relationship between agronomic variables and NDVI maps built
from both aerial platforms was not always included. At last, most studies point out the
need to expand the conducted analysis by covering both longer periods of time and larger
crop extensions.

This study aims to harmonize what was conducted in previous works by taking
advantage of the virtuous methodologies and good practices they employed and expanding
the analysis on both a temporal (six surveys over six months) and a spatial (17 hectares)
dimension. To achieve this, a multi spatio-temporal comparison between Satellite and UAV
NDVI values has been carried out along with the integration of ground-truthed agronomic
variables to further validate the correspondence between the vegetation index and actual
geometrical measures taken on a number of monitored vines. To do so, after pre-processing
both UAV and satellite images, NDVI maps were calculated using data from both platforms;
UAV-derived maps were then filtered using a segmentation algorithm in order to remove
ground-related pixels and to produce NDVI maps including only pixels related to the vines.
UAV images, segmented and nonsegmented, were then co-registered to the corresponding
Sentinel-2 images passing from a 4 cm/pixel to a 10 m/pixel resolution by averaging
their original values. Once produced, the internal consistency of all sets of images was
checked, introducing the Moran’s Index (MI) as a first spatial statistical method. Later,
a comparison between Satellite and UAV NDVI values was performed by using more
classical approaches and parameters, such as the R2 of an OLS model and the Pearson
Correlation coefficient (r) along with spatial correlation measures such as the Bivariate MI
as suggested, for example, by Matese et al. (2019) [15]. NDVI maps from both sources were
then classified into three vigor clusters based on their distribution terciles as seen in the
works of Matese et al. (2019) and Di Gennaro et al. (2019), and their relationship was tested
using the Chi-squared test [12,15]. At last, the relationship and distribution of agronomic
variables with NDVI and clustered maps were analyzed through Analysis of Variance
(ANOVA) [12]. In this study, since the correlation between qualitative grape parameters
and NDVI values was deemed weak [12], two quantitative variables were monitored to
verify their relationship with NDVI maps: the Average Length of Shoots and the Leaf
Wall Area (LWA). These are two relevant parameters for wineries’ technical directors. The
Average Length of Shoots is a parameter taken into account to plan for the beginning of
phytosanitary treatments, while the LWA is directly related to the health status of vines and
is often considered a relevant parameter for the dosage of phytosanitary treatments [16].
Both variables are not necessarily easy to monitor from flying platforms, hence the necessity
of testing their relationship with NDVI values registered from above. The relationship
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and distribution of the values of the two agronomic variables within NDVI and clustered
maps were consistently validated through the ANOVA test. Finally, the obtained results are
compared with those shown in previous research, and the feasibility and interchangeability
of both platforms for different applications in Precision Viticulture is discussed.

2. Materials and Methods

As stated in the introduction, this study aims to develop a standardized methodology
for the multi spatio-temporal validation of NDVI maps. To achieve this goal, the proposed
statistical analysis was built to include the best practices found in the covered previous
research and synthesize them in the workflow depicted in Figure 1. The workflow is
composed of the following steps, each of which is explored and detailed later within this
section: the first block of the workflow is dedicated to data collection and pre-processing.
Satellite images are downloaded from dedicated services, while UAV images and agronomic
data are collected on the field. Satellite images are then cleaned from the presence of cloudy
pixels, while UAV images are co-registered to match the resolution of the firsts. The second
block of the workflow is dedicated to the calculation of NDVI maps and their division into
clusters based on their tercile distribution. The final block comprehends all the statistical
analyses carried out. NDVI maps are evaluated using both classical and spatial statistics;
NDVI clusters are first tested using the Chi-squared test, and then the distribution of the
agronomic variables over the clusters is evaluated with the ANOVA test.

Figure 1. The workflow for the statistical analysis followed during the study.
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2.1. Monitoring Sites, Plant Material and Weather Data

The area of study was that of the Consorzio di Suvereto e Val di Cornia Wine located
in Alta Maremma, on the coast of Tuscany in central Italy. The Consorzio comprehends the
municipalities of Suvereto, Campiglia Marittima, Piombino, San Vincenzo, Sassetta, and
Monteverdi, as depicted in Figure 2. The area is particularly suited to the production of
high-quality wines, given its strategic position close to the Tyrrhenian Sea, the minerality
of the soils, and a non-negligible centuries-old tradition.

Figure 2. The area of the Consorzio di Suvereto e Val di Cornia Wine.

Out of more than thirty wineries, four were selected as study sites, with the intent to
represent the diversity available in the area in terms of agronomic management, exposure,
and macro composition of the soil, namely, Tenuta Casadei (Casadei), Società Agricola
Petra (Petra), Azienda Vinicola Rigoli (Rigoli), and Tua Rita Società Semplice Agricola (Tua
Rita) as shown in Figure 3, with their charachteristics summarized in Table 1.

Table 1. Summary of the characteristics of the four wineries.

Winery Soil Texture Soil Management Layout (m) Cultivar Extension (ha) Training Method

Casadei Silty clay loam Alternated cover crop 1.80 × 0.80

Sangiovese 0.45 Double spurred cordon
Merlot 1.21 Spurred Cordon

Cabernet Sauvignon 1.11 Spurred Cordon
Cabernet Franc 1.24 Double Spurred Cordon

Petra Clay loam Alternated cover crop 1.60 × 0.80

Sangiovese / /
Merlot 2.82 Guyot

Cabernet Sauvignon 3.39 Guyot
Cabernet Franc 0.47 Spurred Cordon

Rigoli Sandy clay loam Spontaneous grassing 2.20 × 0.80

Sangiovese 0.88 Spurred Cordon
Merlot 0.76 Spurred Cordon

Cabernet Sauvignon / /
Cabernet Franc 0.62 Guyot

Tua Rita Loam Alternated cover crop 1.40 × 0.80

Sangiovese 2.22 Double Spurred Cordon
Merlot 1.49 Double Spurred Cordon

Cabernet Sauvignon 0.41 Double Spurred Cordon
Cabernet Franc 0.27 Double Spurred Cordon
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Figure 3. The vineyards under study belonging to the four wineries, labeled for cultivar, and
ROIs positions.

To account for temporal variability, the presented analysis was repeated once per
month during the vegetative season. Six surveys were planned to match UAV flights
with the passage of Sentinel-2. The dates, shown in Table 2, were picked by checking the
Sentinel-2 acquisition calendar at Spectator [17].

Table 2. Dates of the six flights performed with UAV platforms.

Flight Date

F1 24 March 2022
F2 28 April 2022
F3 23 May 2022
F4 27 June 2022
F5 22 July 2022
F6 26 August 2022

Grape varieties can represent another source of variability in terms of expressed vigor.
To account for this, vineyards from the four wineries were also selected to be, as much as
possible, equally distributed among the four most relevant Vitis vinifera grape varieties
present in the area: Sangiovese, Merlot, Cabernet Sauvignon, and Cabernet Franc. In total,
the study covered an area of about 17 hectares spatially distributed as displayed in Figure 3
and divided among different cultivars as shown in Table 1.

The 2022 season was characterized by one of the worst periods of drought in recent
years [18], with practically no precipitation in the most critical months for grape fructifi-
cation, during June and July (Figure 4). Relevant rainfall was finally observed during the
month of August, when recorded precipitations were sufficient to safeguard the quality



Remote Sens. 2024, 16, 735 7 of 28

of the wine products. The exceptional drought, along with the high positive temperature
anomalies registered during the summer, not only influenced the seasonal vegetative vigor,
yield, and quality but also prevented the growth of cover crops and weeds in the vineyard
alleys during the warmest months of the season (June, July and August), with a couple of
exceptions arising during the second part of August as witnessed in Table 3.

Figure 4. Total precipitation and air temperature in the area and period of the study compared with
the long-term data for the period 2001–2021 as per the data available at Weather Spark [19].

Table 3. Cover crops status at different wineries as found in different surveys.

F1 F2 F3 F4 F5 F6

Casadei On alternated
rows Just mowed Absent Absent Absent Absent

Petra On alternated
rows, uneven

On alternated
rows, uneven Absent Absent Absent Partially present

Rigoli Spontaneous Just mowed Just mowed Absent Absent Partially present

Tua Rita On alternated
rows Just mowed Absent Absent Absent Absent

Since weeds and cover crops are expected to have an impact on the statistical compari-
son of NDVI values, the four wineries were selected to account for such variability. At the
Rigoli study area, weeds were left free to grow until late April before being mowed and
controlled for the rest of the season. At the Casadei and Tua Rita study areas, cover crops
were largely used (mostly Vicia faba minor L.) as a natural fertilizer and mowed by the end
of April. At Petra, the study area presented a mixture of cover crops used on alternate rows.
No other techniques to manage the vigor of the vines, and that could affect the recorded
NDVI values, were used by the producers during the monitored period.

2.2. Satellite Images

Sentinel-2 products can be freely downloaded from the Copernicus Open Access
Hub [20]. For this study, only Level-2A products were used, as they were available for
all mentioned dates. Among all available products, only two spectral bands, band 4
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(665 nm) and band 8 (842 nm), and the Scene Classification (SC) were considered. The two
downloaded bands, respectively RED and NIR, were those needed to compute the NDVI
spatial analysis according to Rouse et al. (1974) [8]:

NDVI =
NIR − RED
NIR + RED

(1)

Once computed, Satellite NDVI output was cleaned using the SC layer as a mask.
The SC comes at a resolution of 20 m spatial resolution, where pixel values range from 0
to 1 as in Figure 5. This product was extremely useful for masking out unwanted pixels
and unnecessary noise from Sentinel-2 multi-spectral images. In this case, all pixels from
the Satellite NDVI not corresponding to values 4 (Vegetation) and 5 (Not-vegetated) of
the SC were removed. This process was performed mostly to avoid noisy pixels or pixels
classified as clouds, which may loom over the studied vineyards, being included in the
NDVI calculation.

Figure 5. Scene Classification and NDVI map with noisy pixels removed.

2.3. Unmanned Aerial Vehicles Images

The UAV platform used for the present study was projected and realized by MAVTech
Srl, a spin-off company from the Politecnico di Torino, with the collaboration of LIBRA
SRL. This custom UAV platform, namely, the MAV-4QL-01/APR, was equipped with a
Micasense Rededge M multi-spectral sensor characterized as described in Table 4.

Table 4. Micasense Rededge M multi-spectral sensor specifics.

Focal distance 5.5 mm
GSD 8 cm/pixel (per band) at 120 m AGL

Field of View 47.2° HFOV
Resolution 1280 × 960

B (475 nm ± 20 nm)
G (560 nm ± 20 nm)

Spectral bands R (668 nm ± 10 nm)
Red Edge (717 nm ± 10 nm)

NIR (840 nm ± 40 nm)

All surveys were conducted in the central hours of the day, between 10:00 and 14:00.
To maintain a level of coherence within the collected data, the visiting order to the four
wineries was always maintained the same for all three dates: Rigoli, Tua Rita, Casadei and
finally Petra. Aerial images were acquired at a nominal resolution of 1280 × 960 pixels,
from an average flight height of 60 m above the ground, proceeding at an average speed
of 2 m/s and with an 80% forward and vertical overlap of the images. Since the drone
had no RTK module, all images were georeferenced, exploiting the permanent elements of
the landscape already present in the sites of the study as Ground Control Points (GCPs).
For each site, at least 10 GCPs at the border of the vineyards and at least 5 GCPs within
the perimeter of the vineyards were identified. This allowed for the coordinates of the
GCPs to be recorded only during the first survey by making sure the selected GCPs were
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always going to be visible during the period of the study. The procedure was carried
out with a differential GNSS system, namely, the Leica GPS1200, with an accuracy of
0.03 m. The collected pictures were then processed with photogrammetry techniques by
the software Agisoft Metashape 1.8.3© to produce the required orthophotos. A camera
geometric calibration procedure was performed before the image alignment task; moreover,
a radiometric calibration was applied to the image blocks by using the reference images
of the Micasense calibrated reflectance panel acquired before and after each UAV flight.
Once multi-spectral images were collected, NDVI maps from UAV were calculated with
Equation (1).

It must be noted that a calibration issue occurred at F1 at Tua Rita, at F2 at Casadei,
and at F3 at Petra. All data corresponding to these surveys were removed from the study.

2.4. Images Alignment, Segmentation and Consistency Analysis

NDVI maps from both platforms were processed to be matched. In particular, UAV
images needed to be re-sampled to match the Sentinel-2 images’ pixel size. To achieve this,
Coregistration, an image-to-image automatic co-registration processing QGIS plugin, was
employed [21,22]. UAV images were therefore brought from a 4 cm/pixel to a 10 m/pixel
resolution by averaging the original values, and co-registered to the Sentinel-2 images.
The vineyards’ polygons were then dissolved and given a 10 m internal buffer. This was
performed since the inclusion of vineyard borders is well known to decrease the correlation
between registered Sentinel and UAV data [10]. Though other studies have already applied
masks for border effects, a statistical justification is still missing [23]. At this point, the
previously computed NDVI maps were clipped using the buffered vineyards polygons,
allowing maps derived from both platforms to perfectly match as shown in Figure 6.

Figure 6. An example of co-registration of an UAV NDVI map to a Satellite NDVI map.

As mentioned, vineyards are row-structured crops and, particularly at the early phe-
nological stages when the LWA is still small as compared to the inter-alley distance, vine
canopies are not the element of a vineyard that covers the highest percentage of pixels
in an aerial image. Soil, shadows, weeds, and cover crops represent a prominent part of
orthomosaics. In order to assess the relationship between satellite images and agronomic
variables with pure-vine NDVI maps derivable from UAV images, a segmentation process
was carried out to remove all non-vine pixels from images.

Correctly classifying UAV images to recognize vines, soil, and weeds/cover crops
is one of the most important steps to ensure the high quality of the produced maps.
For this purpose, many advanced techniques have been developed in the last few years,
with Deep Learning algorithms being seemingly the most promising ones [24]. However,
these techniques are still experimental and need more refining. At present, unsupervised
algorithms have proved to be accessible and solid solutions for this task. Among the many
available, for this study, the K-Means algorithm for RGB image segmentation, as described
in Cinat et al. (2019) [25], was implemented in Python 3.10. Basically, the algorithm takes
an RGB image of a vineyard as input and converts it into CIE-L*a*b* format to augment
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the performance of the K-Means algorithm. In the L*a*b* color space, colors are seen in a
spatial distribution line of Luminance (L*), green-red line (a*), and yellow-blue distribution
line (b*) [25]. The conversion from RGB to L*a*b* was performed with the skimage library,
using the d65 reference white that simulates the not exposed colors. K-Means was then set
to identify k = 5 clusters. The cluster with the lower value of a*, the strongest intensity of
green, was identified as vines, while the shadows cluster was selected as the one with a
positive value of a* and a lower value of b*. The remaining three clusters were identified as
soil. The algorithm provided good results but resulted to be memory expensive. This was
not a major issue for this work but it is still worth noting. Overall, the algorithm was quite
capable of correctly classify vines, shadows, and soil as visible in Figure 7.

Operationally, to manage the memory workload, UAV RGB images were clipped by
the vineyard polygons and fed to the algorithm. The returned segmented scenes were then
remapped, giving a value of 1 to the vines cluster and a value of 0 to all other clusters, and
merged back together. The mask built with this procedure allowed to remove non-vine
pixels from UAV NDVI maps at their original resolution. At this point, the co-registration
process described before was replicated, but only pixels corresponding to those belonging
to the vines cluster were averaged to match the Sentinel resolution.

The described processing led to the production of three datasets, with each dataset
composed of 24 images:

• NDVI S2: NDVI maps derived from Sentinel-2 multi-spectral images;
• NDVI UAVplain: NDVI maps derived from full UAV multi-spectral images;
• NDVI UAVvines: NDVI maps derived segmenting vines-only pixels from UAVplain images.

Figure 7. Example of a segmented UAV image obtained with the K-Means algorithm.

Once produced, all images of the three datasets were tested for their internal con-
sistency. To achieve this, the Moran’s Index (MI), a measure of spatial autocorrelation,
was used [26]. MI is a measure of global spatial autocorrelation of the data within an
analyzed area. Its value ranges from −1 to +1: for an observation at position i, a positive
autocorrelation means that values in the neighborhood are similar to zi, while a negative
spatial autocorrelation implies dissimilar values at nearby locations, and the zero value
(MI = 0) indicates the absence of spatial autocorrelation. Univariate MI returns information
about the correlation between a variable X and its spatial lag, formed by averaging all
values of X for the neighboring polygons [26]. The analysis was processed using GeoDa
1.20.0.20 [27]. At first, the calculation of spatial weights was necessary since they are used
to measure nearness and proximity between observations. GeoDa gives the possibility to
manage the spatial weights.
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As expected, all results shown in Table 5 were positive and show high MI scores. In fact,
only two results scored a MI value lower than 0.6, indicating high spatial consistency for
all produced images. p-values and z-scores were not reported, as they were all respectively
<0.001 and >2.58.

Table 5. Univariate MI for the three datasets.

Site F1 F2 F3 F4 F5 F6

Univariate MI for
NDVI S2

Casadei 0.848 / 0.769 0.802 0.857 0.857
Petra 0.901 0.868 / 0.719 0.758 0.785
Rigoli 0.662 0.851 0.934 0.882 0.887 0.867

Tua Rita / 0.743 0.753 0.673 0.855 0.863

Univariate MI for
NDVI UAVplain

Casadei 0.624 / 0.718 0.859 0.774 0.756
Petra 0.845 0.812 / 0.640 0.706 0.699
Rigoli 0.626 0.700 0.856 0.759 0.852 0.825

Tua Rita / 0.673 0.785 0.718 0.736 0.433

Univariate MI for
NDVI UAVvines

Casadei 0.695 / 0.566 0.831 0.777 0.856
Petra 0.817 0.833 / 0.684 0.717 0.778
Rigoli 0.793 0.898 0.883 0.545 0.960 0.675

Tua Rita / 0.682 0.637 0.823 0.726 0.717

2.5. Comparative Spatial Analyses

The classical approach in comparative studies is to use OLS models and analyze corre-
lations measured as their coefficient of determination (R2) values and Pearson Correlation
between the interested variables. However, this kind of comparison has been deemed
possibly biased, as common regression methods can only analyze the relationship between
dependent and independent drivers but cannot consider spatial dependence [28,29]. To
overcome such issues, a spatial statistical approach was integrated to provide higher relia-
bility to the comparisons. In fact, Bivariate MI helps measure the spatial autocorrelation
between a variable X and the spatial lag of a second variable Y, formed by averaging all
values of Y for the neighboring polygons. For each flight campaign, NDVI maps from
UAV images were compared to NDVI S2 values using either classical or spatial statistical
approaches. The latter, unlike the classical method, considered the structure and geospatial
variability present within the vineyard. All these comparisons were performed using the
GeoDa software Version 1.22.

Continuous NDVI maps are indeed a valuable tool for wineries’ technical directors.
These thematic maps can be further elaborated to produce more intelligible insights. Con-
tinuous values can, in fact, be divided into clusters to determine areas of Low, Medium,
and High vigor as exemplified in Figure 8. These clusters, available in Appendix A, can
give technical directors a valuable piece of information that can allow them more efficient
vineyard management practices. In order to assess the quality of the information provided
by such clustering, the values from all NDVI maps were separated on the terciles of their
distributions, as seen in the works of Matese et al. (2019) and Di Gennaro et al. (2019),
and tested using a Chi test, used to determine whether there is a significant association
between two categorical variables in data [12,15]. Clustering by terciles allows to place the
thresholds of the three clusters relative to the NDVI values of each parcel and to represent
the internal variability of the latter.
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Figure 8. Example of NDVI clustering realized from S2 and UAV imagery.

2.6. In-Field Validation and Ground Data

To further evaluate Satellite and UAV data, 107 Regions of Interest (ROIs) were identi-
fied in order to monitor vigor-related parameters, such as the Average Length of Shoots and
the LWA at each monitoring date during the season. Every ROI encompassed five vines
representative of the area. At each plant, measures for both the considered agronomic vari-
ables were taken manually using a measuring tape. In particular, for the Average Length of
Shoots, the average length of the four shoots more representative of the health state of the
plant was recorded. The reported values were then averaged to obtain the Average Length
of Shoots for each ROI. The LWA was calculated for each plant by multiplying the height of
its leaf wall (hence, the previously obtained Average Length of Shoots) with the horizontal
length of its leaf wall. Then, similarly to what was previously performed with the Average
Length of Shoots, the reported values were then averaged to obtain the LWA for each ROI.
The position of the ROIs was decided to respect the shape and variability of the vineyards
as shown in Figure 3. Once determined, the spatial coordinates of all ROIs were recorded
with the differential GNSS system.

To test the agronomic variables’ correspondence to what is visible through Satellite
and UAV images, their distribution over NDVI clusters was tested using the ANOVA
test. The ANOVA test, in this case, allowed to verify whether the observed distribution
of the agronomic variables over the NDVI clusters created from all three datasets had a
meaningful statistical difference [30].

3. Results

After detailing the context of the study and the proposed methodology, in this section,
the obtained results are presented. In the first section, the results obtained from classical
statistical approaches are shown in Tables 6 and 7. Afterward, the results from the spatial
statistical analysis, such as the Bivariate MI, described in Section 2.5, are presented in
Tables 8 and 9. At the end, the distribution of both agronomic variables over the NDVI
clusters created from the three datasets is evaluated (Tables 10–12), before being deepened
with the ANOVA test (Tables 16–18).
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Table 6. Coefficient of determination (R2) between NDVI S2 and NDVI UAVplain.

F1 F2 F3 F4 F5 F6

Casadei 0.709 / 0.808 0.745 0.778 0.814
Petra 0.920 0.902 / 0.703 0.721 0.792
Rigoli 0.802 0.668 0.890 0.693 0.825 0.642

Tua Rita / 0.338 0.589 0.693 0.825 0.642

F1–F6 represent the monitoring dates. Values are formatted according to the consistency of the relationship:
R2 ≤ 0.6 (normal); 0.6 ≤ R2 < 0.7 (italic); 0.7 ≤ R2 < 0.8 (bold-italic) and R2 ≥ 0.8 (red bold-italic). The empty
cells (/) means missing data. Pearson Correlation coefficient is not shown since all correlations were positive with
values above 0.6.

Table 7. Coefficient of determination (R2) and Pearson Correlation coefficient (r) between NDVI S2
and NDVI UAVvines.

F1 F2 F3 F4 F5 F6
R2 r R2 r R2 r R2 r R2 r R2 r

Casadei / / / / 0.435 0.660 0.655 0.809 0.715 0.845 0.801 0.895
Petra / / 0.527 0.726 / / 0.118 0.343 0.041 0.203 0.287 0.536
Rigoli / / 0.625 0.790 0.787 0.887 0.256 0.506 0.469 0.684 0.678 0.823

TuaRita / / 0.369 0.607 0.152 0.389 0.396 0.629 0.674 0.821 0.763 0.873

F1–F6 represent the monitoring dates. Values are formatted according to the consistency of the relationship: r,
R2 ≤ 0.6 (normal); 0.6 ≤ r, R2 < 0.7 (italic); 0.7 ≤ r, R2 < 0.8 (bold-italic); and r, R2 ≥ 0.8 (red bold-italic). The
empty cells (/) mean missing data.

Table 8. Bivaraite MI between lagged NDVI S2 and NDVI UAVplain.

F1 F2 F3 F4 F5 F6

Casadei 0.733 / 0.719 0.773 0.797 0.799
Petra 0.853 0.806 / 0.622 0.640 0.701
Rigoli 0.638 0.750 0.869 0.771 0.822 0.714

Tua Rita / 0.348 0.679 0.616 0.776 0.439
Values are formatted according to the consistency of the relationship: MI score ≤ 0.6 (normal); 0.6 ≤ MI score < 0.7
(italic); 0.7 ≤ MI score < 0.8 (bold-italic) and MI score ≥ 0.8 (red bold-italic). The empty cells (/) means
missing data.

Table 9. Bivariate MI between lagged NDVI S2 and NDVI UAVvines.

F2 F3 F4 F5 F6

Casadei / 0.546 0.737 0.765 0.836
Petra 0.628 / 0.189 0.057 0.417
Rigoli 0.757 0.840 0.430 0.639 0.747

Tua Rita 0.411 0.342 0.509 0.691 0.765
Values are formatted according to the consistency of the relationship: MI score ≤ 0.6 (normal); 0.6 ≤ MI score < 0.7
(italic); 0.7 ≤ MI score < 0.8 (bold-italic) and MI score ≥ 0.8 (red bold-italic). The empty cells (/) mean
missing data.

Table 10. Average Length of Shoots distribution on NDVI clusters based on NDVI S2.

Casadei Petra Rigoli Tua Rita
Low Medium High Low Medium High Low Medium High Low Medium High

F2 9.83 10.5 14.83 8.8 13.18 14.27 5.13 3.67 7.14 8 9.9 12.67
F3 47.86 59.57 63 74 80 86 42.5 53.29 62 54.83 53.5 61.25
F4 64.75 70.40 90.33 90.38 98.92 105 75 92.43 93.33 60.29 62.86 70.60
F5 69.86 68.40 71.75 97.50 98.17 98.56 77.50 93.86 96.67 57.89 62.17 65.67
F6 63.83 71.86 92 100.60 93.36 96 91 95.75 93.33 60.38 62 62.62
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Table 11. Average Length of Shoots distribution on NDVI clusters based on NDVI UAVplain.

Casadei Petra Rigoli Tua Rita
Low Medium High Low Medium High Low Medium High Low Medium High

F2 10.43 10.75 14.8 9.17 11.83 14.67 4.05 5.7 7.8 7 8.78 13.11
F3 47.86 57.83 64.40 74.38 84.29 84.09 42.4 50.57 62 52 54.75 64
F4 59.14 76.71 95 93.17 91.7 106.27 75.43 97.80 90 58.60 64.43 67.29
F5 62.4 72 75.5 108 90.89 97.82 79.29 94.4 96.25 58.11 63.67 64.44
F6 59.20 75.86 83.75 95.57 94.36 96.78 89.5 97.25 93.33 57.5 62.88 67

Table 12. Average Length of Shoots distribution on NDVI clusters based on NDVI UAVvines.

Casadei Petra Rigoli Tua Rita
Low Medium High Low Medium High Low Medium High Low Medium High

F2 8.5 11.17 14.83 8.88 9.33 16.85 3 5 9.36 4.83 9.14 13.27
F3 47.86 57.71 66.25 64.5 80.23 97.14 42 51.75 62.67 45.5 56.25 64.63
F4 61.57 64.80 96.5 83.86 96.10 109.70 73.3 89.8 97.6 58.8 64.33 70
F5 56.14 79.83 82 94.67 97.22 102.56 74 94 95.60 56.67 64.14 65.75
F6 56.80 78.8 90 92.75 95.5 97.89 92.8 94.33 93.33 58.57 62.20 63.25

3.1. Classical Statistical Approach: Ordinary Least Square Regression

In Table 6, the coefficients of determination (R2) obtained using a classical OLS model
are reported. The model was implemented using NDVI S2 and NDVI UAVplain as variables,
the VIs computed from Sentinel-2 and full UAV imagery, respectively. It is possible to notice
that about 90% of the resulting R2 values were higher than 0.6 with the only low value
being at F2 at Tua Rita, possibly due to the mowing of the cover crops having just taken
place at the time of the survey. All Pearson Correlation values showed good correlations
with values above 0.6.

The same procedure was applied considering NDVI S2 and NDVI UAVvines; indeed,
the NDVI maps derived segmenting pure vine pixels from UAVplain images (Table 7). In
this case, at F1, no values are reported since no foliage to be segmented was available before
the budburst stage (24 March 2022). As expected, lower coefficient of determination values
were obtained as compared to previous analysis (Table 6), with about 44% of registered R2

values being higher than 0.6. The relationship between NDVI S2 and NDVI UAVvines was
expected to provide lower values, as under such discontinuous tree crop (vineyard), only a
small part is represented by the vine canopy, and thus, in the mixed pixels of the NDVI S2,
most of the effect is related to the background. Both Tables 6 and 7 show values in line with
what was highlighted by previous studies [10–12,14,15].

3.2. Spatial Statistical Analysis: Bivariate Moran’s Index

The spatial statistic approach was used to give a more unbiased insight into the
correspondence of two spatially distributed variables by determining the presence or
absence of spatial autocorrelation among them. The Bivariate MI analysis was performed
comparing the NDVI maps of Sentinel-2 imagery with the NDVI computed on UAVplain
(Table 8) and UAVvines (Table 9), respectively. In about 90% of the cases (flight dates and
sites), the MI score resulted in being higher than 0.6, while the values resulted in being
lower when segmenting UAV pure vines pixels (UAVvines) where only 52% of maps showed
R2 values higher than 0.6 (Table 9). While these results could be apparently considered
similar to those obtained using the classical OLS model, they are more representative of
the inner relationships existing between S2 and UAV maps, as MI compare the values in
a nearby matrix and not only cell by cell. As observed for OLS analysis, the relationship
between NDVI S2 and NDVI UAVvines (pure vine pixels) resulted in being coherently lower
than the one performed on full UAV multi-spectral images (NDVI UAVplain). Only two
observations such as F4 and F5 at Petra site showed unexpectedly low values, yielding
R2 values of about 0.189 and 0.057, respectively. Even though at F4 and F5 cover crops
were registered as absent from every vineyard in Table 3, at the Petra site, upon visual
analysis there still were a few green patches that sent the segmentation algorithm astray,
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thus making behaviors such as this and that observed in Table 7 for the same flights possibly
imputable to shortages in the segmentation process.

The comparison of NDVI clustered maps allowed to deepen the analysis between
NDVI S2, NDVI UAVplain and NDVI UAVvines. All produced maps (provided as supple-
mentary material in Appendix A (Figures A1–A6) showed appreciable results in terms of
the tightness of the clusters. This was expected considering that in the results obtained
using the Monovariate MI analysis, the NDVI values were deemed to be not randomly
clustered. This notion was further strengthened by the use of the Chi-squared test [31].
The results obtained by the Chi-squared test performed between the datasets showed high
significance (p-values < 0.001) in all cases, meaning that the categorical variables obtained
(clusters) were correctly associated with each other, and, coherently, a spatial correlation
between them existed.

3.3. Distribution Assessment of Agronomic Variables over NDVI Clusters

To assess for significant relationships resulting between NDVI clusters and ground-
truth agronomic variables, indeed, the Average Length of Shoots and the LWA, different
methods are required than those used to compare NDVI maps. To evaluate the accuracy of
the agronomic variables’ correspondence with the three NDVI datasets, the values of both
variables were further divided into the three NDVI clusters and averaged. For each variable
and each dataset, it was possible to observe whether cells from NDVI maps classified as
Low were showing lower values than those clustered as Medium and whether the latest
were showing lower values than those clustered as High. This relationship was further
quantified using the ANOVA, a statistical test used to analyze the difference between the
means of more than two groups. Tables 13–15 and Tables 19–21 report the correspondence
of the agronomic variables collected in the field with the NDVI clustered maps for the
NDVI S2, NDVI UAVplain and NDVI UAVvines maps, respectively.

Table 10 reports the NDVI S2 dataset. It is possible to observe that in 80% of the
cases, cells classified as Low NDVI well reported Average Length of Shoots values lower
than those found in Medium NDVI ones. This percentage remained roughly consistent
(85%) when considering NDVI UAVplain (Table 11), while it is significantly increased to
100% of the cases when considering the NDVI UAVvines (Table 12). In the cells classified
as High NDVI, higher Average Length of Shoots values were registered as compared to
those found in Medium NDVI on 95%, 85%, and 95% of the cases when considering NDVI
S2 (Table 10), NDVI UAVplain (Table 11), and 95% when dealing with NDVI UAVvines
(Table 12), respectively.

The ANOVA test increases the depth of the analysis around the distribution of agro-
nomic variables over NDVI clusters. Table 13 shows how only in 15% of the cases, at least
two out of three categories have significant differences in their means (p-value < 0.05)
when considering NDVI S2, while this percentage increases to 35% in the case of NDVI
UAVplain (Table 14) and to 80% in case of NDVI UAVvines (Table 15).

Table 13. ANOVA scores for Average Length of Shoots on NDVI S2.

Casadei Petra Rigoli Tua Rita
F Statistic p Value F Statistic p Value F Statistic p Value F Statistic p Value

F2 3.359 0.067 2.202 0.132 1.802 0.204 1.758 0.197
F3 3.854 0.045 0.637 0.538 5.982 0.014 0.455 0.640
F4 1.504 0.259 2.185 0.134 3.476 0.062 1.836 0.192
F5 0.023 0.978 0.008 0.992 4.707 0.029 2.664 0.093
F6 2.405 0.129 0.729 0.493 0.249 0.786 0.185 0.833

Values are formatted according to the consistency of the relationship: 0.01 < p-value ≤ 0.05 (bold-italic) and
p-value ≤ 0.01 (red bold-italic).
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Table 14. ANOVA scores for Average Length of Shoots on NDVI UAVplain.

Casadei Petra Rigoli Tua Rita
F Statistic p Value F Statistic p Value F Statistic p Value F Statistic p Value

F2 2.169 0.154 3.029 0.067 2.634 0.11 4.427 0.025
F3 4.582 0.028 0.671 0.521 6.293 0.012 1.836 0.184
F4 2.915 0.09 3.849 0.035 5.465 0.019 1.179 0.333
F5 0.42 0.665 2.963 0.071 3.914 0.047 1.895 0.175
F6 2.155 0.156 0.102 0.903 0.739 0.508 4.193 0.029

Values are formatted according to the consistency of the relationship: 0.01 < p-value ≤ 0.05 (bold-italic) and
p-value ≤ 0.01 (red bold-italic).

Table 15. ANOVA scores for Average Length of Shoots on NDVI UAVvines.

Casadei Petra Rigoli Tua Rita
F Statistic p Value F Statistic p Value F Statistic p Value F Statistic p Value

F2 4.42 0.034 18.014 <0.001 25.897 <0.001 12.496 <0.001
F3 5.212 0.019 6.459 0.006 5.323 0.02 5.918 0.009
F4 5.259 0.021 13.433 <0.001 6.649 0.01 7.002 0.007
F5 3.159 0.076 0.632 0.54 8.056 0.005 4.432 0.025
F6 3.172 0.076 0.405 0.672 0.023 0.977 0.901 0.421

Values are formatted according to the consistency of the relationship: 0.01 < p-value ≤ 0.05 (bold-italic) and
p-value ≤ 0.01 (red bold-italic).

The same analysis was repeated for the LWA. Table 16 shows how, considering NDVI
S2, in 81% of the cases, cells with Low NDVI registered LWA values lower than those
found in Medium NDVI. This percentage slightly lowers to 75% when considering NDVI
UAVplain (Table 17), while increasing to 94% when dealing with NDVI UAVvines (Table 18).
Moreover, cells with High NDVI register LWA values higher than those found in Medium
NDVI in 81% of the cases when considering NDVI S2 (Table 16), 75% of the cases when
considering NDVI UAVplain (Table 17) and 100% of the cases when dealing with NDVI
UAVvines (Table 18).

Table 16. LWA distribution on NDVI clusters based on NDVI S2.

Casadei Petra Rigoli Tua Rita
Low Medium High Low Medium High Low Medium High Low Medium High

F3 32.15 47.76 45.63 72.96 87.83 93.43 23.93 48.57 54.27 49.21 42.65 50.87
F4 59.94 59.03 98.66 92.67 106.72 107.16 58.27 87.74 90.18 49.05 59.22 70.31
F5 69.36 66.82 67.12 95.24 100.87 101.14 54.98 85.03 93.53 50.57 57.39 66.94
F6 63.32 72.23 79.39 96 96.19 96.06 85.58 98.17 96.28 50.19 61.73 66.38

Table 17. LWA distribution on NDVI clusters based on NDVI UAVplain.

Casadei Petra Rigoli Tua Rita
Low Medium High Low Medium High Low Medium High Low Medium High

F3 32.15 46.51 46.51 74.84 98.18 89.02 23.56 43.54 55.96 46.14 39.94 54.92
F4 46.64 78.38 97.78 97.75 95.28 112.07 59.54 101.49 77.51 51.54 55.32 66.37
F5 66.85 69.01 67.68 103.13 97.34 99.47 59.99 83.94 91.52 48.18 59.85 67.69
F6 62.69 70.15 79.79 101.28 94.7 93.83 85.48 89.08 108.53 47.22 63.91 73.8

Table 18. LWA distribution on NDVI clusters based on NDVI UAVvines.

Casadei Petra Rigoli Tua Rita
Low Medium High Low Medium High Low Medium High Low Medium High

F3 32.15 42.41 55.0 56.1 86.1 115.61 23.56 44.47 57.62 36.9 48.96 56.05
F4 47.13 63.2 106.2 83.22 101.71 117.25 54.85 84.08 96.96 33.81 62.6 70.61
F5 54.78 75.25 84.36 90.8 100.49 107.85 48.03 84.04 92.27 49.92 58.01 68.31
F6 56.77 76.06 79.2 88.64 97.14 101.62 88.46 85.31 108.53 43.25 58.58 69.22



Remote Sens. 2024, 16, 735 17 of 28

For this variable, the ANOVA test shows slightly lower results, with 12.5% of the
cases where at least two out of three categories have a significant difference in their means
(p-value < 0.05) when considering NDVI S2 (Table 19), while this percentage increases to
31% in the case of NDVI UAVplain (Table 20) and to 69% in the case of NDVI UAVvines
(Table 21).

Table 19. ANOVA scores for LWA on NDVI S2.

Casadei Petra Rigoli Tua Rita
F Statistic p Value F Statistic p Value F Statistic p Value F Statistic p Value

F3 2.928 0.084 0.472 0.629 15.203 <0.001 0.568 0.575
F4 2.919 0.09 0.897 0.421 2.715 0.103 1.808 0.196
F5 0.015 0.985 0.146 0.865 5.059 0.024 3.045 0.069
F6 0.542 0.594 <0.001 1.0 0.726 0.513 2.266 0.129

Values are formatted according to the consistency of the relationship: 0.01 < p-value ≤ 0.05 (bold-italic) and
p-value ≤ 0.01 (red bold-italic).

Table 20. ANOVA scores for LWA on NDVI UAVplain.

Casadei Petra Rigoli Tua Rita
F Statistic p Value F Statistic p Value F Statistic p Value F Statistic p Value

F3 2.891 0.087 0.721 0.497 11.755 0.001 1.323 0.288
F4 5.874 0.015 1.36 0.276 5.117 0.023 0.926 0.417
F5 0.009 0.991 0.125 0.883 3.124 0.078 4.946 0.017
F6 0.63 0.548 0.206 0.815 3.045 0.104 8.997 0.002

Values are formatted according to the consistency of the relationship: 0.01 < p-value ≤ 0.05 (bold-italic) and
p-value ≤ 0.01 (red bold-italic).

Table 21. ANOVA scores for LWA on NDVI UAVvines.

Casadei Petra Rigoli Tua Rita
F Statistic p Value F Statistic p Value F Statistic p Value F Statistic p Value

F3 4.921 0.023 5.457 0.011 11.543 0.001 4.235 0.029
F4 19.247 <0.001 4.966 0.016 5.212 0.022 12.036 0.001
F5 2.009 0.174 1.368 0.274 9.516 0.003 3.797 0.039
F6 1.43 0.275 0.608 0.553 3.007 0.106 9.583 0.001

Values are formatted according to the consistency of the relationship: 0.01 < p-value ≤ 0.05 (bold-italic) and
p-value ≤ 0.01 (red bold-italic).

4. Discussion

The obtained results help to better understand the relationship between S2 and UAV
data and how they can be used to power applications able to monitor relevant agronomic
variables. NDVI S2 and NDVI UAVplain were indeed strongly related. In fact, when
compared with classical methods such as OLS models, they showed high scores in both
R2 and r with the only outlier (at Tua Rita at F2) possibly being justified by the fact that
just mowed cover crops could represent a non-negligible source of noise. The obtained
results as seen in Table 6 show that in 90% of the cases, the value of r is higher than 0.60,
resembling that seen in Khaliq et al., with such cases comprising 65% of the total [13].More
generally, the correlation between NDVI S2 and UAVplain, also explored in terms of the
Pearson Correlation by Sozzi et al. and in terms of R2 of an OLS model by Pistonchi et al.,
Di Gennaro et al., and Nonni et al., shows good and consistent values [10,11,14]. The values
of the same coefficient were expectedly lower when comparing NDVIplain and NDVIvines.
Khaliq et al. register a drop in values, where 75% of the r scores are lower than 0.41. This is
in contrast to that seen in this study, where the number of cases found to have r scores higher
than 0.6 drops but not excessively, from 90% to 72%. A higher drop is seen in R2 though,
going from 90% to 44% of cases, showing results higher than 0.6. The work of Pastonchi et
al. also suggests a declining trend in OLS scores when comparing the correlation of NDVI
S2 with NDVIplain and NDVIvines [14]. This seems to suggest that NDVI S2 should not be
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expected to be able to approximate NDVI values computed by looking at pure-vine pixels
from UAV images. As already indicated though, classical statistical methods are to be taken
lightly in a setting such as that considered in the present work. Stronger indications come
by looking at more reliable measures such as the multivariate MI as already suggested
by Matese et al. [15]. Tables 8 and 9 indeed show how NDVI S2 and NDVI UAVplain
consistently produced better results than NDVI S2 and NDVI UAVvines, confirming what
was already glimpsed using classical statistical approaches. This complements what was
reported by Pastonchi et al., where in some cases bivariate MI comparisons of NDVI S2
and NDVI UAVplain show better results than comparisons of NDVI S2 and NDVIvines [14].
This is indeed plausible but remains a minority among cases in terms of visibility when
considering a higher number of cases as performed in this study.The NDVI value, though
it is not necessarily valuable information by itself, gains value in its spatial relationship
with a neighborhood of other values. The comparison of spatially clustered NDVI maps
comes to help in this sense. In this case, in fact, the Chi-squared test returns significant
results for all produced maps, indicating a relationship between NDVI clusters as created
from all three datasets. As it was possible to expect, upon visual assessment, NDVI clusters
from NDVI UAVplain are extremely similar to those generated by grouping NDVI S2 values,
while with NDVI UAVvines, it is actually possible to spot a few relevant differences as seen,
for example, at Petra at F4 (Figure A4) and F5 (Figure A5) (actually the two flights with
the lowest results with both comparison methods). Even though there is a difference in
NDVI S2 and NDVI UAVvines, as testified by comparisons undergone with both OLS and
multivariate MI, the first still managed to convey a relevant portion of the information
carried by the second in terms of spatial distribution of NDVI data.

Despite the highest percentage of pixels in an image being represented by soil, NDVI
values related to this element have very low variability, as they all physiologically tend
to 0, thus enabling the distribution of vines vigor to come out, especially starting from
F4 (27 June 2023) when the track of cover crops generally disappeared. Vice versa, at the
time of the first three flights, cover crops were still present, even though with a decreasing
presence, thus affecting the variation of values in NDVI S2. At the same time, the first
flights represented a period of limited expressed vegetative vigor, hence, a period where
monitoring a vineyard by the use of S2 images was predictably less feasible. As S2 NDVI
clusters are considered to be similar to those producible by NDVI UAVvines, they can
represent a valid tool for monitoring vigor distribution in a vineyard through NDVI on
broad scenarios and a valid source of information to support agronomic decisions. A
conclusion shared by most other works present in the literature and taken into account by
the present study [10,11,14], with the exception of Khaliq et al. that, even though from a
smaller data sample, found NDVI S2 capabilities to be insufficient to monitor the spatial
variability of vineyards’ vigor [13]. It is thus possible to state that NDVI S2 can be, with
higher reliability in periods where cover crops are not present and foliage and vegetation
are in advanced stages, a valuable and sufficiently reliable tool for broad applications.

On the other hand, UAV images could be used to complement this information,
especially in the first stages of the season when cover crops and weeds might still be
present and vine vegetation is at its initial and most delicate moment. For this purpose, it
was relevant to analyze the ability of the two platforms to monitor the considered ground-
truthed agronomic variables, the Average Length of Shoots and the LWA. Considering
the first one, it was possible to observe how its values distribution among NDVI clusters
was coherent in the majority of the cases for all three datasets (Tables 10, 12 and 14). More
interesting to observe were the results of the ANOVA test, which failed in most cases to
denote significant differences between the means of the clusters when considering NDVI
S2 (85%) and NDVI UAVplain (65%) as shown in Tables 13 and 14. This could be due to the
fact that most of the NDVI UAVplain information is related to soil and partially shadows,
flattening the ability to show information about agronomic variables. In NDVI UAVvines,
instead, the selection of pure-vine pixels allowed a better assessment of cluster differences
as seen in Table 15. Such conclusions resemble those found in other works, such as those
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of Khaliq et al. and Di Gennaro et al. [12,13]. The same goes if considering the LWA: its
value distribution is mostly well separated within the three clusters for all three datasets
(Tables 16–18), but their score values for the ANOVA test show a trend similar to that
found for the Average Shoots Length. In fact, the ANOVA test scores are significant in
determining differences between the means of the clusters when considering NDVI S2 only
in 12,5% of cases (Table 19), while increasing to 31% (Table 20) and 69% (Table 21) of the
times when considering UAVplain and UAVvines. NDVIvines thus show to have a higher
correlation than the other two datasets with agronomic variables. This reinforces the idea
that satellite data are not suitable for vine-specific tasks and must be limited to broader
monitoring activities, while segmented UAV images can help to gather NDVI values highly
correlated with most agronomic variables.

Figure 9 helps to resume the information gathered during the discussion of the results
of the statistical analysis and to conjugate the different possible usages of satellite and UAV
data. NDVI maps from Sentinel-2 imagery proved to be a consistent and trustworthy tool
for large-scale applications, with NDVI clusters such as those provided in the Appendix A
(Figures A1–A6) are to be considered a valuable output for wineries’ technical directors.
However, NDVI maps from satellite data suffer from some limitations which come to
surface in the case that the monitoring is conducted during the vines’ early phenological
stages or in the case that grassing or cover crops are present in the inter-rows of the
monitored vineyard. UAV platforms have the ability to cover such shortages: despite
having their own flaws, segmentation algorithms allow to separate inter-row pixels from
UAV-derived NDVI maps and thus provide clean and reliable information. Moreover,
given the existing correlation with quantitative agronomic variables, UAV platforms could
provide insights into the early stages of the growing season. More in general, despite
their usage coming at a greater cost, UAVs remain the preferred platform for performing
vine-specific tasks.

Figure 9. Workflow for the integration of alternative usages of satellite and UAV imagery for PV.

5. Conclusions

Multi-spectral images from aerial platforms may represent an important source of
information for the field of PA and PV. In the last decades, different studies have assessed the
quality of information provided by satellite platforms with the intent to give agronomists
and farmers valuable tools for decision support. Comparisons of S2 and UAV images
were reported in several studies by highlighting the limitations and potentialities of both
platforms. In this frame, the present study connected the most relevant points touched by
previous works and conducted the analysis over a broad and consistent space and time
span. The results obtained allow to stress the importance of bypassing the dichotomy
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between the usage of S2 and UAV and sustaining the necessity of their integration. This
study shows evidence that S2 can be a valuable platform for large-scale monitoring, as
it passively produces multi-spectral images at a tendentiously irrelevant cost, providing
a strong correspondence with UAV imagery. In this case, the creation of NDVI clusters
turned out to be a more useful output compared to the values of single cells. An NDVI
value does not tell much about what happens in its 10 m/pixel cells, but it better explains
if in its neighborhood similar and coherently clustered values are present. It is nonetheless
relevant to understand how and how much this information can be disturbed by the
presence of cover crops and weeds, especially when they are not uniformly distributed.
These flaws can be efficiently bridged by UAV platforms that make the monitoring of grass-
covered vineyards possible. Moreover, segmented UAV data show a good relationship with
agronomic variables, thus becoming the reference for precision applications, especially in
the initial stages of vine growth. Both these tools can take advantage of their integration by
representing an invaluable source of information for agronomists and farmers in wineries
and in other agricultural businesses.
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ANOVA Analysis of Variance
GIS Geographic Information System
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NDVI Normalized Difference Vegetation Index
OLS Ordinary Least Squares regression
ROI Region of Interest
PA Precision Agriculture
PV Precision Viticulture
SC Scene Classification
UAV Unmanned Aerial Vehicles
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Appendix A. NDVI Clusters

Figure A1. NDVI clusters at F1.
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Figure A2. NDVI clusters at F2.
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Figure A3. NDVI clusters at F3.
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Figure A4. NDVI clusters at F4.
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Figure A5. NDVI clusters at F5.
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Figure A6. NDVI clusters at F6.
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