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Abstract: Global food security and nutrition is suffering from unprecedented challenges. To reach
a world without hunger and malnutrition by implementing precision agriculture, satellite remote
sensing plays an increasingly important role in field crop monitoring and management. Alfalfa, a
global widely distributed forage crop, requires more attention to predict its yield and quality traits
from satellite data since it supports the livestock industry. Meanwhile, there are some key issues
that remain unknown regarding alfalfa remote sensing from optical and synthetic aperture radar
(SAR) data. Using Sentinel-1 and Sentinel-2 satellite data, this study developed, compared, and
further integrated new optical- and SAR-based satellite models for improving alfalfa yield and quality
traits prediction, i.e., crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF),
and neutral detergent fiber digestibility (NDFD). Meanwhile, to better understand the physical
mechanism of alfalfa optical remote sensing, a unified hybrid leaf area index (LAI) retrieval scheme
was developed by coupling the PROSAIL radiative transfer model, spectral response function of the
desired optical satellite, and a random forest (RF) model, denoted as a scalable optical satellite-based
LAI retrieval framework. Compared to optical vegetation indices (VIs) that only capture canopy
information, the results indicate that LAI had the highest correlation (r = 0.701) with alfalfa yield
due to its capacity in delivering the vegetation structure characteristics. For alfalfa quality traits,
optical chlorophyll VIs presented higher correlations than LAI. On the other hand, LAI did not
provide a significant additional contribution for predicting alfalfa parameters in the RF developed
optical prediction model using VIs as inputs. In addition, the optical-based model outperformed the
SAR-based model for predicting alfalfa yield, CP, and NDFD, while the SAR-based model showed
better performance for predicting ADF and NDF. The integration of optical and SAR data contributed
to higher accuracy than either optical or SAR data separately. Compared to a traditional embedded
integration approach, the combination of multisource heterogeneous optical and SAR satellites was
optimized by multiple linear regression (yield: R2 = 0.846 and RMSE = 0.0354 kg/m2; CP: R2 = 0.636
and RMSE = 1.57%; ADF: R2 = 0.559 and RMSE = 1.926%; NDF: R2 = 0.58 and RMSE = 2.097%; NDFD:
R2 = 0.679 and RMSE = 2.426%). Overall, this study provides new insights into forage crop yield
prediction for large-scale fields using multisource heterogeneous satellites.

Keywords: precision agriculture; crop monitoring; alfalfa yield and quality; multisource
heterogeneous satellites; data integration

1. Introduction

As the global population grows (i.e., it is predicted to reach 10 billion in 2050) and we
continue to strive to improve human living standards, the need for an increasing quantity
and quality of food will continue [1]. However, it will be difficult to expand the existing
agricultural land base [2] while a portion of the existing land base is being converted into
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urban and industrial land or abandoned. Currently, global food security and nutrition
is facing an unprecedented threat and challenge, exasperated by the effects of climate
change [3], such as heat waves, droughts, and floods. Recently, it has been reported by the
Food and Agriculture Organization (FAO) that moderate or severe food insecurity levels
on a global scale have been slowly increasing since 2014; however, the increase in 2020
may be approximately the sum of the previous five years [4]. On the other hand, it was
estimated that 22% of children under five years old (149.2 million) suffered from stunting
in 2020 [4]. As a result, one target of the Sustainable Development Goals (SDG), a world
without hunger and malnutrition by 2030, is using precision agriculture methods with
interdisciplinary cooperation to expand the food base [5].

There is a growing realization that satellite remote sensing is capable of measuring
food security and nutrition levels at regional and global scales [6]. Even for small scale
fields, within-field crop growth monitoring and yield estimation can also benefit from
satellite observations [7]. For instance, many studies have employed remote sensing data to
estimate yield for cereal crops (e.g., wheat, rice, and corn) [8], tuber crops (e.g., sweet potato
and potato) [9], and legume crops (e.g., soybeans, beans, and pea) [10]. These non-forage
crops and their processed products are usually directly eaten and consumed by humans.
Forage crops such as alfalfa, sudangrass, and tall wheatgrass are first eaten by ruminant
animals (e.g., sheep, beef cattle, and dairy cows) that generate meat products and milk
for human consumption [11]. In contrast, yield, which is determined by the weight of
dry matter, in forage crops is rarely estimated from satellite data. In addition to yield,
quality traits including crude protein (CP), acid detergent fiber (ADF), neutral detergent
fiber (NDF), and neutral detergent fiber digestibility (NDFD) are also key indicators to
measure the quality of forage crops. Alfalfa, known as the queen of forage crops, is one of
the most important forage crops in the world since it has abundant crude protein, saponins,
vitamins, sugars, and minerals [12]. Therefore, to better support the global livestock
industry and advance food security and nutrition, it is beneficial to predict alfalfa yield and
quality traits using satellite remote sensing data. However, few studies employed satellite
images to predict alfalfa yield [13,14]. This study will attempt to develop and compare new
satellite-based alfalfa yield and quality traits prediction models.

Optical satellite data within the spectral domain of 300–3000 nm are often used to
monitor non-forage crop growth and yield [7]. Successful prediction of yield using optical
spectral data relies on vegetation greenness and water content, which are closely correlated
with yield [15]. For instance, optical vegetation indices (VIs) including normalized differ-
ence vegetation index (NDVI), 2-band enhanced vegetation index (EVI2), near-infrared
reflectance of vegetation (NIRv), and normalized difference water index (NDWI) are widely
employed to build a relationship with yield for non-forage crops [15,16]. Leaf area index
(LAI), known as a biophysical structure parameter, is defined as the projected area of total
leaves over a uniform unit of land (m2/m2). Optical satellites capture reflected solar radia-
tion signal from the vegetation canopy [17], and hence optical VIs mainly convey vegetation
canopy information [18]. Nevertheless, LAI includes vegetation structure characteristics
and can also be remotely retrieved from optical satellite data [19], indicating it would be a
more useful remote sensing variable to model crop yield. However, yield of non-forage
crops is often estimated using only a portion of the plant. For instance, wheat yield is
determined by evaluating only the ear of wheat. Although wheat yield generally increases
with increasing LAI, some wheat plants with high LAI may have dense leaves with a low
grain yield, and vice versa [20]. A similar phenomenon can also be found in maize [21].
This explains some studies reporting that optical VIs had a more significant relationship
with yield of non-forage crops than LAI [22]. In contrast, alfalfa yield is determined by
the weight of dry matter, and a greater LAI level should directly result in higher alfalfa
yield [23]. This indicates that LAI may be a more suitable satellite proxy for alfalfa yield
compared to optical VIs. However, in regard to relationships among alfalfa yield, optical
data derived LAI and VIs have not yet been comprehensively investigated and compared.
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Recently, synthetic aperture radar (SAR) satellite data have drawn more attention in
modeling crop phenology and deriving yield [24,25]. For instance, Wiseman et al. [26]
successfully used RADARSAT-2 polarimetric SAR variables to estimate crop biomass,
including canola, corn, and soybean. Kumar et al. [27] employed Sentinel-1A SAR data to
derive various winter wheat parameters including LAI, vegetation water content, plant
height, and dry/fresh biomass. Mandal et al. [28] also demonstrated that corn LAI can
be retrieved from Sentinel-1 SAR data with reasonable accuracy, i.e., root mean square
error (RMSE) = 0.677 m2/m2. SAR satellites acquire the total backscattering coefficient
associated with both vegetation and underlying soil [29]. Compared to optical satellites,
SAR signals have a stronger penetration into the crop plant canopy due to their longer
spectral wavelength. Typical wavelengths in SAR observations are denoted as different
bands; commonly used bands include X, C, S, L, and P [24]. Their frequency range is
4–8, 2–4, 1–2, and 0.3–1 GHz, respectively, and the corresponding wavelengths are 3.8–7.5,
7.5–15, 15–30, and 30–100 cm, respectively. Consequently, (1) SAR satellites can obtain
valid images under all-weather conditions, and (2) optical and SAR satellite data should
present different abilities for modeling vegetation variables. For instance, Kaplan et al. [30]
found that optical data performed better than SAR data in estimating cotton crop coefficient
(Kc), LAI, and height. Similarly, Bhattarai et al. [31] reported the superiority of optical
data over SAR data in estimating LAI of mixed forests. On the other hand, Ranjan and
Parida [32] demonstrated that SAR data achieved better performance in deriving paddy
yield compared to SAR data. Beeri et al. [33] found that models developed using SAR
data had slightly better accuracy than those using optical data for estimating vineyard Kc
and LAI. It is not yet known which type of satellite data will perform better for predicting
alfalfa yield and quality traits.

It was reported that integration of optical and SAR data showed higher accuracy than
results from single optical or SAR data [34]. Traditionally, previous studies often used
an embedded integration approach to combine optical and SAR data [35]. In this regard,
optical and SAR data were inputted into one model to estimate vegetation variables. To
optimize the integration of multisource heterogeneous satellite data, we have proposed
two different methods. Alfalfa parameters were first predicted from single optical or SAR
data, respectively, and the predictions from two satellite prediction models were integrated
through the multiple linear regression and averaging method. Then we compared them
with the traditional embedded integration approach.

Therefore, the objectives of this study were to (1) investigate and compare relationships
among alfalfa yield, LAI, and VIs; (2) explore if LAI provides an additional contribution
to higher accuracy of alfalfa yield prediction; (3) compare optical- and SAR-based models
in predicting alfalfa yield and quality traits; and (4) optimize and assess three integration
approaches for predicting alfalfa parameters from combined optical and SAR satellite
data. This study used Sentinel-2 and Sentinel-1 data to represent optical and SAR data,
respectively.

2. Data and Method
2.1. Study Site and In Situ Measurements

Wisconsin and New York are two of the top dairy states in the United States that rely
on alfalfa production [36]. In situ alfalfa samples were needed to build and evaluate yield
and quality traits prediction model from optical and SAR satellite data. In this study, three
alfalfa fields in Wisconsin were selected as the study site. To make the developed model
more applicable, we also considered three alfalfa fields in New York state. Figure 1 shows
the location of six alfalfa fields in Wisconsin and New York states. There were 311 and
187 alfalfa samples with matched Sentinel-2 and Sentinel-1 data, respectively. In addition,
92 alfalfa samples were matched with concurrent Sentinel-2 and Sentinel-1 data.
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Figure 1. Location of alfalfa fields and sampling sites in Wisconsin (a–c) and New York (d–f) states
in United States. Green circle points denote samples covering optical satellite data, and blue cross
points indicate samples covering SAR satellite data. Alfalfa samples were collected 4–5 times per
month in each field.

Alfalfa in the study fields was mowed monthly from May to August 2022 by the
farmers, and it experienced rapid regrowth after each mowing campaign. A 4–5 times
alfalfa sampling was performed in each field before each mowing campaign to obtain the
variation and progression of alfalfa yield and quality traits. To match the spatial scale of
satellite pixels, each sampling site had a spatial range of 30 × 30 m, as per [37]. Specifically,
four subsamples were evenly distributed on a circle with a radius of 7.5 m, and individual
subsamples were mowed from 0.5 × 0.5 m2 areas. The center of the circle was denoted as
the location of each sampling site, which was measured using a GPS position instrument
(i.e., latitude and longitude). To determine alfalfa yield, the samples acquired from in situ
sampling activities were immediately dried in the oven at 60 ◦C. Meanwhile, dry samples
were further investigated in the laboratory for measuring alfalfa quality parameters (i.e.,
CP, ADF, NDF, and NDFD).

2.2. Sentinel-2 and Sentinel-1 Satellite Data

Sentinel-2, equipped with twin satellites Sentinel-2A and 2B, is an optical sensing
constellation that provides global multispectral data every five days. Sentinel-2 satellite
data have 13 spectral bands spanning from visible to shortwave infrared wavelengths.
In this study, Sentinel-2 surface reflectance at 30 m spatial resolution was obtained from
Harmonized Landsat and Sentinel-2 (HLS) products, which can be freely downloaded from
the NASA website (https://search.earthdata.nasa.gov/search, accessed on 16 February
2024). In addition to surface reflectance at each spectral band, the HLS dataset also offered
a cloud mask layer and solar-viewing angles at each pixel. Note that solar-viewing angles
include solar zenith angle (SZA), solar azimuth angle (SAA), viewing zenith angle (VZA),
and viewing azimuth angle (VAA). Cloud mask was used to exclude snow/ice, cloud, and
cloud shadow pixels since only clear observations can give valid crop information.

Sentinel-1 provides active microwave data under all-weather conditions using a C-
band SAR instrument. The original Sentinel-1 had twin satellites Sentinel-1A and 1B; how-
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ever, Sentinel-1B stopped acquiring valid data on 23 December 2021 due to an unrepairable
power issue. Backscattering coefficient has often been used to characterize the information
among different land cover types [38]. The ready-to-use Sentinel-1 backscattering coeffi-
cients (i.e., GRD dataset) at VV and VH dual-polarization channels were directly retrieved
from the Google Earth Engine (GEE) platform (https://code.earthengine.google.com/,
accessed on 16 February 2024). In addition, a basic filter with spatial averaging method
was often used to lower the impact of speckle noise [34,39]. To match the spatial scale of in
situ alfalfa samples, the original 10 m resolution GRD data were integrated to 30 m using
an average interpolation method. In addition to Sentinel-1 backscattering coefficients at VV
and VH polarizations, the derived radar VIs (i.e., VH/VV and RVI) were also used to build
the SAR-based prediction model since they are useful to capture crop growth [40]. Radar
incident angle usually generates some biases in the backscattering coefficients, and thus it
was also considered in this study.

2.3. MODIS Surface Reflectance and LAI Products

The LAI data in this study were derived using a unified hybrid model that coupled a
radiative transfer model (i.e., PROSAIL), the spectral response function (SRF) of desired
optical satellite, and a random forest (RF) algorithm. The developed LAI retrieval approach
is a scalable optical satellite-based framework, indicating that it can be adapted to any
optical satellite data and does not depend on spatial resolution. MODIS surface reflectance
and LAI data were used to evaluate the accuracy of the unified hybrid model due to
the unavailability of ground LAI measurements in our field experiment. Daily MODIS
nadir surface reflectance data at 500 m spatial resolution were derived from the MCD43A4
product [41]. The MCD15A3H product provided global 500 m LAI data at a 4-day interval.
The National Ecological Observatory Network (NEON), supported by the National Science
Foundation, is composed of sites in United States in different types of biomes. MCD43A4
and MCD15A3H products in 2022 at NEON sites were obtained from the GEE platform
to evaluate the performance of the unified hybrid LAI retrieval framework. Finally, 8154
pixels were obtained to evaluate LAI retrieval accuracy.

2.4. Methods

The radiative transfer model PROSAIL was developed by coupling the leaf optical
model PROSPECT [42] with the canopy reflectance model SAIL [43]. The PROSAIL model
has been widely used to derive various vegetation parameters, since it is a mature model
used to simulate absorption and scattering of solar radiation within vegetation leaf and
canopy levels. In this study, a unified hybrid model coupling the PROSAIL model and
RF algorithm was first proposed to remotely derive LAI from optical data. The unified
hybrid model included three steps: (1) a comprehensive simulation dataset that considered
various vegetation leaf and canopy characteristics was generated with the aid of PROSAIL
model. To characterize leaf optical properties, the PROSPECT model was used to derive
leaf hemispherical reflectance and transmittance with four leaf parameters including leaf
structure index (N), equivalent water thickness (Cw), leaf chlorophyll content (Cab), and
dry matter content (Cm). The SAIL model was employed to simulate canopy reflectance
through the leaf optical properties calculated from PROSPECT model and canopy pa-
rameters including average leaf angle (ALA), leaf area index (LAI), hot spot parameter
(Hspot), solar zenith angle (tts), observation zenith angle (tto), and relative azimuth (psi).
Biophysical parameters during PROSAIL radiative transfer simulation were determined
after performing sensitivity experiment [44]. Parameter settings in the PROSAIL model
are presented in Table 1. The simulation dataset included various LAI values and the
corresponding hyperspectral reflectance of vegetation canopy ranging from 400 to 2500 nm

https://code.earthengine.google.com/
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with 1 nm interval. (2) The spectral reflectance from desired satellite was simulated by
coupling its SRF and the simulation dataset.

Rb(k) =

∫ λi
λj

SRF(λ)ρ(λ)d(λ)∫ λi
λj

SRF(λ)d(λ)
(1)

where Rb(k) represents the canopy reflectance of the desired satellite at the k-th spectral band;
λi and λj denote the wavelength range of the k-th spectral band; and SRF(λ) is the SRF value
at the k-th spectral band. (3) The LAI retrieval model suited to the desired satellite was built
using simulated data from the second step. During the third step, a look-up-table (LUT)
or machine learning algorithm was usually used to establish the relationship between VIs
and LAI [44]. It has been reported that the machine learning model was more efficient and
accurate than the LUT approach [45]. Thus, an RF model was used in the third step.

Table 1. Biophysical parameters setting for PROSAIL radiative transfer simulation.

Symbol Parameter Range Step Unit Number

Leaf parameters

N Leaf structure index 1.5 n/a unitless 1
Cw Equivalent water thickness 0.015 n/a cm 1
Cab Leaf chlorophyll content 10–100 10 µg/cm2 10
Cm Dry matter content 0.001–0.019 0.003 g/cm2 7

Canopy parameters

ALA Average leaf angle 30–70 10 degree 5
LAI Leaf area index 0.5–9 0.5 m2/m2 18

Hspot Hot spot parameter 0.1–0.5 0.2 m/m 3
tts Solar zenith angle 20–60 10 degree 5
tto Observation zenith angle 0 n/a degree 1
psi Relative azimuth 0 n/a degree 1

The LAI retrieval framework can be extended and used with any desired optical
satellite since the simulation dataset had a hyperspectral reflectance with a 1 nm interval.
The developed LAI retrieval approach was denoted as a scalable satellite-based LAI re-
trieval framework. The desired optical satellites included MODIS and Sentinel-2 in this
study, and thus MODIS-based and Sentinel-2-based LAI estimation hybrid models were
both established. Due to the unavailability of ground measured LAI data, an indirect
evaluation approach was used to investigate the performance of the hybrid LAI retrieval
framework following two steps: (1) MODIS surface reflectance was used to develop the
MODIS-based LAI retrieval model under the hybrid framework, and (2) a MODIS LAI
product was used to evaluate the accuracy of the MODIS-based LAI retrieval model. In
addition, Sentinel-2 surface reflectance and the Sentinel-2-based LAI retrieval model were
employed to investigate the relationship between alfalfa yield and LAI.

Meanwhile, four widely used VIs (NDVI, EVI2, NIRv, and NDWI) were calculated
using Sentinel-2 surface reflectance to examine their correlation with alfalfa yield. For
comparison, four additional VIs, green–red vegetation index (GRVI), green normalized
difference vegetation index (GNDVI), green chlorophyll index (GCI), and soil adjusted
vegetation index (SAVI), were also used to study their relationship with alfalfa yield; the VI
calculation equations are shown in Table 2.
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Table 2. Vegetation indices calculated using Sentinel-2 data for exploring their relationships with
alfalfa yield and quality traits.

Full Name Acronym Formula

Normalized difference vegetation index NDVI NIR − Red
NIR + Red

2-band enhanced vegetation index EVI2 2.5 × NIR − Red
NIR + 2.4 × Red + 1

Near-infrared reflectance of vegetation NIRv NDVI × NIR
Normalized difference water index NDWI NIR − SWIR

NIR + SWIR
Green–red vegetation index GRVI Green − Red

Green + Red
Green normalized difference vegetation index GNDVI NIR − Green

NIR + Green
Green

chlorophyll index GCI NIR
Green − 1

Soil adjusted vegetation index SAVI NIR − Red
NIR + Red + 0.5 × 1.5

The RF algorithm was used to develop and assess optical- and SAR-based models for
predicting alfalfa yield and quality traits. Sentinel-2 VIs (NDVI, EVI2, NIRv, and NDWI)
were utilized to establish the optical-based model. Meanwhile, three red edge bands of
Sentinel-2 and solar-viewing angles (SZA, SAA, VZA, and VAA) were also considered in the
optical-based model, since they contribute to better model vegetation [46] or have impacts
on alfalfa surface directional reflectance. Sentinel-1 backscattering coefficients at VV and
VH polarizations and the derived radar VIs (i.e., VH/VV and RVI) were used to build
the SAR-based model. Sentinel-1 incident angle was also input into the SAR-based model
to remove its effect on backscattering coefficients. Theoretically, simultaneous satellite
data should be used to model vegetation parameters. However, limited by the weather
conditions, the revisit time of satellite, and the actual in situ sampling campaign [47],
such data were usually difficult to obtain [48]. Previous studies usually used satellite
data prior to harvest and/or sampling to model crop yield because of the continuity of
crop growth [49]. We employed available Sentinel-2 and Sentinel-1 data within three days
prior to the field alfalfa sampling to propose and evaluate the optical- and SAR-based
models. There were 311 and 187 matched alfalfa sample pairs with Sentinel-2 and Sentinel-
1 data, respectively, wherein 92 pairs were obtained at the same alfalfa sampling sites. We
used the 10-fold cross validation (CV) method to assess and compare the performance of
different models. To further reduce the randomness of the one time CV process, the 10-fold
CV was repeated 100 times. The final evaluation indicators including the coefficient of
determination (R2) and RMSE were calculated by averaging CV results 100 times.

3. Results and Discussion
3.1. PROSAIL Simulation and LAI Retrieval Validation

To begin, 94,500 sets of simulated canopy hyperspectral reflectance at 400–2500 nm
were generated using the PROSAIL model. Figure 2 shows the typical canopy hyperspectral
reflectance simulated by the PROSAIL model. It was observed that the simulated canopy
spectra had typical vegetation optical characteristics. For instance, reflectance troughs
occurred at both blue and red wavelength ranges due to photosynthesis, while reflectance
peaks appeared at green, red edge, and near-infrared (NIR) domains. Specially, reflectance
at red edge and NIR wavelength ranges obviously increased with increasing LAI (Figure 2).
In general, higher LAI (i.e., more leaves) would generate enhanced multiple reflections
within the vegetation and thus increase the canopy reflectance, forming the physical basics
of remote estimation of LAI. LAI retrieval hybrid models using MODIS or Sentinel-2 data
were developed through integrating the PROSAIL simulation dataset, the SRF of specific
satellites, and an RF model. Due to the unavailability of in situ measured LAI data, the
existing MODIS LAI product with reasonable performance was utilized to evaluate the
accuracy of the unified hybrid LAI retrieval scheme. It is an acceptable strategy to evaluate
the accuracy of parameter retrievals using the existing satellite product [50]. Figure 2b
presents LAI retrieval validation results (RMSE = 0.572 m2/m2) from MODIS data with the
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hybrid model. Results indicate that the hybrid model guided by the PROSAIL radiative
transfer model had reasonable accuracy in estimating LAI.
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Figure 2. (a) PROSAIL simulated canopy reflectance varying with LAI. (b) Validation of PROSAIL
model retrieved LAI from MODIS data against MCD15A3H product.

3.2. Comparison of the Relationship between Alfalfa Yield and LAI and VIs

Table 3 shows the relationship between alfalfa yield and LAI and VIs. Alfalfa yield in
Figure 3 had a range of 0.0636–0.4176 kg/m2 with an average value of 0.2022 kg/m2. For
data from Wisconsin, it was observed that LAI and eight VIs all had a significant correlation
with alfalfa yield (p-value < 0.001). The highest correlation with yield was LAI (r = 0.804)
followed by GCI (r = 0.796). NDWI had a comparable correlation (r = 0.790) with alfalfa
yield compared to GCI. For data in New York state, except for GRVI, LAI and seven VIs
were also significantly correlated with alfalfa yield, having r > 0.251, wherein LAI had the
highest correlation (r of 0.662) followed by NDWI (r = 0.654). When data in the two states
were combined, alfalfa yield also had the highest correlation with LAI (r = 0.701) followed
by NDWI (r = 0.669).

Table 3. The correlation coefficients between optical derived VIs and alfalfa yield and quality traits.
Note that * and ** denote the significant levels of p-value < 0.01 and 0.001, respectively.

Index LAI NDVI EVI2 NIRv NDWI GRVI GNDVI GCI SAVI

Data in Wisconsin (N = 133)

Yield 0.804 ** 0.659 ** 0.501 ** 0.469 ** 0.790 ** 0.539 ** 0.781 ** 0.796 ** 0.513 **
CP −0.001 0.116 0.121 0.111 0.030 0.334 ** −0.116 −0.104 0.125

ADF 0.508 ** 0.431 ** 0.326 ** 0.306 ** 0.514 ** 0.300 ** 0.591 ** 0.621 ** 0.332 **
NDF 0.476 ** 0.364 ** 0.270 * 0.253 * 0.477 ** 0.243 * 0.536 ** 0.575 ** 0.275 *

NDFD −0.292 ** −0.195 −0.141 −0.140 −0.255 * −0.027 −0.403 ** −0.433 ** −0.138

Data in New York state (N = 178)

Yield 0.662 ** 0.251 ** 0.486 ** 0.511 ** 0.654 ** 0.155 0.411 ** 0.472 ** 0.472 **
CP −0.398 ** −0.129 −0.194 * −0.200 * −0.430 ** 0.074 −0.353 ** −0.370 ** −0.193

ADF 0.080 0.082 0.102 0.111 0.132 −0.031 0.158 0.153 0.100
NDF 0.051 0.017 0.005 0.007 0.101 −0.163 0.169 0.155 0.007

NDFD −0.245 * −0.166 −0.207 * −0.220 * −0.259 ** −0.112 −0.206 * −0.213 * −0.200*

All data (N = 311)

Yield 0.701 ** 0.421 ** 0.432 ** 0.432 ** 0.669 ** 0.315 ** 0.549 ** 0.594 ** 0.429 **
CP −0.160 * 0.018 −0.035 −0.049 −0.140 0.225 ** −0.211 ** −0.208 ** −0.029

ADF 0.277 ** 0.252 ** 0.123 0.111 0.301 ** 0.157 * 0.349 ** 0.373 ** 0.128
NDF 0.231 ** 0.167 * 0.090 0.079 0.264 ** 0.011 0.321 ** 0.335 ** 0.095

NDFD −0.275 ** −0.182 * −0.192 ** −0.198 ** −0.266 ** −0.054 −0.329 ** −0.345 ** −0.187 **



Remote Sens. 2024, 16, 734 9 of 19

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 19 
 

 

All data (N = 311) 
Yield 0.701 ** 0.421 ** 0.432 ** 0.432 ** 0.669 ** 0.315 ** 0.549 ** 0.594 ** 0.429 ** 
CP −0.160 * 0.018 −0.035 −0.049 −0.140 0.225 ** −0.211 ** −0.208 ** −0.029 

ADF 0.277 ** 0.252 ** 0.123 0.111 0.301 ** 0.157 * 0.349 ** 0.373 ** 0.128 
NDF 0.231 ** 0.167 * 0.090 0.079 0.264 ** 0.011 0.321 ** 0.335 ** 0.095 

NDFD −0.275 ** −0.182 * −0.192 ** −0.198 ** −0.266 ** −0.054 −0.329 ** −0.345 ** −0.187 ** 

Figure 3 shows the scatterplots between alfalfa yield and LAI and VIs. According to 
Figure 3b, NDVI increased with increasing alfalfa yield. However, NDVI was nearly un-
changed when it reached ~0.9, even if alfalfa yield continued to increase. Consequently, 
there was an evident saturation phenomenon for NDVI when it was used to link with 
alfalfa yield. In reality, optical saturation issues in NDVI are widely recognized when re-
gions are covered by dense vegetation with high LAI or biomass [51]. EVI2 improved the 
saturation issue to some extent compared to NDVI (Figure 3c), and thus the correlation 
with alfalfa yield was increased (r = 0.432 vs. 0.421). In contrast, LAI, a typical vegetation 
structure parameter, was not influenced by saturation issue, and it had a linear relation-
ship with alfalfa yield (Figure 3a). In addition, other VIs either had saturation effects (e.g., 
GNDVI) or presented discrete sample distributions with lower correlations (e.g., GRVI). 

 
Figure 3. Scatterplots between alfalfa yield and (a) LAI and (b–i) VIs. Note that ** denotes the sig-
nificant level of p-value < 0.001, and LAI was derived using Sentinel-2 data with the unified hybrid 
model. 

Figure 3. Scatterplots between alfalfa yield and (a) LAI and (b–i) VIs. Note that ** denotes the
significant level of p-value < 0.001, and LAI was derived using Sentinel-2 data with the unified
hybrid model.

Figure 3 shows the scatterplots between alfalfa yield and LAI and VIs. According
to Figure 3b, NDVI increased with increasing alfalfa yield. However, NDVI was nearly
unchanged when it reached ~0.9, even if alfalfa yield continued to increase. Consequently,
there was an evident saturation phenomenon for NDVI when it was used to link with alfalfa
yield. In reality, optical saturation issues in NDVI are widely recognized when regions are
covered by dense vegetation with high LAI or biomass [51]. EVI2 improved the saturation
issue to some extent compared to NDVI (Figure 3c), and thus the correlation with alfalfa
yield was increased (r = 0.432 vs. 0.421). In contrast, LAI, a typical vegetation structure
parameter, was not influenced by saturation issue, and it had a linear relationship with
alfalfa yield (Figure 3a). In addition, other VIs either had saturation effects (e.g., GNDVI)
or presented discrete sample distributions with lower correlations (e.g., GRVI).

The results indicate that LAI had the highest correlation with alfalfa yield compared
to various VIs. LAI can directly deliver quantitative information on the total leaf area of
alfalfa. On the other hand, alfalfa yield is measured by the weight of dry matter, and thus
increased LAI would indicate higher yield. Using in situ measured LAI, Liu et al. [23]
reported a significant correlation between alfalfa yield and LAI (R2 = 0.56–0.64). To the best
of our knowledge, it was the first study to demonstrate this relationship from a satellite’s
point of view. By contrast, for non-forage crops, Kayad et al. [22] found that VI had higher
accuracy for estimating maize grain yield than LAI (R2 = 0.93 vs. 0.69). Zarco-Tejada
et al. [52] also reported similar findings for cotton yield. Johnson [53] found that LAI did
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not match or exceed the ability of VIs for estimating crop yield, including canola, potatoes,
rice, soybeans, and wheat. This study demonstrates that LAI was a suitable satellite proxy
to use as a physical mechanism for estimating alfalfa yield.

Table 3 also shows the relationship between alfalfa quality traits and LAI and VIs. The
results indicate that LAI and VIs had varying r values when they were used to correlate
with CP, ADF, NDF, and NDFD. When data in Wisconsin and New York states were
combined, four quality traits all had significant correlation to LAI, GNDVI, and GCI. It is
an interesting finding that chlorophyll indices GNDVI and GCI showed higher correlation
coefficients with quality traits than LAI. This may be since increased chlorophyll content
would generate more nutrients during the process of photosynthesis. It should be noted that
vegetation chlorophyll content can also be derived from satellite data with the PROSAIL
model [54]. To better understand the physical mechanism of alfalfa quality prediction, its
quantitative relationship with chlorophyll content needs further investigation.

3.3. Investigation of the Additional Contribution of LAI to Prediction Accuracy

Table 4 shows alfalfa yield prediction results from Sentinel-2 data with and with-
out LAI. The optical-based model without LAI was developed using only VIs data; it
had reasonable accuracy in predicting alfalfa yield with an R2 of 0.805 and an RMSE of
0.0368 kg/m2. The prediction accuracy has an R2 of 0.789 and an RMSE of 0.0382 kg/m2

when LAI was input to the optical-based model. Results indicate that LAI did not provide
an additional contribution to alfalfa yield prediction in the VIs-based model. Meanwhile,
we investigated if LAI could contribute to a higher accuracy of predicted alfalfa quality
traits. Table 4 also presents model validation accuracy with and without LAI for predicting
alfalfa quality traits. The results denote that a model without LAI had comparable or
similar accuracy than that with LAI.

Table 4. Comparison of alfalfa yield and quality traits prediction using optical data without and with
LAI. Groups I and II mean model without and with LAI, respectively.

Group Yield CP ADF NDF NDFD

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

I 0.805 0.0368 0.755 1.465 0.594 2.039 0.657 2.545 0.636 2.971
II 0.789 0.0382 0.755 1.460 0.598 2.030 0.657 2.544 0.632 2.979

Figure 4 shows the scatterplots between LAI and VIs. It was observed that eight VIs
were all significantly (p-value < 0.001) related to LAI, with an r > 0.577. LAI had the highest
correlation with NDWI (r = 0.925) followed by GCI (r = 0.848). Furthermore, VIs data were
directly used to develop an empirical LAI estimation model with an RF algorithm. Figure 5
shows LAI comparison results of the optical Vis-based empirical model (R2 = 0.956 and
RMSE = 0.42). Results demonstrate that LAI not only had collinearity with VIs but also can
be accurately and empirically derived from VIs. Consequently, the role of LAI has been
explained in the RF-established alfalfa yield and quality traits prediction models using VIs
as inputs. This was likely the main reason that prediction accuracy was not significantly
improved when LAI was inputted into the VIs-based prediction model. The collinearity of
predictors and information redundancy will affect the model’s performance. For instance,
Barriguinha et al. [16] found that a predictor that can be explained by other predictors did
not contribute to more accurate crop yield estimation.
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Although VIs can be used to accurately estimate crop yield with a machine learning
model, large-scale (e.g., national and world range) within-field yield mapping requires
extensive and spatio-temporally representative training data [55]. However, such valuable
training data is currently unavailable for alfalfa. This study demonstrated that there was
a significant linear relationship between LAI and alfalfa yield (r = 0.701) from a satellite
remote sensing perspective. We used field alfalfa data across different spatial (i.e., Wisconsin
and New York states) and temporal (i.e., from May to August) scales. Our findings indicate
that the above-mentioned linear relationship may be less spatio-temporally dependent. On
the other hand, the proposed LAI retrieval scheme can be extended to any desired optical
satellite with different spatio-temporal resolutions given the SRFs. In addition, a crop
growth model, e.g., Agricultural Production Systems Simulator (APSIM), could simulate
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an initial and inherent relationship between LAI and crop yield under various water, soil,
and atmosphere conditions [56]. Assimilation of satellite-based LAI retrieval and a crop
growth model enables large-scale crop yield mapping with limited field samples [57]. Thus,
this study opens a significant opportunity to develop a scalable satellite-based alfalfa yield
prediction module for large-scale fields in the future.

3.4. Comparison of Prediction Accuracy Using Optical- and SAR-Based Models

Figure 6 shows the validation results of predicted alfalfa yield and quality traits using
optical- and SAR-based models. For the optical-based model, alfalfa yield was accurately
predicted with an R2 of 0.835 and an RMSE of 0.0369 kg/m2. Meanwhile, quality traits
had reasonable prediction accuracy (CP: R2 = 0.606; RMSE = 1.636%; ADF: R2 = 0.524;
RMSE = 2.000%; NDF: R2 = 0.531; RMSE = 2.218%; NDFD: R2 = 0.670; RMSE = 5.514%). For
the SAR-based model, alfalfa yield was predicted with R2 = 0.64 and RMSE = 0.0564 kg/m2.
As to quality traits, these values were 0.47 and 2.095% for CP, 0.537 and 1.986% for ADF,
0.568 and 2.146% for NDF, and 0.407 and 3.388% for NDFD, respectively. The results
denote that an optical-based model had higher accuracy than a SAR-based model in
predicting alfalfa yield, CP, and NDFD. In contrast, the SAR-based model had higher
accuracy for predicting ADF and NDF. Kayad et al. [14] only estimated alfalfa yield using
Landsat-8 derived VIs with an R2 of 0.476. Azadbakht et al. [13] improved alfalfa yield
estimation using Landsat-8 and PROBA-V time series with an R2 of 0.91. In contrast,
this study jointly predicted alfalfa yield and quality traits from the optical-based model
and obtained satisfactory results. This study also demonstrated that SAR satellite remote
sensing provides an alternative to predict alfalfa parameters.
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Figure 6. Scatterplots of measured and predicted alfalfa (a) yield, (b) CP, (c) ADF, (d) NDF, and
(e) NDFD using (1) optical- and (2) SAR-based models.

Crop greenness and water stress provide important information to characterize crop
growth [58], and can be expressed by LAI and NDWI, respectively. The scatterplots between
LAI/NDWI and alfalfa yield, CP, ADF, NDF, and NDFD prediction error from optical- and
SAR-based models are shown in Figure 7. For the optical-based model, results denote that
all scatter points were randomly distributed around line y = 0. The correlation coefficient r
between LAI/NDWI and prediction error of all five alfalfa parameters were insignificant
and small, with a range of −0.114–0.045 (p-value > 0.01). These results demonstrate that
the proposed optical-based model had sufficiently explained the relationship between all
five alfalfa parameters and LAI greenness and water stress. For the SAR-based model,
the correlation coefficient r between LAI/NDWI and prediction error of ADF, NDF, and
NDFD were insignificant, ranging from −0.187 to −0.073 (p-value > 0.01). However, yield
prediction error significantly correlated with LAI (r = −0.572, p-value < 0.001) and NDWI
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(r = −0.568, p-value < 0.001), and CP prediction error had a weak correlation with NDWI
(r = −0.27, p-value < 0.01). These results indicate that the SAR-based model had not fully
explained the relationship between alfalfa yield/CP and greenness and water stress. This is
the main reason that the optical-based model performed better than the SAR-based model
in predicting alfalfa yield and CP. Compared to yield, quality traits had smaller correlation
coefficients with LAI and NDWI (Table 3). As a result, LAI/NDWI had insignificant
correlation with the prediction error of alfalfa quality traits from the SAR-based model
(Figure 7(b2–e2) and Figure 7(c4–e4)).
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Table 5 shows the correlation coefficients between SAR data and alfalfa yield and
quality traits. There were significant correlations between alfalfa yield and backscattering
coefficients at VV (r = 0.199, p-value < 0.01) and VH (r = 0.302, p-value < 0.001). However,
the correlation coefficients generated from SAR data were smaller than that from optical
data (Table 3). This was further evidence that an optical-based model performed better
than a SAR-based model for predicting alfalfa yield. The SAR signal is usually influenced
by both crop characteristics and the underlying soil moisture [59]. Consequently, changes
in soil moisture will lead to the relationship between alfalfa quality traits and SAR data
being nonlinear and complex with low correlation coefficients (Table 5). The RF algorithm
can address the complex regression issue, and thus the proposed SAR-based model also
had reasonable accuracy for predicting alfalfa quality traits.
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Table 5. The correlation coefficients between SAR data and alfalfa yield and quality traits. Note that *
and ** denote the significant levels of p-value < 0.01 and 0.001, respectively.

Parameter VV VH VH/VV RVI

Data in Wisconsin (N = 111)

Yield 0.456 ** 0.614 ** 0.014 0.187
CP −0.134 0.118 −0.199 0.206

ADF 0.149 0.002 0.131 −0.112
NDF 0.148 −0.074 0.182 −0.178

NDFD −0.097 0.180 −0.198 0.231

Data in New York (N = 70)

Yield 0.085 −0.196 0.232 −0.265
CP 0.074 0.273 −0.109 0.200

ADF −0.113 −0.251 0.057 −0.145
NDF −0.118 −0.254 0.055 −0.143

NDFD 0.227 0.323 * 0.010 0.115

All data (N = 181)

Yield 0.199 * 0.302 ** 0.010 0.094
CP −0.103 0.139 −0.189 0.217 *

ADF −0.093 −0.139 −0.017 −0.042
NDF −0.055 −0.172 0.043 −0.105

NDFD −0.088 0.173 −0.190 0.233 *

According to the physical basis of SAR radiative transfer, the total backscattering
coefficient is attributed to both backscattering from vegetation and underlying soil [29].
The proportion of backscattering from vegetation to the total backscattering coefficient
changes with varying vegetation and soil conditions (i.e., LAI, leaf water content, and soil
moisture level). In general, the vegetation signal detected by SAR satellites increased with
increasing LAI and leaf water content [58], otherwise the backscattering signal contributed
by the soil (i.e., noise source during alfalfa modeling) increased. In this study, the total
backscattering coefficient was directly employed to predict alfalfa parameters, and alfalfa
yield and CP were closely linked to LAI and NDWI (Table 3). The above-mentioned reasons
explain the findings that: (1) alfalfa yield and CP prediction errors from SAR-based model
negatively correlated with LAI and NDWI, and (2) optical-based model outperformed the
SAR-based model for predicting alfalfa yield and CP. On the other hand, compared to
optical data, the SAR satellite demonstrates a greater ability to penetrate vegetation due
to a longer wavelength. This indicates that the received backscattering coefficients also
include information on vegetation branches [60]. Therefore, the SAR-based model showed
better performance for predicting ADF and NDF that relate with vegetation branches.

For non-forage crop parameters, optical-based models had a higher accuracy than
SAR-based models for deriving cotton Kc, LAI, and crop height [30], while SAR-based
models performed better than optical-based models for retrieving vineyard Kc and LAI [33].
For non-forage crop yield estimations, Ranjan and Parida [32] found that SAR-based
models had higher accuracy for deriving rice yield. This is the first study to compare the
performance of optical- and SAR-based models for predicting alfalfa yield and quality
traits. Although Sentinel-2 images were selected as the optical data source, Landsat images
can also be utilized for similar studies due to their similarity [61,62]. We used Sentinel-1
C-band images as the SAR data source. There are other SAR satellites operating at the X,
S, L, and p bands. SAR data at different bands have varying penetration depth to crops,
and thus present different abilities of monitoring crops [24]. In addition, interferometric
coherence, another variable derived from SAR data, presents an added value for modeling
crops compared to the backscattering coefficient [63]. Some studies have focused on the
comparison and integration of interferometric coherence and backscattering coefficient to
improved non-forage crop monitoring and parameters estimation [64]. Thus, more work
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should be conducted in the future to integrate multiple SAR satellites (e.g., C-band Sentinel-
1 and L-band PALSAR-2) and different SAR products (e.g., interferometric coherence and
backscattering coefficient) for predicting alfalfa parameters.

3.5. Optimal Integration of Optical and SAR Data

Table 6 shows the comparison of alfalfa yield and quality trait predictions using
optical, SAR, and integrated satellite data. The traditional embedded integration approach
was usually used. When optical and SAR satellite data were embedded in the same
prediction model, alfalfa yield was predicted with R2 = 0.839 and RMSE = 0.0365 kg/m2,
and these values were 0.621 and 1.610% for CP, 0.558 and 1.928% for ADF, 0.572 and
2.118% for NDF, and 0.685 and 2.477% for NDFD, respectively. Results indicated that the
model developed using integrated optical and SAR data with the embedded approach had
improved accuracy for predicting alfalfa parameters compared with single optical or SAR
data. On the other hand, the proposed multiple linear integration approach performed
better than the embedded method (Table 6). Figure 8 shows the scatterplots between
measured and predicted alfalfa yield and quality traits using integrated optical and SAR
data with multiple linear approach. Compared to Figure 6, it was observed that samples
were closer to the 1:1 in Figure 8, and integration model with multiple linear approach had
reduced prediction error. The embedded integration approach was usually employed to
combine optical and SAR data for monitoring vegetation together [35]. This study suggests
that the proposed multiple linear integration approach is a better means to optimally
combine multisource heterogeneous satellite data.
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Table 6. Comparison of alfalfa yield and quality traits prediction using optical, SAR, and integrated
satellite data. Cases a and b denote prediction results from single optical and SAR data, while cases c,
d, and e indicate prediction results using integrated optical and SAR data with embedded, averaged,
and multiple linear approaches.

Case Yield CP ADF NDF NDFD

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

a 0.835 0.0369 0.606 1.636 0.524 2.000 0.531 2.218 0.670 2.514
b 0.640 0.0564 0.470 2.095 0.537 1.986 0.568 2.146 0.407 3.388
c 0.839 0.0365 0.621 1.610 0.558 1.928 0.572 2.118 0.685 2.477
d 0.828 0.0416 0.636 1.737 0.558 1.941 0.576 2.122 0.652 2.786
e 0.846 0.0354 0.636 1.570 0.559 1.926 0.580 2.097 0.679 2.426

4. Conclusions

This study developed and compared optical- and SAR-based models to predict alfalfa
yield and quality traits, wherein some key issues were investigated. For the optical-based
model, a unified hybrid LAI retrieval scheme was first proposed with the assistance of the
PROSAIL radiative transfer model. The unified hybrid model showed reasonable accuracy
for retrieving LAI with an RMSE of 0.572 m2/m2. The unified LAI retrieval scheme can be
used to any desired optical satellite given the SRFs, called a scalable satellite-based LAI
retrieval framework. LAI had the highest correlation coefficient (r = 0.701) with alfalfa yield
compared to eight VIs followed by NDWI (r = 0.669). It indicates LAI was a more efficient
and physical satellite proxy to alfalfa yield due to vegetation structure characteristics. As
to quality traits, chlorophyll indices GNDVI and GCI had higher correlation coefficients
followed by LAI. LAI did not show the additional contribution to improve alfalfa prediction
accuracy in the optical-based model. This is mainly since the role of LAI has been fully ex-
plained (R2 = 0.956; RMSE = 0.42 m2/m2) in the RF-developed alfalfa yield and quality trait
prediction models using VIs as inputs. SAR-based model also showed reasonable accuracy
for predicting alfalfa parameters. For model comparisons, optical-based model performed
better than SAR-based models for predicting alfalfa yield, CP, and NDFD, because the
yield/CP prediction error from the SAR-based model was significantly correlated with
alfalfa greenness and water stress. By contrast, the SAR-based model had higher accuracy
for predicting ADF and NDF.

Furthermore, the model developed by the integration of optical and SAR data showed
improved accuracy than models from single optical or SAR data. On the other hand, this
study proposed that multiple linear regression resulted in higher performance than the
traditional embedded approach for the optimal integration of multisource heterogeneous
satellites. We found that there may be a linear and inherent relationship between alfalfa
yield and LAI. Thus, it may be possible in the future to predict large-scale alfalfa yield with
limited field samples by the assimilation of scalable satellite-based LAI retrieval and a crop
growth model (e.g., APSIM). Although we focused on alfalfa monitoring using multisource
heterogeneous satellites, the findings of this study may be suitable to other forage crops.
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