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Abstract: Improved agricultural production systems, together with increased grain yield, are essential
to feed the growing global population in the 21st century. Global gridded crop models (GGCMs)
have been extensively used to assess crop production and yield simulation on a large geographical
scale. However, GGCMs are less effective when they are used on a finer scale, significantly limiting
the precision in capturing the yearly maize yield. To address this issue, we propose a relatively more
advanced approach that downsizes GGCMs by combining machine learning and crop modeling to
enhance the accuracy of maize yield simulations on a regional scale. In this study, we combined
the random forest algorithm with multiple data sources, trained the algorithm on low-resolution
maize yield simulations from GGCMs, and applied it to a finer spatial resolution on a regional scale
in China. We evaluated the performance of the eight GGCMs by utilizing a total of 1046 county-
level maize yield data available over a 30-year period (1980–2010). Our findings reveal that the
downscaled models created for maize yield simulations exhibited a remarkable level of accuracy
(R2 ≥ 0.9, MAE < 0.5 t/ha, RMSE < 0.75 t/ha). The original GGCMs performed poorly in simulating
county-level maize yields in China, and the improved GGCMs in our study captured an additional
17% variability in the county-level maize yields in China. Additionally, by optimizing nitrogen
management strategies, we identified an average maize yield gap at the county level in China ranging
from 0.47 to 1.82 t/ha, with the south maize region exhibiting the highest yield gap. Our study
demonstrates the high effectiveness of machine learning methods for the spatial downscaling of crop
models, significantly improving GGCMs’ performance in county-level maize yield simulations.

Keywords: maize yield; global gridded crop models; random forest; multiple data sources; county-level

1. Introduction

By the year 2050, the global population is projected to exceed 9 billion, which is an
increase of 2 billion people compared to the baseline year of 2010 [1]. As the population
continues to expand, global food demand is also rapidly growing. The 25% increase in
the global food demand by 2010 is projected to increase to 70% by 2050 [2,3] under ongo-
ing climate warming and population growth, presenting serious food security challenges
worldwide [4,5]. The Intergovernmental Panel on Climate Change (IPCC) Special Report
on Climate Change and Land (SRCCL) highlights the fact that climate warming will trigger
a series of cascading effects that will adversely affect food security [6]. A reduction in
food production and the quality of grain will, in turn, pose threats to the development of
agriculture-related industries and may exacerbate food shortages worldwide [7]. Given
these concerns, achieving the “Zero Hunger” goal of the United Nations Sustainable Devel-
opment Goals has become a top priority of national governments and other international
communities [8]. In such a context, increasing crop production and accurately estimating
crop yields by advancing appropriate models and technology are becoming increasingly
crucial for global and regional food security [9,10].
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Global gridded crop models (GGCMs) are some of the most significant tools being
used extensively for estimating crop yields under various environmental and management
conditions worldwide [11,12]. GGCMs have the ability to assess the impact of climate
change on crop yields more effectively [13–15]. Researchers have parameterized crop
growth processes using GGCMs by, for example, combining information such as weather,
soil, and management parameters, followed by simulating the dynamics of crop growth and
yield on regional and global scales [16,17]. Through analysis of the crop yield simulations
of GGCMs, it has been revealed that climate change has been found to be the major driver
causing a negative impact on global agricultural production [18]. A recent study by Yin
and Leng [19] suggests that GGCMs effectively captured the adverse effects of climate
change on maize production when using the 30-year (1980–2010) time series data on
global climate change and maize production. Furthermore, GGCMs have been found
to show varying performance in simulating major grain crop production in China [20].
GGCMs commonly use a 50 km × 50 km spatial resolution, which is suitable for robust
crop yield assessments on a national scale [13]. However, there has been a rising concern
that GGCM estimates at lower spatial resolutions may ignore real geographical factors,
such as soil and topography [21]. One of the major concerns raised by researchers is that
missing regional-level heterogeneity may lead to discrepancies between sub-grid level
information and data and farm land and agricultural practices, consequently biasing the
simulation model [22]. Conducting county-level maize yield studies poses challenges due
to the lower resolution of GGCMs, making it challenging to identify spatial variations in
maize yield [23]. Additionally, the utilization of global-scale datasets in the model results
in considerable errors when simulating county-level maize yield, thereby hindering the
effectiveness of local government efforts in risk prevention and decision making for food
security [24]. Improved simulation accuracy of GGCMs at the county level holds the
potential to significantly enhance research on crop yield loss risks spanning from local
to regional scales; studies on potential crop yields will benefit significantly from such
improvements [25,26]. On the other hand, applying gridded crop models at very high
resolutions significantly increases computational demands and is often constrained by data
availability [21]. GGCM crop simulations are primarily determined by climate data, but
the global-scale higher-resolution climatic data needed have only been available at coarser
spatial resolutions until recently [27].

An approach that can help address these issues efficiently and flexibly is downscal-
ing the GGCM results, which has become significant in addressing unresolved issues of
regional and global crop yield simulations and allows for obtaining high-resolution simula-
tions without setting up high-resolution crop model infrastructures and comprehensive
datasets [21]. Studies suggest that a machine learning-based downscaling approach could
utilize correlations between dependent and independent predictor variables to refine low-
resolution crop yield data into finer spatial-resolution data [28]. For instance, combining
the GPM model and random forest increased the prediction potential of land productivity
by accurately showing the reduction in the spatial-scale crop yield data from the United
States [29]. Recently, machine learning and remote sensing variables have been employed
to downscale global gridded crop yield data in southern Asia, which produced highly
accurate results in crop yield at a 1 km resolution [30]. This suggests that when constrained
by technical limitations and data accessibility, using machine learning to downscale low-
resolution data into high-resolution data has become a viable approach for predicting
crop production at both the regional and global scales [21]. However, currently, within
agricultural sciences, this application has primarily been limited to the processing and
analysis of remote sensing data [31,32]. Limited research on downscaling crop simulation
yields from GGCMs has hindered generating unbiased results on global and regional crop
yield simulations [21,33].

China is the world’s second-largest maize producer, contributing to 23% of global
production in recent years [34]. Conducting research with a focus on ensuring maize yield
in China is significant for global food security. We utilized the random forest algorithm and
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integrated climate data, soil data, and topographical data to downscale low-resolution data
into high-resolution data to achieve the best possible model outcome. While downscaling
the data, we used eight different GGCMs (e.g., CLM-CROP, GEPIC, EPIC-BOKU, EPIC-
TAMU, EPIC-IIASA, PDSSAT, PAPSIM, PEGASUS) and calculated the ensemble mean of
multiple GGCMs (ENSEMBLE). This enabled us to compare the model outputs, which
assist in making better decisions. Taking China’s maize plantation regions as the research
area, the primary objectives of this research were: (1) to develop precise downscaling
models for simulating maize yields in regional China; (2) to evaluate the effectiveness of
GGCMs in simulating maize yield, both before and after downscaling; (3) to compare and
estimate maize yield disparities at the county level in China.

2. Methods and Datasets
2.1. Study Area

China’s maize plantation regions are classified into five distinct zones based on their
cultivation characteristics, management practices, and geographical environments [35]. As
shown in Figure 1, these zones contain the north spring maize region (Zone I), the Huang-
Huai-Hai summer maize region (Zone II), the southwest maize region (Zone III), the
northwest maize region (Zone IV), and the south maize region (Zone V). The mean annual
temperature across these regions falls within approximately 9–25 ◦C, which is within the
optimal range for maize growth, spanning from 9 to 29 ◦C [36]. Maize cultivation requires
adequate water supply throughout its lifecycle [37]. Therefore, Zone IV accounts for only
3% of China’s annual maize cultivation area due to the low precipitation levels, while the
remaining regions, with relatively higher precipitations, together account for 93% of the
nation’s maize cultivation area.

2.2. Data Sources
2.2.1. Climate Data

In the Global Gridded Crop Model Intercomparison Project (GGCMI), all participating
GGCMs adhered to a standardized protocol and were constrained by the same climate
dataset [16,38]. We especially focused on one of the enforced simulations, namely the
AgMERRA dataset, and thus, the gridded climate data were obtained from the publicly
available AgMERRA climate dataset [27]. It features a spatial resolution of 25 km × 25 km
and spans the period from 1980 to 2010. AgMERRA incorporates a comprehensive retro-
spective analysis of modern research and practical applications [39]. This dataset has been
bias-corrected using station data and remote sensing data for agricultural land use. The
selected key variables include the maximum temperature (TMAX), minimum temperature
(TMIN), average temperature (TAVG), total precipitation (PRATE), potential evapotranspi-
ration (PET), downward surface shortwave radiation (SRAD), wind speed (WS), and vapor
pressure deficit (VPD) (Table 1). Several statistics were calculated for each climate variable,
resulting in a total of 76 features.

2.2.2. Soil Data

Soil information was extracted from the Harmonized World Soil Database v1.2, fea-
turing a spatial resolution of 1 km [40]. The dominant soil type was selected for each grid
cell at a spatial resolution of 50 km from the largest soil mapping unit. We chose a total of
11 variables from the soil dataset, including the soil reference depth (DEPTH), bulk density
in topsoil (BD), carbonate content in topsoil (CARB), cation exchange capacity in topsoil
(CEC), clay content in topsoil (CLAY), electrical conductivity in topsoil (EC), organic carbon
content in topsoil (OC), pH in topsoil (PH), coarse fragment (rock) content in topsoil (ROK),
sum of bases in topsoil (SB), and soil sand content (SAND) (Table 1).



Remote Sens. 2024, 16, 701 4 of 20Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 21 
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Figure 1. The five maize planting regions in China. Notes: Zone I: the north maize region; Zone II:
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maize region; and Zone V: the south maize region.

Table 1. Features and target variables for machine learning.

Variables Variable Descriptions

Climate variables (VARs)
TMAX Maximum temperature (◦C)
TMIN Minimum temperature (◦C)
TAVG Average temperature (◦C)

PRATE Total precipitation (mm)
SRAD Solar radiation (MJ/m2)
PET Potential evapotranspiration (mm)
WS Wind speed (m/s)

VPD Vapor pressure deficit (h PA)
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Table 1. Cont.

Variables Variable Descriptions

Temporal aggregates of climate variables

VAR_X Monthly value for month X in calendar year (e.g.,
“TMAX_1”)

VARsumGS Sum of climate variables in growing season (e.g.,
“TMAXsumGS”)

VARavgGS Average of climate variables in growing season (e.g.,
“TMAXavgGS”)

Soil and topography variables
DEPTH Total soil depth (m)

OC Organic carbon content in topsoil (%)
SAND Sand content in topsoil (%)

SB Sum of bases in topsoil (cmol/kg)
ROK Coarse fragment (rock) content in topsoil (%)
CLAY Clay content in topsoil (%)

EC Electric conductivity in topsoil (mmho/cm)
BD Bulk density in topsoil (g/cm3)

CEC Cation exchange capacity in topsoil (cmol/kg)
PH pH in topsoil

CARB Carbonate content in topsoil (%)
DEM Digital elevation model

Target variables
YIELD Simulated maize yield (t/ha)

2.2.3. Topography Data

Topographical information was provided by digital elevation models (DEMs). DEMs
are digital mapping datasets that consist of three-dimensional coordinates, typically derived
from contour lines or photogrammetric methods [41]. We utilized a 1 km-resolution
DEM sourced from the Space Shuttle Radar Topography Mission (SRTM) data. This
dataset was derived from the latest SRTM V4.1 data (http://www.resdc.cn, accessed on 15
August 2023).

2.2.4. Irrigation Mask Data

To accurately evaluate the performance of each GGCM in simulating maize yields
under both rain-fed conditions and irrigated conditions, we employed the mask data (irri-
gated and rain-fed crop harvested areas), to process the maize yield simulation results. The
1 km-resolution mask data were obtained from MIRCA2000 (https://www.uni-frankfurt.
de/45218031/data_download, accessed on 15 August 2023), providing detailed information
on the crop-specific irrigated and rain-fed harvested areas for each grid cell [42].

2.2.5. Maize Yield Data

To assess the performance of GGCMs, we used China’s county-level maize yield data.
They were sourced from the Agricultural Statistical Yearbook compiled by the Ministry of
Agriculture of China (http://www.stats.gov.cn, accessed on 15 August 2023), and its unit is
kilograms per hectare (kg/ha). These data represent the average crop yield for each county
and include both the rain-fed and irrigated maize yields.

2.2.6. Date Processing

Since maize yield data was available at the county-level, we aggregated the simulation
results to the county scale using an area-weighted average, as described below:

Ycounty =
∑n

i=1 Airr,i × Yirr,i + ∑n
i=1 Anoirr,i × Ynoirr,i

∑n
i=1(Airr,i + Anoirr,i)

(1)

http://www.resdc.cn
https://www.uni-frankfurt.de/45218031/data_download
https://www.uni-frankfurt.de/45218031/data_download
http://www.stats.gov.cn
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where n is the number of grid cells within each county, i is the index of grid cell. Airr,i
represents the irrigated maize harvested area (ha) in grid cell i, and Anoirr,i is the rain-fed
maize harvested area (ha) in grid cell i. Yirr,i represents the simulated yield (t·ha−1) of
irrigated maize in grid cell i, and Ynoirr,i represents the simulated yield (t·ha−1) of rain-fed
maize in grid cell i.

Since variations in maize yields are mainly driven by management factors [43,44], and
due to the limitations of accessible data, these influences should be removed from the maize
yield data for an accurate evaluation of the GGCMs’ simulations. We employed a moving
window approach spanning 5 years to eliminate trends in both the observed and simulated
maize yields. This involved detrending the annual maize yield data by subtracting the
yield mean in a 5-year window. Compared to other methods, this detrending approach has
demonstrated greater effectiveness in mitigating the impact of trend effects [45].

2.3. Experiments Design

The primary objective of this research was to assess the feasibility of achieving high-
resolution predictions using low-resolution simulated maize yield data. We employed
a downscaling model constructed by the random forest algorithm. All the data were
resampled to a uniform 50 km resolution, consistent with the spatial resolution of the maize
yields simulated by GGCMs. Climate data, soil data, and topographical data were used
as feature variables for model development, while the simulated maize yields served as
the target variable. The data from 1980 to 2009 were randomly split into training and test
sets, containing 75% and 25% of the samples, respectively. Data for the year 2010 were kept
separate for data validation. Random forest exhibits greater flexibility in fitting training
data, but it is also more prone to overfitting. To avoid overfitting, we employed various
techniques, including monitoring out-of-bag error, performing n-fold cross-validation, and
applying regularization to make the training procedure more conservative. We evaluated
the high-resolution GGCM maize yield simulations after downscaling using observed
county-level maize yield data from 1980–2010. As an example, we estimated the maize
yield disparities for the year 2010.

2.3.1. Description for the Gridded Crop Model

The GGCMI (Global Gridded Crop Model Intercomparison Project) Phase 1 dataset
comprises outputs from fourteen modeling groups, spanning various time periods and
four major staple crops: soybeans, wheat, maize, and rice [16]. The GGCMI defined three
distinct model configurations based on different crop management practices [44]. Firstly,
each modeling group developed a “default” configuration (default) based on their typical
historical period simulation management, technical assumptions, and inputs. Next, they
developed a “full harmonization” configuration (Fullharm), which involved harmonized
growing seasons (i.e., prescribed grid-cell- and crop-specific sowing and maturity dates)
and fertilizer inputs. Lastly, simulations were conducted with the same harmonized
growing seasons but with unlimited nutrient supply, termed the “Harmnon” configuration
(Harmnon). All simulations were conducted under both rain-fed (noirr) and fully irrigated
(irr) conditions to facilitate a closer approximation of crop yields to actual production
in subsequent processing [46,47]. Due to the unavailability of simulation results for all
model configurations from some groups, we utilized the data from only eight models
(e.g., CLM-CROP, EPIC-BOKU, EPIC-IIASA, EPIC-TAMU, GEPIC, PAPSIM, PDSSAT, and
PEGASUS). These GGCMs were driven by historical weather datasets, such as WFDEI,
AgMERRA, WATCH (WFD), GRASP, AgCFSR, and Princeton GF (Table S1). Given that
these weather datasets are all based on station data or reanalysis data, we assumed that the
choice of different weather datasets had minimal impact on the simulation results.

2.3.2. Random Forest

The random forest (RF) algorithm stands as a well-established ensemble learning
algorithm that performs regression or classification tasks by combining a large number
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of decision trees [48]. RF is particularly suitable for capturing both linear and nonlinear
relationships between crop yields and various environmental factors [49,50]. RF offers a
valuable feature by providing a metric for assessing the relative importance of different
predictor variables. This capability aids researchers in better understanding how climate
and soil variables influence maize yield, contributing to a more comprehensive under-
standing of the underlying factors driving crop production [51]. Numerous studies have
demonstrated the good performance of RF in predicting county-level maize yields [52,53].
RF exhibits robustness to variations in data distribution and demonstrates less sensitivity
to hyperparameter tuning [54]. Its ensemble learning approach helps mitigate overfitting
concerns [54]. Additionally, RF’s default settings commonly yield satisfactory results,
making it a practical choice. The model’s effectiveness may also stem from its ability to
capture specific patterns or relationships in maize yield data and from its generally strong
performance in diverse applications [55,56]. Since RF is less prone to overfitting, we struck
a balance between its computational performance and efficiency by adjusting the global
parameters, as its computational demands increase linearly with the number and depth of
trees. The key parameters that required tuning for RF were as follows: the number of trees
(n_estimators), the tree depth (max_depth), and the minimum number of samples required
to split a node (min_samples_split). To optimize the downscaling model, we selected the
parameters that minimized the RMSE through ten-fold cross-validation.

2.3.3. Feature Engineering and Feature Importance

Our features were derived from the model’s input data, as described in Section 2.2;
they were climate, soil, and topographical data. Depending on the variable type, the daily
climate data were averaged to the monthly average climate data, with the number following
the variable name representing the month. Since maize in China is typically planted in
April and harvested in October, we defined April to September as the growing season for
the simulations [57,58]. The daily climate data were aggregated into seasonal averages and
seasonal totals based on the maize growing season timeline. Soil data mainly consist of
surface soil variables (0–30 cm, divided according to the HWSD), as surface soil mainly
affects maize growth [21]. Additionally, relevant features affecting maize yield include
DEM data, which serve as site-specific characteristics. This process is referred to as feature
engineering, which involves normalizing raw data based on domain knowledge. RF can
internally determine feature importance by initially splitting on a fixed feature, calculating
the total reduction in the sum of squared residuals achieved by each tree as a result of
this split, and averaging it over all trees, where larger averages indicate greater variable
importance [51]. Here, we present the relative importance of each feature as a percentage
and rank all features accordingly.

2.3.4. Calculation of Regional Maize Yield Gap

In the GGCMI, the input data for GGCMs in the Fullharm scenario were the same as
that in the Harmnon scenario, except for the nitrogen fertilizer input data. In the Harmnon
scenario, characterized by an unlimited nutrient supply, the simulated maize yield is
referred to as the potential yield. This potential yield serves as the baseline for defining
the yield gap and related analyses [16]. To quantify the difference in the simulated maize
yields between the Harmnon and the Fullharm scenarios (t/ha), we calculated the maize
yield gap by computing the multi-model ensemble mean using Equation (2):

Yg,e =
1
n

n

∑
i=1

Yh,i − Yf ,i (2)

where Yg,e is the relative maize yield gap as the multi-model ensemble mean, n is the
number of GGCMs, i is the member of GGCMs, Yh,i is the simulated maize yield in the
Harmnon scenario, and Yf ,i is the simulated maize yield in the Fullharm scenario.
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2.4. Metrics for Model Performance Evaluations

The coefficient of determination (R²), the root-mean-square error (RMSE), and the
mean absolute error (MAE) were applied to assess the effectiveness of the downscaling
model developed in this study. Furthermore, we utilized the correlation coefficient (R),
RMSE, and MAE to evaluate the performance of GGCMs in simulating the spatiotemporal
variability of maize yield both before and after downscaling. The calculations for these
metrics are provided in Equations (3)–(6):

R2 = 1 − ∑n
i=1

(
Ys,i − Yp

)2

∑n
i=1

(
Ys,i − Ys

)2 (3)

RMSE =

√
1
n

n

∑
i=1

(
Ys,i − Yp,i

)2 (4)

MAE =
1
n

n

∑
i=1

∣∣Ys,i − Yp,i
∣∣ (5)

R =
∑n

i=1
(
Ys,i − Ys

)(
Yr,i − Yr

)√
∑n

i=1
(
Ys,i − Ys

)2
∑n

i=1
(
Yr,i − Yr

)2
(6)

where n (i = 1, 2, . . ., n) is the number of samples, Ys,i is the simulated maize yield, Yp,i

is the predicted maize yield, Yr,i is the observed maize yield, and Y is the corresponding
mean value.

3. Results
3.1. Performance of Simulated Maize Yield Downscaling Model
3.1.1. General Performance of Downscaling Model and Spatial Patterns of Maize Yield

All GGCMs except PAPSIM showed exceptionally high goodness-of-fit and demon-
strated low errors under both the irrigated and rain-fed conditions (R2 ≥ 0.9,
RMSE < 0.75 t/ha, MAE < 0.5 t/ha) (Figures S1–S7). Notably, EPIC-BOKU exhibited the
highest goodness-of-fit, with R2 = 0.93, RMSE = 0.65 t/ha, and MAE = 0.42 t/ha under
irrigated conditions, and R2 = 0.94, RMSE = 0.66 t/ha, and MAE = 0.42 t/ha under rain-fed
conditions (Figure 2a,b). Predominantly, maize yield overestimations occurred when the
simulated yields were low, while underestimations were observed when the simulated
yields were high (Figure 2c,d). Despite some deviations, the overall density distribution of
the predicted yields closely resembles that of the simulated yields (Figure 2c,d). These devi-
ations vary within different model-specific maize yield intervals. For all models, the range
of simulated maize yields corresponding to the peak density in irrigated maize consistently
surpassed that of the simulated rain-fed maize (Figures S1–S7). This indicates a significant
improvement in maize yield following adequate irrigation. Due to the significantly low
accuracy exhibited by PAPSIM’s downscaling model, it has been omitted from this study
for further consideration.
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Figure 2. Scatter and density plots for GGCM simulations and RF-predicted maize yields in the
validation dataset. Taking EPIC-BOKU as an example, the other models are detailed in the Sup-
plementary Materials (Figures S1–S7). Notes: “ff” represents the irrigated condition, while “nf”
represents the rain-fed condition. (a) Maize yield under irrigated conditions; (b) maize yield under
rain-fed conditions; (c) density distribution of maize yield under irrigated conditions; (d) density
distribution of maize yield under rain-fed conditions.

We compared the low-resolution simulations with the high-resolution machine learn-
ing predictions for maize yield in China in 2010 (Figures S8–S13). And here, taking EPIC-
BOKU as an example (Figure 3), it was evident that for both the rain-fed and irrigated
conditions, there was a consistent spatial distribution pattern observed in both the low-
resolution simulations and the high-resolution machine learning predictions. The maize
yields exhibited significant spatial heterogeneity under both the irrigated and rain-fed con-
ditions, with the maize yield under the irrigated conditions being significantly higher than
that under the rain-fed conditions (Figures 3 and S8–S13). However, the high-resolution
machine learning predictions outperformed the low-resolution simulations in accurately
capturing the heterogeneity of the maize yield across China (Figures 3 and S8–S13). This
suggests that high-resolution machine learning predictions are more suitable for county-
level maize yield studies in China compared to low-resolution simulations.
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spatial resolution of 1 km.

3.1.2. Feature Importance from Maize Yield Simulations

We calculated the feature importance for all models (Figures S14–S19), taking EPIC-
BOKU as an example (Figure 4). In the rain-fed conditions, the most critical indicators
for predicting maize yield consistently revolved around precipitation-related features.
Following closely were features related to PET, temperature, and soil–terrain characteristics
(Figures 4b and S14b–S19b). Under adequate irrigation conditions, temperature-related
features and VPD were the predominant indicators for maize yield, whereas the significance
of precipitation-related features diminished (Figures 4a and S14a–S19a). Whether the maize
was rain-fed or irrigated, the climate characteristics during the maize growing season (e.g.,
PRATEsumGS, PRATEavgGS, TMINsumGS, TMAXsumGS, TMINavgGS, TMAXavgGS,
TAVGsumGS, and TAVGavgGS) consistently ranked as pivotal indicators. This emphasizes
that drought or excessive moisture during the growing season significantly impacts maize
yield. Features related to soil and terrain characteristics played a relatively lesser role in
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maize yield predictions. DEM was the most relevant feature among the soil and terrain
characteristics. Furthermore, features related to wind speed rarely ranked among the
top-ranked features in terms of feature importance when predicting maize yield.
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3.2. Evaluation of County-Level Maize Yields in China

The downscaling models were applied to spatially downscale the county-level maize
yield grids simulated by seven GGCMs (EPIC-BOKU, EPIC-TAMU, EPIC-IIASA, GEPIC,
PDSSAT, PEGASUS, CLM-CROP) from a 50 km resolution to 1 km for the period of
1980–2010. The ensemble model was created by averaging the outputs of the seven global
crop models, and all models were masked using the maize planting area grid provided
by MIRCA2000. The data were then aggregated at the county level. Subsequently, we
computed the correlation coefficients (R) between the simulated maize yields and the
observed maize yields before and after the downscaling process. The density curves
in Figure 5 demonstrate a significant improvement in the R values for all crop models
after downscaling. The original 50 km-resolution maize yield simulations exhibited R
values primarily within the range of 0 to 0.4, signifying poor performance at the county
level. Conversely, following downscaling, the R values for the 1 km-resolution maize yield
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simulations were concentrated within the range of 0.2 to 0.6. This suggests that downscaling
effectively enhanced the county-level maize yield simulations for all the GGCMs.
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Figure 5. Density distribution of the correlation coefficients between 1 km-resolution simulated
maize yields and 50 km-resolution simulated maize yields, in comparison to maize yield observations
in China from 1980 to 2010. (a) Density distribution of EPIC-BOKU; (b) density distribution of
EPIC-IIASA; (c) density distribution of EPIC-TAMU; (d) density distribution of PDSSAT; (e) density
distribution of GEPIC; (f) density distribution of PEGASUS; (g) density distribution of CLM-CROP;
(h) density distribution of ENSEMBLE.

To determine the best-performing model in simulating county-level maize yields in
China, we assessed the performance of seven GGCMs before and after downscaling, as
well as the ensemble mean of the multi-model, using the indices of R, RMSE, and MAE.
The GGCMs demonstrated an improved capacity to elucidate maize yield variability after
downscaling (Figure 6). The pre-improvement crop models were only able to explain 16 to
31% of the maize yield variability across a minimum of 1046 counties. However, following
improvement, they could explain 30 to 48% of the maize yield variability (average R value
across 1046 counties). Simultaneously, both the RMSE and MAE exhibited substantial
reductions, with the RMSE decreasing by 0.4 to 0.7 t/ha, and the MAE decreasing by 0.3 to
0.5 t/ha. Among the individual models, EPIC-BOKU performed the best in simulating the
county-level maize yield variability (R = 0.38, RMSE = 2.2 t/ha, MAE = 1.7 t/ha), while
PDSSAT performed the worst (R = 0.29, RMSE = 2.8 t/ha, MAE = 2.3 t/ha) among the seven
models. The multi-model ensemble approach further enhanced the model performance,
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with ENSEMBLE demonstrating the highest explanatory power for maize yield variability
and the lowest errors among all models (R = 0.48, RMSE = 1.8 t/ha, MAE = 1.3 t/ha).
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Figure 6. The performance of GGCMs’ simulated maize yields before and after downscaling. (a) The
correlation coefficient (R) between simulated maize yields and observed county-level maize yields
before and after downscaling; (b) the root mean square error (RMSE) between simulated maize yields
and observed county-level maize yields before and after downscaling; (c) the mean absolute error
(MAE) between simulated maize yields and observed county-level maize yields before and after
downscaling. Notes: Red represents GGCMs before downscaling (50 km); brown represents GGCMs
after downscaling (1 km).

3.3. Evaluation of County-Level Maize Yield Gap in China

We quantified the maize yield gap in China’s major maize-producing regions
(1046 counties). There was still substantial room for improving the maize yield in most
counties (Figure 7a). Only 7.1% of all the counties had maize yields that exceeded their
potential maize yields, while the remaining 92.9% of counties exhibited room for enhance-
ment in their maize yield (Figure 7b). Counties with maize yield gaps ranging from 0 to
1 t/ha constituted the largest share at 38.4%; counties with maize yield gaps ranging from
1 to 2 t/ha made up 32% of the total; those with maize yield gaps ranging from 2 to 3 t/ha
accounted for 15.3% of the counties; and counties with maize yield gaps exceeding 3 t/ha
represented a proportion of 7.2%. The spatial distribution pattern indicates that counties
with maize yield gaps exceeding 2 t/ha are primarily located in the south and southwest
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maize regions (Figure 7a). Figure 7c highlights the substantial disparities in the maize yield
gaps among different regions, with a substantial average maize yield gap of 1.82 t/ha in
the south maize region. The northwest maize region, the Huang-Huai-Hai maize region,
and the southwest maize region had maize yield gaps of 0.85 t/ha, 0.65 t/ha, and 1.34 t/ha,
respectively. In contrast, the north maize region featured the smallest maize yield gap, at
only 0.47 t/ha. These findings emphasize the considerable potential for enhancing maize
yields in most counties across China, particularly in the south maize region.
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(c) average maize yield discrepancy across five maize plantation regions in China (the south maize
region, the southwest maize region, the northeast maize region, the Huang-Huai-Hai maize region,
and the northwest maize region).

4. Discussion

Among the eight GGCMs models that provided complete configurations for maize
yield simulation scenarios, the combination of these models with random forest and
multiple data sources yielded outstanding results. Specifically, seven of these models (EPIC-
TAMU, EPIC-IIASA, EPIC-BOKU, GEPIC, PDSSAT, PEGASUS, and CLM-CROP) have
demonstrated exceptional performance in downscaling simulated maize yields (R2 ≥ 0.9,
RMSE < 0.75 t/ha, MAE < 0.5 t/ha). However, due to the use of high-yielding hybrid
maize varieties and different maize cultivation practices within PAPSIM, the accuracy of the
downscaling models for PAPSIM faced significant challenges [59,60]. Previous studies have
shown that GGCMs encounter difficulties in accurately simulating maize yield variability
at the county level in China [19]. However, their performance in simulating maize yield
variability at the county level in China significantly improved following downscaling, for
example, yield variability increased by 14 to 17%, the RMSE decreased by 0.4 to 0.7 t/ha,
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and the MAE decreased by 0.3 to 0.5 t/ha (Figure 6). The performance of integrated
models using the multiple GGCMs (ENSEMBLE, R = 0.48) in our study was found to
be very close to that of using the GGCMs for crop yield simulation studies at larger
regional scales elsewhere (at the global scale, R = 0.65; at the national scale, R = 0.60; at
the provincial scale, R = 0.50) [19,20,61], indicating the increased strength of the model
when ensembled. This not only underscores the effectiveness of the downscaling approach
but also highlights the potential for more accurate and detailed assessments of crop yield
at the county level in China. In comparison to continuously evolving grid-based model
simulators, our method significantly improves the computational efficiency and reduces
the data processing requirements without sacrificing the simulation performance [62,63].
This allows for a comprehensive assessment of future variations in the yield variability and
the associated distribution of extreme yield levels.

When the water supply was insufficient, precipitation and other water-related factors
consistently ranked as the most important factors affecting maize yield in China (Figures 4b
and S14b–S19b). Temperature and solar radiation were considered the primary factors
influencing maize growth only when the maize received adequate irrigation (Figures 4a
and S14a–S19a). This reaffirms the predominant influence of precipitation over temperature
in determining maize yield variability in most regions [64]. The cumulative or mean
climate variables throughout the growing season consistently outweigh the importance
of the individual monthly climate variables (Figures 4 and S14–S19). This indicates that
the overall levels of high/low temperature, drought, and excessive soil moisture regimes
during the maize growing season can significantly impact the maize yield [35,65]. When
considering only monthly climate variables, July and August, for example, were found to
exert a substantial influence on maize yield in China (Figures 4 and S14–S19), aligning with
the notion that climatic conditions during the peak growing period would have been more
critical for maize growth [66–68]. Interestingly, the importance of soil and topographic
features remained consistently low for both the rain-fed and irrigated conditions, possibly
due to the inherent insensitivity of GGCMs to soil data [69]. However, despite the low
importance of soil and topography, the spatial patterns of maize yield, as shown in Figure 3,
indicate that the downscaling model effectively captured information from the soil and
topographic data.

Our study has uncovered the untapped potential for maize yields by revealing the
maize yield gap in China. In 2010, only 7.1% of the counties achieved their potential maize
yield, while the remaining 92.9% still had significant room for increased yields (Figure 7b).
Our study also ranked the maize yield gaps in regional China (Figure 7c); the south maize
region ranked the highest, and the north maize region ranked the lowest. These rankings
of maize yield gaps in regional China can profoundly impact food distribution within
the country. Rankings of the maize yield gaps in regional China could also provide a
focus in management practices in maize production across different regions. For instance,
despite having lower average maize yields, the south maize region exhibited substantial
potential for improving their maize yield in the future. One of the contributing factors to the
substantially higher maize yield gap in this region is excessive moisture, which can lead to a
rapid rate of nitrogen depletion in the soil [17,70,71]. Similarly, the southwest maize region
was also found to be affected by excessive moisture availability, experiencing the second-
largest yield gaps following the south maize region (Figure 7c) [35,72]. The south maize
region and the southwest maize region experienced excessive annual precipitation, leading
to soil oversaturation and intense rainfall that could physically damage maize growth [73].
Excessive moisture reduced maize resistance to lodging and nitrogen utilization, impacting
regional irrigation, fertilization practices, and soil characteristics [74,75]. Through the
optimization of nitrogen management levels, simulated maize yields significantly increased
in the south maize region and the southwest maize region (Figure 7c). This indicates that
improving nitrogen utilization in these regions can extend the maize planting potential.
Our approach used in this study successfully identified maize yield gaps in regional China,
and this has become increasingly useful for providing policy strategies to enhance maize



Remote Sens. 2024, 16, 701 16 of 20

yields and reduce yield gaps through better crop management practices, including adequate
irrigation, appropriate plantation, and optimized crop fertilization [76,77]. Our findings
suggest that China may need to focus on addressing the impact of climate change and
improving nitrogen utilization to increase maize yields in the future [72], particularly in
the south maize region and the southwest maize region.

The method introduced in this paper demonstrates the tremendous potential of ma-
chine learning for building readily applicable downscaling models for GGCMs in spatiotem-
poral applications. However, certain limitations exist. For instance, the feature variables do
not incorporate regional crop management conditions or crop varieties. Crop management
conditions often vary based on the local circumstances, and crop varieties need to adapt
to regional conditions, such as temperature and precipitation [78]. Therefore, manually
combining and systematically training regional crop varieties and management conditions
would enhance crop yield simulations at a finer resolution. Additionally, research has
shown that remote sensing data can provide supplementary information describing crop
growth to further improve crop yield simulations [79,80]. Hence, this could serve as a
blueprint for expanding the range and dimensions of feature variables, making the model
applicable to a broader range of applications.

5. Conclusions

Our study addresses the important food security issue that China has been facing
under rapid climate warming in the 21st century. The advancement of numerical techniques
could potentially enhance food security in regional China. In this study, we have demon-
strated the effectiveness of integrated machine learning techniques and the downscaling
of GGCMs to improve model performance when simulating the county-level maize yield
in China. By employing the random forest algorithm with seven GGCMs (EPIC-TAMU,
EPIC-IIASA, EPIC-BOKU, GEPIC, PDSSAT, PEGASUS, and CLM-CROP), we have suc-
cessfully established high-performance downscaled models that can inform China’s crop
management practices. We have clearly indicated that the original GGCMs face challenges
in accurately simulating county-level maize yields, mainly due to their low spatial reso-
lution, which could only capture approximately 16 to 31% of the yield variability across
1046 counties in China from 1980 to 2010. However, the improved GGCMs significantly
enhanced the model performance, explaining 30 to 48% of the maize yield variability at
the county level. The model ensemble we made through integration of GGCMs further
enhanced the performance and overall accuracy of our results. The maize yield gap quan-
tification we made at the county level in China has successfully revealed that the south
maize plantation region has the highest gap, requiring major management attention. We
argue that the machine learning approach offers greater spatial advantages for simulations
by opening new avenues for the application of GGCMs in regional China and providing
valuable insights into improving crop yield simulations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16040701/s1, Table S1: Basic introduction to the selected GGCMs.
Figure S1: Scatter and density plots for EPIC-IIASA simulations and RF-predicted maize yields in the
validation dataset. Notes: “ff” represents the irrigated condition, while “nf” represents the rain-fed
condition. (a) Maize yield under irrigated conditions; (b) maize yield under rain-fed conditions;
(c) density distribution of maize yield under irrigated conditions; (d) density distribution of maize
yield under rain-fed conditions. Figure S2: Scatter and density plots for EPIC-TAMU simulations
and RF-predicted maize yields in the validation dataset. Figure S3: Scatter and density plots for
PDSSAT simulations and RF-predicted maize yields in the validation dataset. Figure S4: Scatter
and density plots for GEPIC simulations and RF-predicted maize yields in the validation dataset.
Figure S5: Scatter and density plots for PEGASUS simulations and RF-predicted maize yields in the
validation dataset. Figure S6: Scatter and density plots for CLM-CROP simulations and RF-predicted
maize yields in the validation dataset. Figure S7: Scatter and density plots for PAPSIM simulations
and RF-predicted maize yields in the validation dataset. Figure S8: Spatial distributions of maize
yield in China before and after downscaling for EPIC-IIASA. (a) Irrigated maize yield at a spatial
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resolution of 50 km; (b) irrigated maize yield at a spatial resolution of 1 km; (c) rain-fed maize yield
at a spatial resolution of 50 km; and (d) rain-fed maize yield at a spatial resolution of 1 km. Figure S9:
Spatial distributions of maize yield in China before and after downscaling for EPIC-TAMU. Figure
S10: Spatial distributions of maize yield in China before and after downscaling for PDSSAT. Figure
S11: Spatial distributions of maize yield in China before and after downscaling for GEPIC. Figure S12:
Spatial distributions of maize yield in China before and after downscaling for PEGASUS. Figure S13:
Spatial distributions of maize yield in China before and after downscaling for CLM-CROP. Figure S14:
Ranking of feature importance for EPIC-IIASA. (a) Feature importance under irrigated conditions;
(b) feature importance under rain-fed conditions. Figure S15: Ranking of feature importance for
EPIC-TAMU. Figure S16: Ranking of feature importance for PDSSAT. Figure S17: Ranking of feature
importance for GEPIC. Figure S18: Ranking of feature importance for PEGASUS. Figure S19: Ranking
of feature importance for CLM-CROP.
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et al. Spatial and temporal uncertainty of crop yield aggregations. Eur. J. Agron. 2017, 88, 10–21. [CrossRef]

48. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
49. Elavarasan, D.; Vincent, D.R.; Sharma, V.; Zomaya, A.Y.; Srinivasan, K. Forecasting yield by integrating agrarian factors and

machine learning models: A survey. Comput. Electron. Agric. 2018, 155, 257–282. [CrossRef]
50. Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of

field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47.
[CrossRef]

51. Strobl, C.; Boulesteix, A.-L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources
and a solution. BMC Bioinform. 2007, 8, 25. [CrossRef] [PubMed]

52. Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Tao, F. Combining Optical, Fluorescence, Thermal Satellite, and Environmental Data to
Predict County-Level Maize Yield in China Using Machine Learning Approaches. Remote Sens. 2020, 12, 21. [CrossRef]

53. Li, M.; Zhao, J.; Yang, X. Building a new machine learning-based model to estimate county-level climatic yield variation for maize
in Northeast China. Comput. Electron. Agric. 2021, 191, 106557. [CrossRef]

54. Roy, M.-H.; Larocque, D. Robustness of random forests for regression. J. Nonparametric Stat. 2012, 24, 993–1006. [CrossRef]
55. Li, Z.; Zhang, Z.; Zhang, L. Improving regional wheat drought risk assessment for insurance application by integrating scenario-

driven crop model, machine learning, and satellite data. Agric. Syst. 2021, 191, 103141. [CrossRef]
56. Li, L.; Zhang, Y.; Wang, B.; Feng, P.; He, Q.; Shi, Y.; Liu, K.; Harrison, M.T.; Liu, D.L.; Yao, N.; et al. Integrating machine learning

and environmental variables to constrain uncertainty in crop yield change projections under climate change. Eur. J. Agron. 2023,
149, 126917. [CrossRef]

57. Luo, Y.; Zhang, Z.; Chen, Y.; Li, Z.; Tao, F. ChinaCropPhen1km: A high-resolution crop phenological dataset for three staple crops
in China during 2000–2015 based on leaf area index (LAI) products. Earth Syst. Sci. Data 2020, 12, 197–214. [CrossRef]

58. Liu, Y.; Qin, Y.; Ge, Q. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010. J. Geogr. Sci.
2019, 29, 351–362. [CrossRef]

59. Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke,
H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288.
[CrossRef]

60. Müller, C.; Elliott, J.; Kelly, D.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Folberth, C.; Hoek, S.; Izaurralde, R.C.; et al. The
Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Sci. Data 2019, 6, 50. [CrossRef] [PubMed]

61. Ringeval, B.; Müller, C.; Pugh, T.A.M.; Mueller, N.D.; Ciais, P.; Folberth, C.; Liu, W.; Debaeke, P.; Pellerin, S. Potential yield
simulated by global gridded crop models: Using a process-based emulator to explain their differences. Geosci. Model Dev. 2021,
14, 1639–1656. [CrossRef]

62. Franke, J.A.; Müller, C.; Elliott, J.; Ruane, A.C.; Jägermeyr, J.; Snyder, A.; Dury, M.; Falloon, P.D.; Folberth, C.; François, L.; et al.
The GGCMI Phase 2 emulators: Global gridded crop model responses to changes in CO2, temperature, water, and nitrogen
(version 1.0). Geosci. Model Dev. 2020, 13, 3995–4018. [CrossRef]

63. Blanc, É. Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models. Agric. For. Meteorol.
2017, 236, 145–161. [CrossRef]
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