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Abstract: Soil organic carbon (SOC) is generally thought to act as a carbon sink; however, in areas
with high spatial heterogeneity, using a single model to estimate the SOC of the whole study area
will greatly reduce the simulation accuracy. The earth surface unit division is important to consider
in building different models. Here, we divided the research area into different habitat patches using
partitioning around a medoids clustering (PAM) algorithm; then, we built an SOC simulation model
using machine learning algorithms. The results showed that three habitat patches were created. The
simulation accuracy for Habitat Patch 1 (R2 = 0.55; RMSE = 2.89) and Habitat Patch 3 (R2 = 0.47;
RMSE = 3.94) using the XGBoost model was higher than that for the whole study area (R2 = 0.44;
RMSE = 4.35); although the R2 increased by 25% and 6.8%, the RMSE decreased by 33.6% and 9.4%,
and the field sample points significantly declined by 70% and 74%. The R2 of Habitat Patch 2 using
the RF model increased by 17.1%, and the RMSE also decreased by 10.5%; however, the sample
points significantly declined by 58%. Therefore, using different models for corresponding patches
will significantly increase the SOC simulation accuracy over using one model for the whole study
area. This will provide scientific guidance for SOC or soil property monitoring with low field survey
costs and high simulation accuracy.

Keywords: soil organic carbon; clustering algorithm; machine learning; digital soil mapping

1. Introduction

As the most extensive carbon sink in the terrestrial environment, soil is a vital compo-
nent of global carbon exchange [1,2]. The incorporation of soil organic carbon (SOC) is a
crucial element in maintaining soil health and contributes significantly to improvements in
the physicochemical properties of soil [3]. SOC represents between 50% and 80% of the
carbon in the entire terrestrial ecosystem, surpassing three times that of vegetation and the
atmosphere [4], and it affects the capacity of carbon sources and sinks in landscapes [5]. The
traditional approach of conducting ground surveys and field sampling is time-consuming
and costly, rendering them suitable only for small-scale monitoring [6]. It is therefore essen-
tial that the accurate prediction of SOC levels is performed using robust and economical
methods [7,8]. At present, studies focus on using one single model to simulate the SOC
in the whole study area. However, spatial heterogeneity can be very high in a complex
subsurface, such as in the karst region of southwest China. For these complex regions,
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using a single model to simulate SOC will lead to a lower simulation accuracy. Therefore, a
reasonable division of the whole study area into several sections and sub-regional modeling
may improve the SOC estimation accuracy and decrease the field survey cost.

Few studies have divided the study area into different regions for SOC estimation.
Recent studies have mapped SOC with digital soil mapping techniques in different land
uses [9,10]. Coincidentally, clustering technology is the process of discovering and revealing
the potential structures and patterns of datasets themselves. It can be used to divide the
samples of the dataset into several disjoint clusters, so that each cluster corresponds to a
potential type [11]. Among the many clustering methods, the well-known methods for im-
plementing nonhierarchical clustering include K-means clustering and partitioning around
medoids (PAM) [12]. The most central object in a cluster is chosen as its representative by
the K-medoids algorithm, distinguishing itself from K-means clustering through its greater
robustness to outliers. PAM, proposed in [12], has been widely recognized as the most
robust and effective technique among the numerous techniques available for K-medoid
clustering. Therefore, in this study, the PAM algorithm was used to carry out the division of
study area, and the sub-regions were defined as habitat patches. In this study, we defined
habitat patches as “The ecological environment characteristic space formed under the influ-
ence of similar natural and human factors, and the relative homogeneity of environmental
factors within the patch, including the state and temporal variation characteristics of the
elements.” This concept combines an overview of habitats and patches in ecology. Among
these, “patches” usually refer to specific habitat types or characteristics within a geographic
area, such as forest patches, wetland patches, etc., that represent a meaningful ecological
entity [13]. “Habitat” usually refers to the environment in which a biological population
or community exists and thrives in a specific geographic space, including both biotic and
abiotic elements [14]. Then, the SOC content and spatial area were determined by digital
soil mapping, proposed by [15], which has enabled the successful application of a growing
number of machine learning algorithms to predict soil properties [16].

Among the machine learning algorithms, random forest (RF) [17] and extreme gradient
boosting (XGBoost) [18] have been shown to be superior in the prediction of SOC content.
The RF model is a nonlinear algorithm that relies on an ensemble decision tree. During
the training process, the RF model possesses the ability to identify interaction among
features. This unique approach avoids model autocorrelation and overfitting, thereby
enhancing the reliability of the model’s predictions. Hence, it is the most prevalent and
exceptionally precise technique in the domain of machine learning algorithms [19]. The
XGBoost algorithm, known for its ability to accommodate complex nonlinear relation-
ships and its excellent parallel processing capability, offers a promising solution to address
the overfitting issue commonly encountered in machine learning models, especially with
limited sample sizes collected from field experiments [20]. Moreover, various other ma-
chine algorithms, including support vector machine (SVM) [21], artificial neural network
(ANN) [22], and convolutional neural network (CNN) [23], have also been employed to
predict soil properties.

Accompanied by the explosion of spatiotemporal big data, multi-source data such
as topography, climate, soil texture, and remote sensing images, are widely used for
SOC content estimation [24]. Precipitation and temperature are key climatic factors that
determine the content and spatial variation of SOC. On one hand, these two climatic
factors directly influence plant growth processes and the net primary productivity of
vegetation. On the other hand, the hydrothermal conditions of the climate largely shape the
decomposition and accumulation dynamics of SOC. It is particularly noteworthy that the
global warming trend has intensified the promoting effect of microbial activity on the rate
of SOC decomposition [25]. The soil types mainly include paddy soil and acid purple soil.
Soil type differences lead to differences in SOM content [26]. Application of remote sensing
data introduces a significant improvement in the ability to predict the SOC content [27],
due to its high spatial and spectrum resolution. In particular, optical satellite images
have gained widespread usage in SOC prediction. For example, previous studies have



Remote Sens. 2024, 16, 688 3 of 18

predicted soil properties using reflectance bands and vegetation indices [28,29]. In addition,
synthetic aperture radar (SAR) has been used for vegetation species mapping [30] and SOC
content remote sensing inversion [31], relying on its ability to penetrate the surface, as it is
unaffected by clouds and rain. The authors of [31] also proved that multitemporal SAR
data can successfully predict soil properties by effectively capturing the intricate correlation
between soil characteristics and vegetation growth.

We estimate the SOC in the karst trough area of southwest China in different habitat
patches using multi-source data based on machine learning algorithm. The aims are (1) to
explore the applicability of optical and SAR data in predicting the SOC content in karst
areas and (2) to determine whether the estimation accuracy using different models in
different clusters will be higher than that using one model for the whole study area.

2. Materials and Methods
2.1. Study Area

The study area was in the northwestern region of Chongqing Province, which is in the
southwest of China (Figure 1). The study area covers approximately 1200 km2 and extends
longitudinally from 106◦4′ to 106◦34′E and latitudinally from 29◦31′ to 30◦5′N. The terrain
has an elevation range from 130 to 950 m. In the subtropical region, the climate is classified
as humid monsoon, with prolonged periods of high temperatures during the summer and
relatively mild and dry conditions during the winter. The mean annual temperature is
13.6 ◦C, while the estimated mean precipitation is 1600 mm. This study area is karst
landform, with a high extent of urbanization and agricultural activity. The soil environment
has basic characteristics such as thin soil layers, discontinuous distribution, and complex
and diverse micro landforms. In addition, the impact of human activities on the land
is prominent in the region, with severe soil erosion, as well as a significant loss of SOC,
leading to serious ecological and environmental problems such as land desertification [32].
Therefore, the natural conditions and human impact on this region have led to a complex
earth surface and high spatial heterogeneity. A previous study also proved that spatial
heterogeneity was high in this area, and the representativeness of sampling sites was very
important for remote sensing data validation [33].
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Figure 1. The locations of sampling points and the study site. (a) the range of elevation; (b) land
use/land cover map.
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2.2. Acquisition and Treatment of Data

All variables were used to identify driving factors and were converted to a 10 m
spatial resolution grid using the nearest neighbor resampling method. For each soil sam-
pling point, the pixel values associated with the variables were extracted based on these
raster data.

2.2.1. Collection and Treatment of Soil Samples

In 2020 and 2021, a comprehensive soil-sampling survey was conducted within the
study region, whereby topsoil samples (0–20 cm) were collected in 271 sample plots,
which was carried out by employing a rigorous methodology. We used a five-point mixed
sampling method within each sample plot and considered the spatial heterogeneity of the
landform. To ensure accurate geolocation, a portable GPS system was employed to obtain
the central grid coordinates associated with the collection of topsoil samples. Furthermore,
to minimize soil cross-contamination and facilitate proper soil storage, each soil sample
was carefully put into a fabric container to ensure proper handling and preservation of
the samples collected. In the laboratory setting, the air-dried samples were subjected to
grinding and sieving procedures, yielding particles with a size of ≤2 mm. Subsequently,
the potassium dichromate heating method was used for SOC measurement [34].

2.2.2. Auxiliary Variables

The auxiliary data included variables derived from remotely sensed images
(27 variables from Sentinel-2A and Sentinel-1A), environmental data (10 variables), and
three soil data types (sand content, silt content, and clay content). The acquisition dates
were closely aligned with the timing parameters of the January 2020 and 2021 field data
collection. We took the mean of the images as the input spectral reflectance value. Sentinel-
2A data at 10m spatial resolution, derived from the Multispectral Instrument (MSI) L2A
product, were pre-processed by the European Space Agency (ESA). This preprocessing
included radiometric calibration and atmospheric correction to ensure that the acquired
data accurately represented the surface reflectance information. The Sentinel images
were downloaded from Google Earth Engine [35]. The employed spectral indices in-
cluded the brightness index (BI), second brightness index (BI 2), color index (CI), clay
index (CI 1), green–red vegetation index (GRVI), green normalized difference vegeta-
tion index (GNDVI), land surface water index (LSWI), second modified soil-adjusted
vegetation index (MSAVI2), moisture stress index (MSI), normalized differences vege-
tation index (NDVI), redness index (RI), soil-adjusted total vegetation index (SATVI),
soil-adjusted vegetation index (SAVI), transformed vegetation index (TVI), and vegetation
(V) (Table 1). Additionally, vertical–vertical (VV) and vertical–horizontal (VH) polarization
data were used in this study. Land surface temperature (LST) was obtained from [36]
(https://15203878955lz.users.earthengine.app/view/psc-app, accessed on 15 December
2023). The calculation of five topographic variables was derived from the Advanced Land
Observing Satellite (ALOS) Digital Elevation Model (DEM) [37] at 12.5 m spatial resolution,
including elevation, terrain undulation, slope, aspect, and topographic wetness index (TWI).
The mean annual temperature and precipitation data at 1 km spatial resolution for the study
area were obtained from the Resources and Environmental Science and Data Center of the
Chinese Academy of Sciences (RESDC) (http://www.resdc.cn, accessed on 15 December
2023). Population density data were provided by the Socioeconomic Data and Applications
Center (https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11,
accessed on 15 December 2023). Soil factors at 1 km spatial resolution were obtained from
Soil Sub Center, National Earth System Science Data Center, National Science & Technology
Infrastructure [38,39] (http://soil.geodata.cn, accessed on 15 December 2023).

https://15203878955lz.users.earthengine.app/view/psc-app
http://www.resdc.cn
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
http://soil.geodata.cn
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Table 1. Derived indicators from Sentinel-2A satellite images.

Index Definition Reference

BI
√

(ρRed×ρRed)+(ρGreen×ρGreen)
2

[40]

BI2
√

(ρRed×ρRed)+(ρGreen×ρGreen)+(ρNIR×ρNIR)
3

[40]

CI ρRed−ρGreen
ρRed+ρGreen

CI1 SWIR1
SWIR2

[41]

GRVI ρGreen−ρRed
ρGreen+ρRed

[42]

GNDVI ρNIR−ρGreen
ρNIR+ρGreen

[43]

LSWI ρNIR−ρSWIR1
ρNIR+ρSWIR1

[44]

MSAVI2 2×ρNIR+1−
√
(2×ρNIR+1)2−8×(ρNIR−ρRed)

2
[45]

MSI ρSWIR1
ρNIR

NDVI ρNIR−ρRed
ρNIR+ρRed

RI ρRed×ρRed
ρGreen×ρGreen×ρGreen

[46]

SATVI ρSWIR1−ρRed
ρSWIR1+ρRed+1 × 2 − ρSWIR2

2
[47]

SAVI (ρNIR−ρRed)×1.5
ρNIR−ρRed+0.5

[48]

TVI
√

ρNIR−ρRed
ρNIR+ρRed + 0.5 × 100 [49]

V ρNIR
ρRed

[50]

2.3. Methods

To construct a highly accurate and regionally applicable prediction model for SOC
content, we used the PAM algorithm to partition the study area into three distinct regions.
Following this partitioning, the combination and selection of auxiliary variables was
optimized for each section using a genetic algorithm (GA). Subsequently, predictive models
of SOC content were created using the RF and XGBoost models. Finally, through the
comparison of predicted outcomes from different regions, we achieved a digital map of the
SOC content.

2.3.1. Cluster Algorithm

The PAM algorithm has been widely used in data clustering due to its ability to effec-
tively group data points based on pairwise similarity values. Through an iterative learning
process that exploits the similarity of the values among every pair of data objects, the
algorithm optimizes the clustering of data objects by maximizing the aggregate similarity
values with each cluster. As a result, the PAM algorithm can group data objects with
similarity values equal to or less than a specified threshold into a single cluster. The cluster
package in the R software was used for the execution of the PAM algorithm.

2.3.2. Feature Selection Method

The GA, originally proposed by Holland [51], is a metaheuristic approach that sim-
ulates biological evolution to find the best answers to an issue. As a heuristic search
algorithm, the GA provides the optimal value for a given function, as demonstrated by
Welikala et al. [52]. In the context of feature selection, the GA uses an initial population
of individuals that are binary-coded to indicate whether a feature is selected (1) or not
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(0). These individuals represent different subsets of ancillary data and undergo a selection
process to identify the most relevant features [33].

The proposed algorithm involves a sequence of three basic genetic operations, namely,
selection, crossover and mutation, which are performed iteratively until a predetermined
termination criterion is met. The selection operation is performed to identify the two most
competent individuals based on their ability to minimize the root mean squared error
(RMSE). The crossover operation is then applied to generate new solutions by recombining
genetic information from two parent individuals, potentially leading to better performing
offspring. In addition, the mutation operator is used to introduce genetic diversity by
changing a limited subset of individuals. Until a specific termination criterion is met, the
iterative mechanism of selecting, crossing over, and mutating continues [52]. Crucially, to
facilitate estimating the RMSE by fitting a random forest model, the assignment of a fitness
score to each member of the population becomes imperative with the establishment of each
new cohort. In this study, the caret package in the R software was used to run the GA with
five-fold cross-validation and 50 iterations with the goal of determining the smallest set of
auxiliary variables that are significant for modeling SOC [53]. A population size of 50, a
crossover rate of 0.8, and a mutation rate of 0.002 were used in the present study.

2.3.3. Prediction Models

As an ensemble-learning approach, RF leverages the construction of multiple decision
trees, the outputs of which are combined to estimate the classification and regression. The
RF methodology relies on the use of random binary trees constructed using bootstrapping
techniques on a subset of observations. The model is developed by using a randomized
subset of the original dataset for training purposes. The selected subset is used to create a
representative sample of the original data, and through this process, the model is devel-
oped [54]. The use of RF has the notable advantage that the data used have properties of
randomness and diversity. These characteristics produce results that are more accurate
than those obtained from individual components [55]. In the context of tree induction,
randomness can be achieved by changing the predictors, while replacement sampling can
create diversity. The number of trees (ntree) was 600.

The XGBoost technique was first introduced by Chen and Guestrin [56], who pre-
sented a novel methodology to enhance the performance of gradient boosting through the
optimization of the loss function and regularization of model complexity. It is an approach
that focuses on regression trees and K-classification methods to increase the effectiveness
of gradient boosting machines [57]. The basic concept of the proposed approach is to
augment a “strong” learner by using supplemental training strategies from a group of
“weak” learners, also known as boosting. The XGBoost technique is designed to increase
computational efficiency while mitigating instances of overestimation. This is achieved by
streamlining the objective functions and optimizing the computational speed by integrating
estimation and adaptation terms. In addition, during the training process of the XGBoost
method, the functions undergo simultaneous computations automatically. The type of
model, learning rate, and depth of tree were gbtree, 0.4, and 7, respectively. In this study, a
grid-search strategy was used to fine-tune all parameters using the caret package in the R
software [58].

2.3.4. Evaluation of Prediction Accuracy

In this study, the evaluation of model performance and its ability to generalize effec-
tively was performed using the five-fold cross-validation approach. Model performance
was evaluated by calculating key evaluation metrics, including the coefficient of deter-
mination (R2), RMSE, and residual prediction deviation (RPD). The dataset was divided
into five subgroups of approximately equal size. In each training process, 80% of the
dataset was allocated for training purposes, while the remaining 20% was reserved for
verification purposes. The cross-validation process was repeated five times, ultimately
ensuring that each subset was used once for validation. The R2, RMSE, and RPD values
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for each validation subset were computed. The aggregated performance of the model
was determined by calculating the average of the R2, RMSE, and RPD values derived
from the five replicate runs. The R2 value, which ranges from 0 to 1, indicates how
well the independent predictors can explain the variation in the response variable. The
RMSE serves as a measure of the prediction accuracy of the model. The RPD metric is
used as an indicator of model quality, whereby 1.0 < RPD < 1.4 indicates a poor model;
1.4 < RPD < 1.8 indicates a fair model; 1.8 < RPD < 2.0 indicates a good model, where
quantitative predictions are possible; 2.0 < RPD < 2.5 indicates a very good quantitative
model; and RPD > 2.5 indicates an excellent model [59]. A full explanation of the equations
is provided as follows:

RMSE =

√
1
n

n

∑
i=1

(Pi − Mi)
2 (1)

R2 =

 ∑n
i=1

(
Mi − M

)(
Pi − P

)√
∑n

i=1
(
Mi − M

)2
√

∑n
i=1

(
Pi − P

)2

2

(2)

RPD =
SDM

RMSE
(3)

where Mi and Pi are the measured and predicted SOC content (g·kg −1), M and P indi-
cate the average of the measured and predicted SOC content (g·kg −1), n represents the
number of soil-sampling points, and SDM denotes the standard deviation of the measured
SOC content.

2.3.5. Uncertainty Analyses

The mix of uncertainties resulting from the model parameters, model inputs, and
model structure contribute to the overall level of uncertainty in the modeling process [60].
When mapping is performed, the uncertainties should be considered in predicting soil
properties based on this information [61]. To measure the uncertainty in predicting soil
properties, a bootstrapping method was used in this study [62]. The full dataset was
arbitrarily divided into two portions for each iteration of the bootstrap uncertainty analysis,
with 70% going to training and 30% to validation. The best model was run 50 times using
this technique, resulting in 50 prediction maps. Based on these prediction maps, the mean
of the predicted values for each pixel was calculated as the final prediction map, while the
standard deviation of the predicted values for each pixel was used as the uncertainty. The
workflow of the current study is presented in Figure 2.
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Figure 2. The flowchart of this study.

3. Results
3.1. Descriptive Statistics of the SOC Content

The total SOC content varied widely from 0.12 to 63.66 g·kg −1 (Figure 3). The mean
value of the SOC content was determined to be 14.25 g·kg −1, while the standard deviation
and coefficient of variation were estimated to be 8.79 g·kg −1 and 61.68%, respectively
(Table 2). The majority of SOC content measurements typically fell within a range of 5 to
20 g·kg −1, with a comparatively smaller proportion of values exceeding 40 g·kg −1. For
Habitat Patch 1 and Habitat Patch 2, the mean value, standard deviation, and coefficients of
variation all showed a decreasing trend. For Habitat Patch 3, the three indicators increased.
The results indicated a remarkable degree of spatial variability in SOC content, as evidenced
by the relatively high values of standard deviation and coefficient of variation. According
to the results of the least significant difference analysis, the difference in SOC content
between Habitat Patch 1 and the average SOC content of Habitat Patch 2 is not significant,
but the difference in SOC content between Habitat Patch 3 and the average SOC content is
significant (p < 0.05) (Figure 4).
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Table 2. Statistical description of the SOC content in the overall study area and three habitat patches.

Sample Type Sample
Number

Minimum
(g·kg −1)

Maximum
(g·kg −1)

Average
(g·kg −1)

Standard Deviation
(g·kg −1)

Coefficient of
Variation (%)

Overall 254 0.12 63.66 14.25 8.79 61.68
Habitat Patch 1 80 0.67 34.27 11.19 5.91 52.81
Habitat Patch 2 107 0.12 50.06 14.11 7.59 53.79
Habitat Patch 3 67 4.07 63.66 18.11 11.63 64.22
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3.2. Cluster Analysis and Feature Selection of Variables

The input variables of the PAM algorithm included NDVI, LST, terrain attributes
(DEM), climatic data (e.g., precipitation and temperature), socioeconomic data (density of
population), and soil data (e.g., content of sand, silt, and clay). The study area was divided
into three sections using the PAM algorithm (Figure 5). Habitat Patch 1 has high arable
land cover and medium elevation, Habitat Patch 2 has high urban cover and low elevation,
and Habitat Patch 3 has dense forest cover and high elevation.
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Figure 5. Results of the study area delineation.

Based on the clustering results, the GA was applied as a feature selection method for
each of the categories in the study area. A thorough process of trial and error was used to
determine the characteristics of the GA model. The optimal values found were a population
size of 60, a crossover probability of 0.8, and a mutation probability of 0.2. In running the
GA model, a comprehensive set of 40 variables was evaluated, from which a subset of
14 variables were determined to be the most salient predictors in Habitat Patch 1, namely,
temperature, population density, precipitation, GNDVI, CI1, V, slope, topographic relief,
aspect, silt, clay, VV, VH, and band 11 of Sentinel-2A. Twenty-one variables were selected
as the most significant set in Habitat Patch 2, namely, precipitation, population density,
DEM, CI, GNDVI, CI1, LSWI, MSAVI2, RI, SATVI, SAVI, topographic relief, aspect, TWI,
silt, clay, VV, VH, and bands 2, 3, and 12 of Sentinel-2A. Thirteen variables were selected
as the best set of variables in Habitat Patch 3: temperature, LST, NDVI, DEM, BI, CI1, RI,
SATVI, slope, and bands 4, 8, 9, and 11 of Sentinel-2A.

3.3. Simulation Accuracy of the Predictive Models

Table 3 shows the results of using the RF and XGBoost models to predict SOC content
based on five-fold cross validation. For Habitat Patch 1, the XGBoost model obtained
the highest prediction accuracy, having the lowest RMSE (2.89) value and the highest R2
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(0.55) and RPD (1.48) values. For Habitat Patch 2, the RF model had the best performance
with the highest R2 (0.41) and RPD (1.21) values. For Habitat Patch 3, the XGBoost model
showed the best prediction ability (R2 = 0.47, RMSE = 3.94). The prediction accuracy of the
SOC content based on the best model in Habitat Patch 1 and Habitat Patch 3 was higher
than the prediction accuracy of the overall regional modeling. In Habitat Patch 2, the RF
showed an increase in model performance, while the XGBoost showed a decrease in model
performance. Based on the above analysis of accuracy comparison, XGBoost was used as
the simulation model for Habitat Patch 1 and Habitat Patch 3, while RF was selected for
Habitat Patch 2.

Table 3. Mean fit values of model performance for RF and XGBoost predictions of SOC.

Sample Type Sample Numbers Models RMSE R2 RPD

Habitat Patch 1 80
RF 3.69 0.23 1.07

XGBoost 2.89 0.55 1.48

Habitat Patch 2 107
RF 4 0.41 1.21

XGBoost 3.95 0.35 1.14

Habitat Patch 3 67
RF 5.98 0.36 1.06

XGBoost 3.94 0.47 1.16

All 254
RF 4.47 0.34 1.16

XGBoost 4.35 0.44 1.32

3.4. Spatial Distribution and Uncertainty of SOC Content

The spatial variation in SOC content and uncertainty was mapped using the RF (in
Habitat Patch 2) and XGBoost algorithms (in Habitat Patch 1 and Habitat Patch 3) (Figure 6).
With an average of 13.25 g·kg −1, the predicted values of the SOC content ranged from 1.88
to 30.00 g·kg −1. The predicted SOC variation was less than the measured SOC variation,
confirming the inadequacy of the prediction map and model in estimating the maximum
and minimum values of SOC. This finding was consistent with previous SOC prediction
studies and highlighted the need for improved prediction models to accurately determine
SOC concentrations [25,63,64]. Most of the predicted SOC values were between 10 and
20 g·kg −1, consistent with the range of most measured SOC values.
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According to the uncertainty map, the uncertainty showed an increasing trend in
Habitat Patch 1, Habitat Patch 2, and Habitat Patch 3. The highest uncertainty was in the
Habitat Patch 3 area, with the highest spatial variation, while the lowest uncertainty was
observed in the Habitat Patch 1 area. The largest uncertainties were mainly located in
regions with lower predicted SOC levels.

In this study, there was a similar spatial pattern between elevation and SOC content,
indicating that elevation and terrain characteristics significantly influence the spatial vari-
ability of the SOC content. A remarkable trend in the distribution of SOC content was
discovered by this study, with the topographically elevated area in the eastern part of
the study area showing a predominance of elevated SOC concentrations, while the lower
elevation region in the west had predominantly lower SOC content. At higher elevations,
characterized by colder temperatures, favorable light conditions and longer daylight hours
promote photosynthesis in plants, thereby reducing the rate of SOC decomposition and
increasing its input [65,66].

4. Discussion
4.1. Variable Importance

The relative importance of covariates filtered through the GA is shown in Figure 7. To
improve the comparability of the factors, variable importance was standardized to 100%
using a scaling technique [67]. The relative importance of each variable varied according to
the RF and XGBoost techniques. For the Habitat Patch 1 area, precipitation, aspect, and
temperature were important predictor variables; precipitation and TWI were important
variables in the Habitat Patch 2 area; and terrain factors were important to both. The results
indicate that climate and topography had a prominent influence on the spatial variance
in the SOC. For both the RF (Habitat Patch 2) and XGBoost (Habitat Patch 1 and Habitat
Patch 3) models, climate variables ranked among the top three predictors of SOC spatial
variation. In particular, for Habitat Patch 3, temperature had the highest explanatory power
for the SOC simulation in the Habitat Patch 3 area, which was mainly covered forest.

The intimate relationship between climatic conditions and soil moisture has a major
impact on vegetation growth and its net primary productivity [68]. The storage and decom-
position of SOC is significantly and widely influenced by climatic factors. Most importantly,
climate warming helps microorganisms to accelerate the decomposition of SOC [69]. The
SOC content exhibited an augmentation trend in association with precipitation and clay
content, while experiencing a decrement in correlation with temperature. The significance
of these governing factors manifested a depth-dependent transition, wherein climatic influ-
ences predominated in superficial strata, while clay content assumed a dominant role in
deeper layers. This shift in control mechanisms is posited to be attributable to escalating
proportions of slowly cycling SOC fractions at greater depths [70]. In this study, tempera-
ture and precipitation ranked among the top in different machine learning models across
different habitat patches. Therefore, in future studies, different climate conditions should
be considered more closely, and more sampling sites and socioeconomic factors should be
collected to facilitate the prediction of the SOC content and the accurate characterization of
its heterogeneous spatial distribution.

In addition, remote sensing imagery also showed its importance in predicting SOC
content, including both optical remote sensing data and SAR data (one of microwave
remote sensing data). Spectral reflectance, derived indices, and polarization data were
effectively used in this study, which is consistent with previous research [71–73]. The
close relationship between soil and vegetation is the theoretical basis for conducting SOC
remote-sensing inversion. In particular, the vegetation index has the potential to effectively
reflect variations in soil characteristics [74]. In addition, the water index shows increased
sensitivity to variations in soil moisture; the spectral reflectance and the vegetation index
are sensitive to the change in soil texture. The adaptability of the backscatter coefficient
to changes in both land surface conditions and soil moisture content is a requirement for
the use of SAR data in modeling applications [75,76]. The ability of Sentinel-1 imagery to
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accurately capture features associated with transient changes in vegetation is thought to
explain its potential utility for predicting soil quality [77]. However, in this study, SAR data
were not used to estimate the SOC content in the Habitat Patch 3 area. Reasons for this
may include that the soil’s surface complexity and high spatial heterogeneity increased the
noise of the backscatter coefficient.
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Topography is a critical determinant in the complex process of soil formation, which
can affect hydrological conditions and control the flow of sediments and water [78]. As key
predictor variables, elevation and other derived indicators (e.g., aspect, slope, and TWI)
significantly affect soil properties and have been frequently utilized for digital soil mapping.
The role that slopes play in the spatial variability of SOC is through their impact on the
dynamics of water and matter transport and accumulation [79]. The TWI can identify soil
moisture gradients and holds great promise for predicting various soil properties [80].

4.2. Geographic Characteristics of the SOC Map and the Uncertainty

The prediction map of the SOC content had similar characteristics to the SoilGrids
product [81]. The high SOC content was concentrated in the forest and high elevation
regions in the eastern part of the study area. The low SOC content values were mainly
located in the farmland and low elevation regions in the western of part the study area.
These results were somewhat consistent with the findings of [82], who observed increased
SOC levels in forest, in contrast to decreased SOC levels in farmland. Due to the increasing
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organic matter breakdown and loss through erosion and cultivation, the authors in [83]
discovered that the SOC content in forests was higher than that in farmland. The stocks of
SOC content increase with increasing elevation [84]. The potential effects of differences in
elevation gradients on soil carbon dynamics are mediated by their complex interactions
with environmental variables, including vegetation cover, temperature, and precipitation.
Abundant vegetative litter causes SOC to accumulate, and the cold climate causes SOC to
decompose at a slow rate.

Uncertainties of outcomes are associated with various factors, such as geographic
environment characteristics, field sampling numbers, and the quality of data. High un-
certainty existed in the Habitat Patch 3 area with dense forest cover and high elevation,
and the predication accuracy increase extent was lowest compared to Habitat Patch 1 and
Habitat Patch 2. Due to the inaccessibility of some locations, the spatial representativeness
of sampling points will decrease. To some extent, it will affect the rationality of building
the model and ultimately decrease the estimation accuracy of the SOC. In addition, human
activities such as farmland planting and building construction have interrupted the natural
area which can be proved from the land cover type distribution map (Figure 1b).

4.3. Limitations and Perspective

We acknowledge the limitation of the modest sample size examined, which may limit
the precision of the model’s predictive ability. In scenarios involving complex interdepen-
dencies within models, the choice of a larger sample size is typically optimal. The soil
prediction framework encompasses multiple facets, including soil properties, covariates,
and intricate relationships within the model, requiring an extensive data set. The preva-
lence of limited sample sizes in soil research is a pervasive phenomenon, as it is largely
attributed to the time-consuming nature of soil surveys. Encrypted additional sampling in
areas of high uncertainty can improve simulation performance while saving costs.

The complexity of soil formation is an acknowledged fact. In this study, the model
constructed based on set trees is only an empirical simplified expression of the soil genesis
mechanism, which can only simulate the interaction between and comprehensive effects
of various soil forming factors to a certain extent. In addition, considering that machine
learning methods essentially rely on existing data for prediction, there is a risk that the
prediction results may not reflect the actual situation in regions lacking sample data in
geographic and/or feature spaces. Therefore, incorporating the expertise of soil survey
experts as a supplement can effectively complement and improve data-driven methods.

Soil moisture plays a critical role in the backscattering response of the surface [85],
and its variations directly cause corresponding changes in the backscattering coefficient.
Especially in coastal environments, changes in soil moisture are often closely related
to precipitation processes and tidal activity. Although this study did not specifically
investigate the correlation between soil moisture and backscatter measurements at different
time points, the C-band signal of the Sentinel-1 data is trusted by us because it mainly
reflects information on the top layer of the vegetation canopy. It is worth noting that
soil moisture may indirectly affect the observations by enhancing the volume scattering
effect [86]. In addition, the observed differences in backscatter between different soil
moisture locations may also be due to dynamic changes in vegetation biomass.

Due to the fact that this study mainly focuses on the feasibility of predicting and
mapping methods at the patch scale, the exploration, considering the availability of data,
only predicted the SOC content in small areas of the southwestern karst valley area and
did not study the applicability of its method in larger-scale areas. Therefore, in the future,
larger-scale soil attribute prediction mapping based on patch partitioning methods can be
designed for exploration.

5. Conclusions

In this study, field survey SOC data and several topographic, climatic, and remote
sensing data were used to build an SOC estimation model. The PAM algorithm was used
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to divide the study area into three distinct regions. The results showed that three sub-earth
surface units (Habitat Patch 1, Habitat Patch 2, and Habitat Patch 3) were created. The SOC
spatial distribution was identified based on the prediction results using the RF (for Habitat
Patch 2) and XGBoost algorithms (Habitat Patch 1 and Habitat Patch 3). The simulation
accuracy of Habitat Patch 1, Habitat Patch 2, and Habitat Patch 3 using the corresponding
models was higher than that of the whole study area with one model. The R2 increased by
6.8% ~ 25%, and the RMSE decreased by 9.4% ~ 33.6%. Terrain and climate factors were the
main variables explaining the spatial variation in the SOC. Habitat Patch 3 (mainly covered
forest) had a high SOC prediction value, but the SOC prediction uncertainty was relatively
higher with higher human activity and lower representativeness of sampling sites.
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28. Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal,
airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [CrossRef]

29. Zou, X.; Zhu, S.; Mõttus, M. Estimation of canopy structure of field crops using sentinel-2 bands with vegetation indices and
machine learning algorithms. Remote Sens. 2022, 14, 2849. [CrossRef]

30. Rajah, P.; Odindi, J.; Mutanga, O.; Kiala, Z. The utility of Sentinel-2 Vegetation Indices (VIs) and Sentinel-1 Synthetic Aperture
Radar (SAR) for invasive alien species detection and mapping. Nat. Conserv. 2019, 35, 41–61. [CrossRef]

31. Yang, R.; Guo, W. Using time-series Sentinel-1 data for soil prediction on invaded coastal wetlands. Environ. Monit. Assess. 2019,
191, 462. [CrossRef] [PubMed]

32. Jiang, Z.; Lian, Y.I.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 2014, 132,
1–12. [CrossRef]

33. Huang, Y.; Lan, Y.; Thomson, S.J.; Fang, A.; Hoffmann, W.C.; Lacey, R.E. Development of soft computing and applications in
agricultural and biological engineering. Comput. Electron. Agric. 2010, 71, 107–127. [CrossRef]

34. Meersmans, J.; Van Wesemael, B.; Van Molle, M. Determining soil organic carbon for agricultural soils: A comparison between
the Walkley & Black and the dry combustion methods (north Belgium). Soil Use Manag. 2009, 25, 346–353.

35. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

36. Wang, M.; Zhang, Z.; Hu, T.; Wang, G.; He, G.; Zhang, Z.; Li, H.; Wu, Z.; Liu, X. An Efficient Framework for Producing
Landsat-Based Land Surface Temperature Data Using Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020,
13, 4689–4701. [CrossRef]

37. Laurencelle, J.; Logan, T.; Gens, R. ASF radiometrically terrain corrected ALOS PALSAR products. Alaska Satell. Facil. 2015, 1, 12.
38. Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.; Song, X.; Shi, Z.; Zhu, A.; Zhang, G. Mapping high resolution national soil information

grids of China. Sci. Bull. 2022, 67, 328–340. [CrossRef] [PubMed]
39. Liu, F.; Zhang, G.; Song, X.; Li, D.; Zhao, Y.; Yang, J.; Wu, H.; Yang, F. High-resolution and three-dimensional mapping of soil

texture of China. Geoderma 2020, 361, 114061. [CrossRef]
40. Escadafal, R. Remote sensing of arid soil surface color with Landsat thematic mapper. Adv. Space Res. 1989, 9, 159–163. [CrossRef]
41. Hengl, T. A Practical Guide to Geostatistical Mapping; Office for Official Publications of the European Communities:

Luxembourg, 2009.
42. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.

[CrossRef]

https://doi.org/10.1111/jbi.12130
https://doi.org/10.1016/j.biocon.2018.12.026
https://doi.org/10.1016/S0016-7061(03)00223-4
https://doi.org/10.1016/j.geoderma.2015.11.014
https://doi.org/10.1016/j.compag.2019.03.015
https://doi.org/10.1016/j.catena.2016.11.032
https://doi.org/10.1002/wcms.1225
https://www.ncbi.nlm.nih.gov/pubmed/27110292
https://doi.org/10.1016/j.geoderma.2022.116265
https://doi.org/10.1016/j.compag.2008.07.008
https://doi.org/10.1016/j.geoderma.2020.114616
https://doi.org/10.1016/j.geoderma.2019.05.031
https://doi.org/10.1002/ldr.2833
https://doi.org/10.1007/s11368-023-03480-4
https://doi.org/10.1016/j.jag.2016.09.002
https://doi.org/10.1016/j.rse.2018.09.015
https://doi.org/10.3390/rs14122849
https://doi.org/10.3897/natureconservation.35.29588
https://doi.org/10.1007/s10661-019-7580-3
https://www.ncbi.nlm.nih.gov/pubmed/31240492
https://doi.org/10.1016/j.earscirev.2014.01.005
https://doi.org/10.1016/j.compag.2010.01.001
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1109/JSTARS.2020.3014586
https://doi.org/10.1016/j.scib.2021.10.013
https://www.ncbi.nlm.nih.gov/pubmed/36546081
https://doi.org/10.1016/j.geoderma.2019.114061
https://doi.org/10.1016/0273-1177(89)90481-X
https://doi.org/10.1016/0034-4257(79)90013-0


Remote Sens. 2024, 16, 688 17 of 18

43. Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS.
Remote Sens. Environ. 1996, 58, 289–298. [CrossRef]

44. Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B., III; Ojima, D. Modeling gross primary production of
temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [CrossRef]

45. Qi, J.; Kerr, Y.; Chehbouni, A. External Factor Consideration in Vegetation Index Development; NASA: Val D’Isere, France, 1994.
46. Pouget, M.; Madeira, J.; Le Floc, H.E.; Kamal, S. Caracteristiques spectrales des surfaces sableuses de la region cotiere nord-ouest

de l’Egypte: Application aux donnees satellitaires SPOT. In Caractérisation et Suivi des Milieux Terrestres en Régions Arides et
Tropicales, Proceedings of the 2e’me Journées Télédétection; ORSTOM: Bondy, Japan, 1991; pp. 27–38.

47. Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R. Remote sensing
for grassland management in the arid southwest. Rangel. Ecol. Manag. 2006, 59, 530–540. [CrossRef]

48. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
49. Nellis, M.D.; Briggs, J.M. Transformed vegetation index for measuring spatial variation in drought impacted biomass on Konza

Prairie, Kansas. Trans. Kans. Acad. Sci. 1992, 95, 93–99. [CrossRef]
50. Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [CrossRef]
51. Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.
52. Welikala, R.A.; Fraz, M.M.; Dehmeshki, J.; Hoppe, A.; Tah, V.; Mann, S.; Williamson, T.H.; Barman, S.A. Genetic algorithm based

feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy. Comput. Med.
Imaging Graph. 2015, 43, 64–77. [CrossRef] [PubMed]

53. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
54. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
55. Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 993–1001. [CrossRef]
56. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.
57. Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X.; Xiang, Y. Comparison of Support Vector Machine and Extreme

Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates:
A case study in China. Energy Convers. Manag. 2018, 164, 102–111. [CrossRef]

58. Yagli, G.M.; Yang, D.; Srinivasan, D. Automatic hourly solar forecasting using machine learning models. Renew. Sustain. Energy
Rev. 2019, 105, 487–498. [CrossRef]

59. Rossel, R.V.; McGlynn, R.N.; McBratney, A.B. Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse
reflectance spectroscopy. Geoderma 2006, 137, 70–82. [CrossRef]

60. Rojas, R.; Feyen, L.; Dassargues, A. Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood
uncertainty estimation and Bayesian model averaging. Water Resour. Res. 2008, 44, W12418. [CrossRef]

61. Malone, B.P.; Styc, Q.; Minasny, B.; McBratney, A.B. Digital soil mapping of soil carbon at the farm scale: A spatial downscaling
approach in consideration of measured and uncertain data. Geoderma 2017, 290, 91–99. [CrossRef]

62. Zeraatpisheh, M.; Garosi, Y.; Owliaie, H.R.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; Xu, M. Improving the spatial
prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates.
Catena 2022, 208, 105723. [CrossRef]

63. Adhikari, K.; Hartemink, A.E. Digital mapping of topsoil carbon content and changes in the Driftless Area of Wisconsin, USA.
Soil Sci. Soc. Am. J. 2015, 79, 155–164. [CrossRef]

64. Ohlmacher, G.C.; Davis, J.C. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast
Kansas, USA. Eng. Geol. 2003, 69, 331–343. [CrossRef]

65. Dong, L.; Zeng, W.; Wang, A.; Tang, J.; Yao, X.; Wang, W. Response of soil respiration and its components to warming and
dominant species removal along an elevation gradient in alpine meadow of the Qinghai–Tibetan plateau. Environ. Sci. Technol.
2020, 54, 10472–10482. [CrossRef]

66. Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [CrossRef]
67. Ottoy, S.; Van Meerbeek, K.; Sindayihebura, A.; Hermy, M.; Van Orshoven, J. Assessing top-and subsoil organic carbon stocks of

Low-Input High-Diversity systems using soil and vegetation characteristics. Sci. Total Environ. 2017, 589, 153–164. [CrossRef]
[PubMed]

68. Wang, B.; Waters, C.; Orgill, S.; Gray, J.; Cowie, A.; Clark, A.; Liu, D.L. High resolution mapping of soil organic carbon stocks
using remote sensing variables in the semi-arid rangelands of eastern Australia. Sci. Total Environ. 2018, 630, 367–378. [CrossRef]

69. Schuur, E.A.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence,
D.M. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [CrossRef]

70. Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl.
2000, 10, 423–436. [CrossRef]

71. Bao, Y.; Lin, L.; Wu, S.; Deng, K.A.K.; Petropoulos, G.P. Surface soil moisture retrievals over partially vegetated areas from the
synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 76–85.
[CrossRef]

https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1016/j.rse.2004.03.010
https://doi.org/10.2111/05-201R.1
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.2307/3628024
https://doi.org/10.2307/1936256
https://doi.org/10.1016/j.compmedimag.2015.03.003
https://www.ncbi.nlm.nih.gov/pubmed/25841182
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/34.58871
https://doi.org/10.1016/j.enconman.2018.02.087
https://doi.org/10.1016/j.rser.2019.02.006
https://doi.org/10.1016/j.geoderma.2006.07.004
https://doi.org/10.1029/2008WR006908
https://doi.org/10.1016/j.geoderma.2016.12.008
https://doi.org/10.1016/j.catena.2021.105723
https://doi.org/10.2136/sssaj2014.09.0392
https://doi.org/10.1016/S0013-7952(03)00069-3
https://doi.org/10.1021/acs.est.0c01545
https://doi.org/10.1016/j.geoderma.2004.01.032
https://doi.org/10.1016/j.scitotenv.2017.02.116
https://www.ncbi.nlm.nih.gov/pubmed/28258751
https://doi.org/10.1016/j.scitotenv.2018.02.204
https://doi.org/10.1038/nature14338
https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
https://doi.org/10.1016/j.jag.2018.05.026


Remote Sens. 2024, 16, 688 18 of 18

72. Nguyen, T.T.; Pham, T.D.; Nguyen, C.T.; Delfos, J.; Archibald, R.; Dang, K.B.; Hoang, N.B.; Guo, W.; Ngo, H.H. A novel intelligence
approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data
fusion. Sci. Total Environ. 2022, 804, 150187. [CrossRef] [PubMed]

73. Zhou, T.; Geng, Y.; Chen, J.; Liu, M.; Haase, D.; Lausch, A. Mapping soil organic carbon content using multi-source remote
sensing variables in the Heihe River Basin in China. Ecol. Indic. 2020, 114, 106288. [CrossRef]

74. Mahmoudabadi, E.; Karimi, A.; Haghnia, G.H.; Sepehr, A. Digital soil mapping using remote sensing indices, terrain attributes,
and vegetation features in the rangelands of northeastern Iran. Environ. Monit. Assess. 2017, 189, 500. [CrossRef] [PubMed]

75. Shi, J.; Wang, J.; Hsu, A.Y.; O’Neill, P.E.; Engman, E.T. Estimation of bare surface soil moisture and surface roughness parameter
using L-band SAR image data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1254–1266.

76. Wagner, W.; Scipal, K.; Pathe, C.; Gerten, D.; Lucht, W.; Rudolf, B. Evaluation of the agreement between the first global remotely
sensed soil moisture data with model and precipitation data. J. Geophys. Res. Atmos. 2003, 108, 4611. [CrossRef]

77. Yang, R.; Guo, W.; Zheng, J. Soil prediction for coastal wetlands following Spartina alterniflora invasion using Sentinel-1 imagery
and structural equation modeling. Catena 2019, 173, 465–470. [CrossRef]

78. Li, Q.; Yue, T.; Wang, C.; Zhang, W.; Yu, Y.; Li, B.; Yang, J.; Bai, G. Spatially distributed modeling of soil organic matter across
China: An application of artificial neural network approach. Catena 2013, 104, 210–218. [CrossRef]

79. Tsui, C.; Chen, Z.; Hsieh, C. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan.
Geoderma 2004, 123, 131–142. [CrossRef]

80. Siewert, M.B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: A case study
in a sub-Arctic peatland environment. Biogeosciences 2018, 15, 1663–1682. [CrossRef]

81. Hengl, T.; Mendes De Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright,
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