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Abstract: Food demand is expected to rise significantly by 2050 due to the increase in population;
additionally, receding water levels, climate change, and a decrease in the amount of available arable
land will threaten food production. To address these challenges and increase food security, input
cost reductions and yield optimization can be accomplished using yield precision maps created
by machine learning models; however, without considering the spatial structure of the data, the
precision map’s accuracy evaluation assessment risks being over-optimistic, which may encourage
poor decision making that can lead to negative economic impacts (e.g., lowered crop yields). In fact,
most machine learning research involving spatial data, including the unmanned aerial vehicle (UAV)
imagery-based yield prediction literature, ignore spatial structure and likely obtain over-optimistic
results. The present work is a UAV imagery-based corn yield prediction study that analyzed the
effects of image spatial and spectral resolution, image acquisition date, and model evaluation scheme
on model performance. We used various spatial generalization evaluation methods, including spatial
cross-validation (CV), to (a) identify over-optimistic models that overfit to the spatial structure found
inside datasets and (b) estimate true model generalization performance. We compared and ranked
the prediction power of 55 vegetation indices (VIs) and five spectral bands over a growing season.
We gathered yield data and UAV-based multispectral (MS) and red-green-blue (RGB) imagery from
a Canadian smart farm and trained random forest (RF) and linear regression (LR) models using
10-fold CV and spatial CV approaches. We found that imagery from the middle of the growing
season produced the best results. RF and LR generally performed best with high and low spatial
resolution data, respectively. MS imagery led to generally better performance than RGB imagery.
Some of the best-performing VIs were simple ratio index(near-infrared and red-edge), normalized
difference red-edge index, and normalized green index. We found that 10-fold CV coupled with
spatial CV could be used to identify over-optimistic yield prediction models. When using high spatial
resolution MS imagery, RF and LR obtained 0.81 and 0.56 correlation coefficient (CC), respectively,
when using 10-fold CV, and obtained 0.39 and 0.41, respectively, when using a k-means-based spatial
CV approach. Furthermore, when using only location features, RF and LR obtained an average CC of
1.00 and 0.49, respectively. This suggested that LR had better spatial generalizability than RF, and
that RF was likely being over-optimistic and was overfitting to the spatial structure of the data.

Keywords: precision agriculture; remote sensing; unmanned aerial vehicle; multispectral imagery;
machine learning; yield prediction; spatial data; spatial cross-validation

1. Introduction

Food demand is expected to rise significantly by 2050 due to an increase in popula-
tion [1]; additionally, receding water levels, climate change, and a decrease in the amount
of available arable land will threaten food production [2]. With access to predictions from
a smart farming system (SFS), such as a crop yield prediction system, for example, a
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farmer could gain insight about the state of the field and could use this information to take
corrective action [3] or to plan [4]. Smart farming is a management concept focused on
providing the agricultural industry with the infrastructure to leverage Internet of things
(IoT) technology, including big data, the cloud, and applied artificial intelligence [5].

A yield prediction system could make early-season yield forecasting, and this would
help stakeholders (e.g., farmers, commercial suppliers, governments, and international
organizations [6]) by enabling efficient crop management, food security evaluation, food
trade planning, and policy design improvements [7].

Furthermore, yield forecasting can increase crop yields and increase environmental
sustainability [8]. Early yield predictions can also help crop breeders focus on the more im-
portant crop varieties in crop hybrid selection studies [9]. However, high spatial resolution
yield datasets are required to train machine learning (ML) models to generate fine-grained
yield precision maps.

Fields are heterogeneous by nature [1] despite most farming practices treating the
fields as homogeneous. Yield precision maps can be created by deploying an ML model that
was trained using local farming data. Sending a tractor into the field frequently can damage
the crop. Imagery of a farm can be obtained using remote sensing via satellites, unmanned
aerial vehicles (UAVs), aircrafts, or hand-held/tractor-mounted imaging equipment [10]
in a non-destructive manner [3]. To obtain imagery using remote sensing, a red-green-
blue (RGB) (or visible-light), multispectral (MS), or hyperspectral (HS) camera can be
used, where RGB and HS cameras tend to be the most inexpensive and most expensive
options, respectively, [11]. Using satellite imagery to enable yield prediction is a common
approach [4,12–14] and comes with the advantages that (a) there are many free publicly
available satellite imagery datasets [15], (b) satellite imagery tends to have high spectral
resolution [11], and (c) additional input data or specialized in-field sensing equipment
are not required by the farmer [12]; however, satellite-based remote sensing suffers from
low spatial and temporal resolutions [16–18] (16 days on average for revisits [19]) and is
vulnerable to weather [16,18,19]. Performing remote sensing using UAVs is favourable due
to the higher spatial and temporal resolutions [20] and the ability to estimate plant height
using Structure from Motion (SfM) processing [21]. Plant height data can improve yield
prediction models, especially when combined with HS imagery [22]. However, UAV-based
approaches that use MS/HS cameras have high monetary costs and high complexity [16],
although cost reductions in sensors and UAVs have made UAV-based remote sensing for
precision agriculture (PA) more economically feasible [23]. By only using imagery acquired
from a UAV for crop analysis, a farmer could avoid deploying many costly sensors in
a field [12] and investing in costly yield monitoring equipment [24]. Used frequently
in agriculture studies are vegetation indices (VIs). VIs are derived from the reflectance
values of the raw imagery by using mathematical operations such as linear combinations
or ratios and can be used to represent the state or condition of target vegetation [16].
A common yield prediction approach involves feeding VI features to ML models [25].
Texture indices (TIs), introduced by Haralick et al. [26], can be used to describe local
spatial dependence and heterogeneity of an image’s pixels [27]. TIs have been found
to improve yield prediction model performance when combined with VIs [27,28] and
topographic features [28]; although, compared to VIs, TIs have been used less frequently in
the literature [29].

To build a yield prediction system, yield data must first be obtained. During a harvest,
a yield monitor will periodically (typically at 1 Hz [30]) record its position (typically
accurate to within 1 to 3 m [31]) and the measured yield. Cleaning yield datasets is
important before using them for analysis, since they tend to be noisy [30]. Our previous
work [32] describes and identifies common yield cleaning steps applied in the literature.
Mapping a yield dataset to a grid, the interpolation step, is commonly conducted after
cleaning [14,33,34], and is usually performed using kriging and local variograms [35,36],
which can be conducted using the Vesper software version 1.6 [14,37]. This step is important,
because before performing spatiotemporal analysis on yield and other agriculture datasets,
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their attributes must be mapped to a common spatial grid, since their attributes are tied to
locations and the datasets may have differing spatial resolutions [38]. Once the cleaning
and interpolation pre-processing steps have been completed, yield prediction models can
be trained. Yield prediction scale can be conducted at global-level [39], region-level/county-
level [13,30], field-level/plot-level [7,39], or pixel-level/within-field-level [12,30]. The two
most commonly used models for predicting yield are mechanistic crop growth models
(MCGMs) (otherwise known as a process-based models or crop simulation models [6]) and
data-driven models (e.g., ML) [39]. MCGMs take as input weather, soil, and crop phenology
data [12] and simulate the physiological process of crops given input management practices
and environmental conditions. They tend to have high complexity, long run times, and
complex calibration [6]. Examples of MCGMs include Agricultural Production Systems
sIMulator (APSIM) [4], Decision Support System for Agrotechnology Transfer (DSSAT) [4],
and Hybrid-Maize [13]. Data-driven models are simpler than MCGMs because they use
statistical patterns found in the training data to model the relationship of the input factors
affecting yield [39]. Data-driven models also can be used to estimate yield at pixel-level
scale [6]. Furthermore, both types of models can be combined using a model-inversion
approach [12].

Imagery and phenotyping data tend to be spatially autocorrelated when gathered from
a single field [40]. Doing regression or statistical operations on spatially autocorrelated
data will lead to overfitting and underestimating prediction errors [41], since datasets that
have spatial autocorrelation (SA) violate the data independence assumption made by some
ML methodologies [42]. Over-optimistic performance results might be obtained if the
datasets are not spatially partitioned [43], and this could lead to incorrect conclusions. An
example of such an ML methodology is k-fold cross-validation (KF-CV), which uses ran-
dom sampling to create the folds [40,43,44]; that is, the chosen sampling technique has an
impact on model performance [45,46] and can lead to overfitting if a poor spatial sampling
strategy is applied [47]. Instead of applying random sampling, sampling from a specific
location can be conducted to create a training dataset, but this may lead to the intra-class
imbalance problem, because samples of a class will mostly be similar to each other, leading
to poor performance when test samples of that class from different locations are incorrectly
classified. This is one of the limitations of spatial cross-validation (CV) [42,48]. After
splitting a dataset into training and test sets (used for the final model’s generalizability
evaluation), a validation set may also be used for model selection. Model selection occurs
when hyperparameters are being tuned and/or the optimal features are being selected, and
this is typically conducted by training an ML model using training data and validating
the performance using the validation dataset [49], p. 406.Hyperparameter tuning method-
ologies [43] and feature selection strategies [40] should also take the spatial structure into
account. In fact, even though standard/random KF-CV is over-optimistic [44,50], most
ML studies in the literature that use earth observation spatial data only apply KF-CV to
evaluate their ML models [50], including our previous work [32]. We found that this trend
is also observable in the UAV imagery-based yield prediction literature; only one paper
(Baghdasaryan et al. [6]) out of the 28 papers related to the present work (see Section 4)
clearly performed spatial CV to evaluate model spatial generalizability. Since yield data
and imagery from a field will likely be spatially autocorrelated [40], it means the models
evaluated in most of these works will likely (a) be over-optimistic [44,50], (b) overfit, and
(c) underestimate prediction errors [41]. An over-optimistic model could lead an analyst to
draw incorrect conclusions, which could lead to poor economic decisions or other damages.
Nevertheless, KF-CV can be appropriate if the model being evaluated is not expected to
generalize to new spatial (or temporal, the data’s underlying structures) regions to make
new causal inferences. On the other hand, in problems where new unseen spatial regions
are expected to be presented to the model (for example, in the context of yield prediction,
when a new farmer joins an SFS and uploads field data from an unseen farm) and the ability
to perform extrapolation is desired from the model, spatial CV can be used to evaluate the
extrapolation performance. Unfortunately, even if spatial CV is designed to avoid under-
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estimating the generalizability error of a model [44], geological trends or environmental
gradients may be lost when splitting the training and testing data into spatially disjointed
folds [42,46], making the performance evaluation of model extrapolation pessimistic [42]
and over-pessimistic if the goal of the learning task is not to extrapolate to new unseen
regions [44]. Nevertheless, there are still yield prediction works, which are related to the
present work to a lesser degree (those that do not use UAV or aircraft imagery, and do not
exclusively use a data-driven model), that did consider (a) the spatial structures of the data
and/or evaluated the spatial generalizability of their models [4,7,9,25,51–56], and (b) the
temporal structures of the data and/or evaluated the temporal generalizability of their
models [4,7,14,25,53,55–57].

The objectives of the present work are to: (a) bridge the knowledge gap between the
UAV imagery-based yield prediction literature and spatial data analysis to reveal and avoid
over-optimistic model performance; (b) determine the best time during the growing season
(or the best phenological growth stage) to capture imagery to optimize yield prediction
results and minimize the number of UAV flight missions; (c) determine the best-performing
VIs; (d) determine whether an inexpensive RGB camera can be used instead of a costly
MS camera; (e) determine whether the VI calculation step can be skipped in the prediction
process by comparing the prediction performance of raw-bands vs. VIs; and (f) determine
whether satellite imagery can be used instead of UAV-based imagery to achieve comparable
performance at a reduced price. We compared the effectiveness of cameras by examining
the difference in yield prediction model performance between: (1) near-infrared (NIR)+RGB
band VIs, (2) RGB band VIs, and (3) red-edge-based VIs.

The present work is an extension of a conference paper [32] and improves on the paper
by: (a) using imagery from both the RGB and MS camera instead of only using MS camera
imagery; (b) considering a larger dataset in the experiments; and (c) evaluating the spatial
generalizability of the models by using spatial CV.

The present work is organized as follows:
Section 2 describes the test farm involved in this study and the methodology applied to

perform yield prediction using UAV imagery and yield data; Section 3 presents a discussion
and analysis of the results; Section 4 discusses the related work and provides a qualitative
comparison of various works to the present work; and Section 5 concludes this work and
presents future research avenues.

2. Materials and Methods
2.1. Study Site

Corn was grown in the 2021 growing season at a smart farm named Area X.O located
in Ottawa, Ontario, Canada (45◦19′8.17′′N, 75◦45′22.40′′W). There were 6 fields (Fields
1, 2, 3, 4, 9, and 11) involved in this study. The size of the fields were 3.38 ac (where
1 ac ≈ 0.405 ha), 4.67 ac, 3.55 ac, 2.07 ac, 1.43 ac, and 48.08 ac, respectively. Figure 1
illustrates a map of the study site.

Figure 1. A map of the test site (Ottawa, ON, Canada). The map illustrates the field numbers and
field boundaries and includes a distance scale and coordinate grid that uses the coordinate reference
system WGS 84/UTM zone 18N.
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2.2. Field Data
2.2.1. Weather

We gathered daily weather data from a local weather station named OTTAWA INTL
A that was located near the study site. The dataset was publicly available and was ob-
tained from the Government of Canada’s Weather website, https://climate.weather.gc.ca/
historical_data/search_historic_data_e.html, accessed on 23 January 2024. Daily average air
temperature and daily total precipitation over the 2021 growing season can be observed in
Figures S1 and S2, respectively.

2.2.2. Management

Planting was conducted using a white 6606 planter that had 6 rows (15 ft) 30 inches
apart (where 1 ft ≈ 0.3048 m and 1 inch ≈ 2.54 cm). The crops were rainfed. Table 1 presents
the tilling techniques, seeding rates, herbicide rates, and fertilizer rates applied to each
field, and Table 2 presents the dates of these field activities. The management information
presented in this section was obtained from the Trimble platform.

Table 1. Tillage technique, seeding rates, herbicide application rates, and fertilizer application
rates for each field, where CT = conventional tilling (or broadcast), IST = innovative strip-tilling (or
fertile stripping), LP = lime pellets, kS/ac = 1000 seeds per acre, 1 lbs ≈ 0.454 kg, 1 gal ≈ 3.785 L,
1 ha ≈ 2.471 ac, and the 7-32-23 notation indicates (7% nitrogen, 32% phosphorus, and 23% potas-
sium) fertilizer.

Herbicide Rates Fertilizer Rates

Field Tilling
Technique

Seeding
Rates
(kS/ac)

Acuron 1.5 L +
Crush 0.8 L
(gal/ac)

7-32-23
(lbs/ac)

40-0-0
5.5 UAS
(lbs/ac)

Urea 60/40
with LP
(lbs/ac)

3-18-18
(gal/ac)

UAN 32%
(gal/ac)
(Side-Dressing)

LP
(lbs/ac)

1 CT 33.7 12.3 150 300 0 0 20.1 0
2 IST 33.7 12.4 125 0 300 10.4 20.3 4409
3 CT 33.8 12.1 150 300 0 0 20.3 4409
4 1 CT 33.6 12.2 125 0 0 0 20.0 4409
9 IST 33.8 12.4 128 0 327 10.6 20.0 4409
11 2 IST 31.8 12.1 125 0 362 10.2 20.0 4409

1 Field 4 also had 25 gal/ac of UAN 32% applied during its conventional tilling. 2 Field 11 also had rates of approx.
150 lbs/ac of 5-26-30 and 9-23-31 fertilizer applied to the southern and northern parts of the field, respectively,
during its Fall 2020 strip tilling.

Table 2. Field management activity dates.

Field Activity Date/Period (2021)

Tilling 1 28 April to 6 May
Planting 14 May
Herbicide Spraying 27 May to 28 May
Side-dressing 23 June to 7 July
Harvesting 5 November to 6 November

1 Field 11 also had strip tilling conducted 13 November 2020.

2.2.3. Imagery

UAV imagery was captured by InDro Robotics from 26 May 2021 to 1 October 2021.
The company created orthomosaics using the PIX4Dmapper software version 4.6.4, per-
formed geometric calibration, and performed radiometric calibration. Initially, an Autel
EVO 2 drone was used and on 22 June we upgraded to a dual-payload DJI M210 drone.
Table 3 provides image acquisition and flight details. The MS camera supported the red
(668 nm ± 5 nm), green (560 nm ± 10 nm), blue (475 nm ± 10 nm), NIR (840 nm ± 20 nm),
and red-edge (717 nm ± 5 nm) bands [58]. Images were acquired daily from 26 to 31 May
and weekly from 8 June to 1 October 2021, generally between 11 a.m. and 3 p.m. The image

https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
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resolution was between 12.0 and 33.2 megapixels (MP) for the RGB imagery and 1.2 MP
for the MS imagery. The image spatial resolution was between 0.7 and 1.3 cm for the RGB
imagery and between 2.8 and 3.9 cm for the MS imagery. A Pessl CropVIEW® camera was
installed in Field 11 and captured two daily RGB images throughout the season, which
were accessible via the Field Climate platform.

Table 3. UAV image acquisition details over the growing season

Image Acquisition Flight
Camera Type Period (2021) Height (m)

EVO 2 Gimbal RGB 26 May to 8 June 50
Zenmuse X4S RGB 22 June to 1 October 40
Mica Sense Red-Edge M MS 22 June to 1 October 40

2.2.4. Yield

Shelled corn was harvested on 5 and 6 November 2021, using a John Deere S660
combine equipped with a yield monitor and GPS equipment. Yield readings were sampled
at 1 Hz. The harvester had an 8-row combined harvest width of 20 ft that automatically ad-
justed its width to avoid harvesting previously harvested crop rows. The average moisture
content was 22.7%, and the average yield among other descriptive statistics for the raw
yield, cleaned yield, and interpolated yield datasets can be found in Tables S1, S2, and S3,
respectively, for each field. The harvester’s yield data were calibrated to compensate for
the yield sensor lag time delay. Figure S3 provides an example of yield precision map and
its corresponding variogram, illustrating that SA exists for a range of approx. 40 m.

2.3. Corn Growth Stage

For the purposes of analyzing the effects of growth stage on crop yield model perfor-
mance, we assume that all the crops from each field are in the same growth stage, since
we only have one CropVIEW camera. Growth stage estimation is important, because it
allows the findings of the present work to be compared to other related works that present
results in terms of growth stage. Corn growth stages can be split into vegetative (V) and
reproductive (R) stages. For example, corn at the V8 vegetative stage has 8 collars, and R1
is the silking reproductive stage [59,60].

2.3.1. Growing Degree Days

In the present work, we estimate the growth stage of the corn by examining the images
from the in-field CropVIEW camera, counting the number of plant collars on each plant
and using the accumulated growing degree days (GDDs) method [61] (otherwise known
as Growing Degree Units (GDUs) [6]). GDDs can be used to estimate crop growth by
modelling the number of days that have ideal/sufficient temperature for crop growth [6].
GDD can be calculated as follows [60] in Equation (1):

GDD =
Tmax + Tmin

2
− Tbase , (1)

where Tmax is the maximum daily temperature in ◦F, Tmin is the minimum daily temperature
in ◦F, and Tbase (Tbase = 50 ◦F in this study [6]) is the base temperature for the corresponding
crop (corn). Any maximum daily temperature above 86 ◦F is set to 86 (the optimum
temperature for corn [62]) and any minimum daily temperature below 50 ◦F is set to 50
in the GDD calculation [62–64]. The GDD is accumulated over the season to estimate the
growth stage, where a new collar appears approx. every 82 GDD from VE to V10 and every
50 GDD from V11 to Vn [61]. The reproductive development after silking (R1) can also
similarly be predicted via GDD accumulation. For stages after R1, we use the accumulated
GDD provided in Monsanto [65].
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2.3.2. Estimation

By analyzing the CropVIEW imagery, the VE stage started day of year (DoY) 145 (25
May 2021) when the crop emerged. Similar to Oglesby et al. [66], from V1 to V13 we roughly
counted the number of collars on each plant from the CropVIEW images. We estimated the
VT stage when most of the plants had visible tassels forming in the CropVIEW images. R1
was determined when observable silks were found in the CropVIEW images [66]. From R2
to R6, we used the accumulated GDD suggestions from Monsanto [65], which are approx.
1660, 1859 (interpolated via the days after silking), 1925, 2320, and 2700 accumulated GDD
for stages R2, R3, R4, R5, and R6, respectively. This should be a reasonable estimate given
that the accumulated GDD for the VT stage Monsanto [65] suggested was 1135, whereas, in
the present work, the corn reached the VT stage at DoY 201 with 1195 accumulated GDD
(both are relatively similar). Furthermore, Monsanto [65] states that during the R3 stage,
the corn ears become brown and dry. We confirmed via the CropVIEW imagery that the
ears achieved a peak dry brown colour on DoY 230 with accumulated GDD 1739. This is
relatively close to the interpolated 1859 suggested by Monsanto [65], providing further
evidence that the growth stage estimates performed in the present work were reasonable.
The present work’s growth stage estimates are listed in Table 4.

Table 4. Estimated corn growth stage [59,60] for 2021 growing season using accumulated GDD [63,65]
and in-field crop camera, where DoY = day of year, AGDD = accumulated growing degree days, and
GS = growth stage.

DoY 145 152 154 157 159 164–170 179–186 190–197 201 204 226 230 237 264
AGDD 191 264 294 360 415 506–596 769–897 957–1108 1195 1249 1668 1739 1923 2315
GS VE V1 V2 V3 V4 V5–7 V8–10 V11–13 VT R1 R2 R3 R4 R5

2.4. Feature Extraction

Since the yield and imagery datasets did not share the same spatial and temporal
resolution, data fusion was required to perform feature extraction.

2.4.1. Yield

We applied most of the yield cleaning steps mentioned in our previous work [32]
by implementing the steps in Java version 18.0.1 (the project is open-source and can be
found on GitHub https://github.com/patkilleen/geospatial, accessed on 23 January 2024).
We did not remove samples from headlands due to small size of the fields. For harvester
speed and yield inlier removal, and for turn removal, we applied the forward-backward
pass method proposed by Lyle et al. [31]. Note that in our previous work [32] and in the
present work, there was a parameter configuration error in the cleaning process, and as a
result, the forward-backward pass method was effectively not applied correctly, meaning
the yield datasets used in the experiments may have a few more outliers. We used the
Vesper software version 1.6 to perform yield semivariogram and interpolation using the
block kriging method with a block size 10 m × 10 m, an interpolation grid of 2.5 m × 2.5 m,
and a local variogram with 30 lags, 50% lag tolerance, and a maximum distance of 55 m.
We removed readings with high kriging variance. We used the R programming language
version 4.1.3 sf and sp libraries to remove readings from Field 11 that were inside no-
yield areas (e.g., below a power tower). The mean yield (in bu/ac) for each field after
cleaning and interpolation is as follows: Field 1 = 107.81, Field 2 = 144.18, Field 3 = 118.18,
Field 4 = 77.46, Field 9 = 111.31, and Field 11 = 154.67.

2.4.2. Imagery and Vegetation Indices

In total, 55 VIs were chosen and 5 bands (RGB, NIR, and red-edge) were included
as features in the prediction models. A few VIs were defined by the present work using
standard VI operations (a ratio or difference, for example) to add additional RGB and
red-edge VIs. All the VIs used in this study are listed in the following tables found in

https://github.com/patkilleen/geospatial
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Appendix A: NIR+RGB band (NIR-based) VIs in Table A1, RGB band VIs in Table A2, and
red-edge-based VIs in Table A3. The RGB imagery had digital pixel values between 0 and
255, so we normalized the values between 0 and 1 and kept both versions because some
RGB VIs (e.g., ExG) expect band values between 0 and 1 whereas others (e.g., CIVE) expect
band values between 0 and 255.

We used the QGIS software version 3.22.6 to crop the orthomosaics into smaller
orthomosaics for each respective field and reduced the resolution of some of the images for
computational complexity reasons. We used the R programming language version 4.1.3
raster library to compute VI rasters from the cropped orthomosaics.

2.4.3. Data Fusion

We performed data fusion using the Java program we implemented and applied a
mean, maximum, and minimum filter over the imagery data using a circular neighbour-
hood with a 4.5 m radius around a yield cell’s center, x. We denote this neighbourhood
around x as N(x) for notation simplicity, where elements in N(x) are pixel values (raw-
band reflectance or VI). A radius of 4.5 m was chosen to compensate for the fact that the
orthomosaics’ extent may be offset by approx. 2 m due to GPS accuracy limitations. Two
types of datasets resulted from the fusion, namely a high spatial resolution (HRe) dataset
and a low spatial resolution (LRe) dataset. HRe datasets represent the availability of high
spatial resolution imagery. Its variables are interpolated yield, mean(N(x)), max(N(x)),
and min(N(x)). It captures more fine-grained imagery details by additionally including
the maximum and minimum aggregates. LRe datasets represent lower spatial resolution
imagery (e.g., satellite imagery). Its variables are interpolated yield and mean(N(x)). It
fails to capture the heterogeneity of fine-grained image details due to the coarse-grained
nature of only using the mean aggregation.

2.5. Yield Prediction Experiments

We used the output of the data fusion step to train and evaluate the mono-temporal
ML models using various forms of CV. The evaluation metrics used are explained in
Section 2.5.1. The models used were random forest (RF) and linear regression (LR). RF and
LR models were chosen since RF [14] and LR [67] have commonly been shown to perform
well for yield prediction, and they were implemented using Weka version 3.8.5.

There were four types of CV experiments that we ran, namely two standard KF-CV-
based experiments (discussed in Sections 2.5.3 and 2.5.4, respectively) and two spatial CV
experiments (discussed in Section 2.5.5), where 10 iterations of each type of CV experiment
were performed.

2.5.1. Evaluation Metrics

The three evaluation metrics used to evaluate the ML models in the present work are
the root mean squared error (RMSE), the coefficient of determination (R2), and Pearson’s
correlation coefficient (CC), and are defined in Equations (2), (3), and (4), respectively, where
xi is the actual value of sample i, yi is the predicted value for sample i, n is the number of
samples, and x̄ and ȳ are the mean of the actual and predicted value, respectively.

Root Mean Squared Error

RMSE =

√√√√ n

∑
i=1

(xi − yi)
2

n
(2)

The RMSE describes how much model predictions can be expected to be off by on
average, where smaller values indicate better performance. Furthermore, RMSE shares the
same units as the target variable [49], pp. 443–444. The values of RMSE lie in the range
[0, ∞) [68].
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Coefficient of Determination

R2 = 1 −

n
∑

i=1
(xi − yi)

2

n
∑

i=1
(xi − x̄)2

(3)

R2 is a measure that compares the model predictions to a baseline model that only
predicts the average of the test set [49], pp. 443–447, and it explains how much the target
variable can be explained by the predictor variables in terms of variance [49], pp. 443–447
and [68]. R2 values can lie in the (−∞, 1] range, where larger values mean better per-
formance, R2 > 0 is the square of multiple correlation coefficients (CCs), R2 = 0 means
the target variable and model predictions are independent, and R2 < 0 means the fit-
ted regression line/hyperplane is worse than always predicting the average of the target
variable [68].

Correlation Coefficient

CC = R =

n
∑

i=1
(xi − x̄)(yi − ȳ)√

n
∑

i=1
(xi − x̄)2 n

∑
i=1

(yi − ȳ)2

(4)

The CC (sometimes referred to as R) ranges from −1 to +1 [69], p. 45. It measures the
linear association between the target variable and model predictions. The square of the CC
can be treated as R2 [70], pp. 432–433, since any negative R2 value can be treated as R2 = 0
by replacing the model with a baseline model that simply predicts the average of the target
variable [68].

2.5.2. Model Hyperparameters

Every experiment used the following hyperparameter configuration (Weka’s default):

• RF: bag size = 100%; number of trees = 100; number of attributes/features = 2 for
HRe and 1 for LRe; leaf minimum number of instances = 1; minimum variance for a
split = 0.001 (i.e., 1 × 10−3); unlimited tree depth; number of decimal places = 2; and
random number generation seed = 1.

• LR: the M5 attribute/feature selection method was chosen; ridge parameter = 1× 10−8;
and number of decimal places = 4.

2.5.3. Location-Only Standard K-Fold Cross-Validation

To explore the extent of the effects SA may have on the yield prediction experiments in
the present work, as suggested by Ploton et al. [71], 10-fold CV experiments were conducted
using only location features to train field-level models (each model only involved data
from a single field) to predict yield for each of the fields.

2.5.4. Standard K-Fold Cross-Validation

In this type of experiment, field-level models were evaluated using 10-fold CV, where
folds were created via random sampling, ignoring any spatial structure in the data. Models
were trained and evaluated for each of the 6 fields, imagery acquisition dates, VI/raw-band,
and both the HRe and LRe dataset types (e.g., for some DoY, 6 × (55 + 5) × 2 datasets
would be used to train and evaluate the RF and LR models). We will refer to this type of
experiment as a KF-CV experiment.

2.5.5. Spatial Cross-Validation

We apply two types of spatial CV to address the spatial structure in the datasets by
strategically creating the folds to reduce SA between the training and testing data.
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Leave-One-Field-Out Cross-Validation

In this type of spatial CV experiment, farm-level models were trained and evaluated,
and the datasets used were the same as the KF-CV experiments (detailed in Section 2.5.4),
but the folds were defined differently by sampling 500 samples from each individual field’s
dataset to define a fold. Meaning, instead of 10 folds, 6 folds were created (or 5 folds when
a field’s imagery was missing for a day). This sampling scheme was designed to avoid
having larger fields’ data be assigned more weight during model training. In this type of
experiment, days with imagery available only from a single field were ignored. This type
of experiment had two versions, namely leave-one-field-out CV (LOFO-CV) and reverse
LOFO-CV (rev-LOFO-CV). LOFO-CV involved training the model using every field but one
and testing the model using the remaining field, whereas rev-LOFO-CV involved training
the model using only a single field and testing the model using the remaining fields.

K-Means-Based Cross-Validation

This type of experiment, which we refer to as the spatial-k-fold CV (SpKF-CV) experi-
ment, is similar to the LOFO-CV experiments, but here the experiments were field-level
and instead of defining a fold as an entire field’s dataset, the folds were defined as samples
from clusters resulting from applying the k-means clustering algorithm on location data
to create 10 spatially disjoint folds inside a single field. Since the number of samples per
cluster varied slightly, the fold sizes were defined using the size of the smallest cluster to
make every fold equally sized. This type of experiment had two versions, namely SpKF-CV
and reverse SpKF-CV (rev-SpKF-CV). SpKF-CV involved training models using 9 folds
and testing the models using the remaining fold, whereas rev-SpKF-CV trained the models
with one fold and tested the models using the remaining 9 folds.

3. Results

Figures 2 and 3 illustrate the results of an analysis that involved examining average
CC performance of RF and LR over the entire growing season to compare the difference
between the evaluation method, RGB and MS imagery, and the image acquisition dates.
Two VIs were chosen: ExR (an RGB VI that represents RGB imagery) and NDVIRedEdge (an
MS VI that represents MS imagery). These VIs were chosen, since we found NDVIRedEdge
was one of the better-performing MS VIs and ExR was one of the better-performing RGB
VIs in the present work. The results for each DoY were averaged over both types of datasets
(HRe and LRe). Focusing less on the effects of image acquisition date, Figure 4 illustrates
the effects that image spatial resolution (HRe vs. LRe) and ML model (RF vs. LR) have on
yield prediction performance results for a single image acquisition date (DoY 193). Figure 4
also enables the comparison of RGB imagery vs. MS imagery. ExR was chosen as the VI to
represent the RGB imagery, since it was one of the better-performing RGB VIs and it did
well for DoY 193. Similarly, NDVIRedEdge was one of the better-performing MS VIs, so it
was chosen in this analysis. DoY 193 was chosen, since ExR and NDVIRedEdge did similarly
well on that day, which enables analysis of the effects of evaluation method, ML model,
and imagery spatial resolution on performance. Figure 5 shows the results of performing
yield prediction using KF-CV and using only location data as features.

It is worth noting that although we compared the performance results of LOFO-CV
and rev-LOFO-CV experiments to the results of the SpKF-CV, rev-SpKF-CV, and KF-CV
experiments, strictly speaking, it may not be necessarily correct to compare these results.
The SpKF-CV, rev-SpKF-CV, and KF-CV experiments differed in their sampling scheme, but
virtually they shared the same input datasets, whereas the LOFO-CV and rev-LOFO-CV
experiments’ input datasets were mostly different from those of SpKF-CV, rev-SpKF-CV,
and KF-CV. Nevertheless, we compared their results to gather insights on the effects of the
sampling scheme on model performance.
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Figure 2. Random Forest average yield prediction CC performance for 2021 growing season com-
paring MS imagery (NDVIRedEdge) to RGB imagery (ExR), for both LRe and HRe datasets, where
KF-CV = k-fold CV, LOFO-CV = leave-one-field-out CV, rev-LOFO-CV = leave-all-but-one-field-out
CV, SpKF-CV = spatial k-fold CV, and rev-SpKF-CV = reverse spatial k-fold CV.

Figure 3. Linear Regression average yield prediction CC performance for 2021 growing season
comparing MS imagery (NDVIRedEdge) to RGB imagery (ExR), for both LRe and HRe datasets, where
KF-CV = k-fold CV, LOFO-CV = leave-one-field-out CV, rev-LOFO-CV = leave-all-but-one-field-out
CV, SpKF-CV = spatial k-fold CV, and rev-SpKF-CV = reverse spatial k-fold CV.
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Figure 4. Evaluation method average yield prediction performance for DoY 193, for MS
VI NDVIRedEdge and RGB VI ExR, where the error bars represent 1 standard deviation,
KF-CV = k-fold CV, LOFO-CV = leave-one-field-out CV, rev-LOFO-CV = leave-all-but-one-field-
out CV, SpKF-CV = spatial k-fold CV, rev-SpKF-CV = reverse spatial k-fold CV, high = HRe dataset,
low = LRe dataset, LR = linear regression, and RF = random forest.

Figure 5. Location-only features experimental results: 10 iterations of 10-fold CV average yield
prediction performance, where the error bars represent 1 standard deviation and fi = Field i. Chart
(a) plots CC; chart (b) plots RMSE.
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3.1. Imagery Type Analysis
3.1.1. Vegetation Index Ranking

In this analysis the VIs were ranked by average performance for each field over
different stages in the growing season, ignoring the scale of performance differences
between VIs.

In our previous work [32], the CC was used for ranking. In the present work, we chose
the R2 measure because (a) it is more adequate for ranking (larger R2 values represent
strictly better performance), and (b) large outliers in the RMSE results existed, likely caused
by VI divisions by nearly 0, which skewed the RMSE average results. Furthermore, we
chose the LOFO-CV and rev-LOFO-CV experiments to avoid having an over-optimistic
performance affect rankings. The LR model was chosen since it was the better-performing
model for these experiments. Table 5 illustrates the top five best-ranked VIs for each of the
defined stages of the growing season, namely, the early, middle (mid), late, and entire season.
These seasons were defined as follows: early = {DoY = 173, DoY = 179}, mid = {DoY = 193,
DoY = 201, DoY = 211, DoY = 216, DoY = 223, DoY = 231}, late = {DoY = 237, DoY = 245,
DoY = 252, DoY = 257, DoY = 273}, and entire = {early ∪ mid ∪ late}. In terms of growth
stages, by observing Table 4, early season includes stages V7 and V8 (V10 is not included,
for example, since early season includes up to DoY 179 and does not include DoY 186), mid
season includes stages from V11 to R3, and late season includes stages R4 and R5. A source
of bias is that the mid season contains more growth stages than the early and late seasons.

The RGB VIs included in this analysis were only from imagery gathered by the RGB
camera and the MS VIs were from the MS camera. Note that the early season only included
two acquisition dates because no MS imagery was gathered before that.

Table 5. Five best-performing VIs on average over the growing season by LR model and LOFO-CV
and rev-LOFO-CV evaluation methods, where VIs listed in cyan-, orange-, and black-coloured font
are NIR-based, red-edge-based, and RGB-based VIs, respectively, LOFO-CV = leave-one-field-out CV,
reverse LOFO-CV = leave-all-but-one-field-out CV, HRe = high spatial resolution dataset, LRe = low
spatial resolution dataset, and the VIs are defined in Tables A1–A3 in Appendix A.

Early Season Mid Season Late Season Entire Season

HRe LRe HRe LRe HRe LRe HRe LRe

LOFO-CV

OSAVI
RDVI
SAVI
MCARI2
MTVI2

NDVIRedEdge
SRINIR,RedEdge
NDVI
DVIGreen,Red
NDVIGreen

NDVIRedEdge
SRINIR,RedEdge
red-edge (raw)
NG
NDVIGreen

red-edge (raw)
SRINIR,RedEdge
NDVIRedEdge
GCI
NG

NDVIGreen
SRINIR,Green
GCI
NDVIBlue
red-edge (raw)

SRINIR,RedEdge
SRINIR,Green
NG
GCI
NDVIRedEdge

NDVIGreen
NDVIRedEdge
NDVIBlue
SRINIR,RedEdge
NG

SRINIR,RedEdge
NDVIRedEdge
NG
GCI
SRINIR,Green

reverse
LOFO-CV

MSAVI
DVINIR,RedEdge
NDVI
NDVIBlue
MCARI2

NDVI
OSAVI
NDVIBlue
RDVI
SAVI

red-edge (raw)
NDVIRedEdge
SRINIR,RedEdge
NG
SRINIR,Green

NDVIRedEdge
SRINIR,RedEdge
red-edge (raw)
NG
GCI

MCARI
TCARI
SRIRedEdge,Red
IKAW4
OSAVI

MCARI
DVIRedEdge,Red
SRIRedEdge,Red
TCI
TCARI

SRINIR,RedEdge
MCARI
NDVIRedEdge
red-edge (raw)
NG

NDVIRedEdge
SRINIR,RedEdge
MCARI
DVIRedEdge,Red
NG

By analyzing Table 5 we can see that

• In general, MS imagery leads to better performance than RGB imagery. We can see two
RGB VIs that were among the top five best-ranked VIs: DVIGreen,Red in early season
for LOFO-CV-LRe and IKAW4 in the late season for rev-LOFO-CV-HRe.

• For rev-LOFO-CV, we can see that red-edge-based VIs do better from middle to
late season.

• NIR-based VIs do especially well earlier in the season, which makes sense, since the
NIR reflectance decreases around the middle of the growing season [18]. NDVI is also
among the top-ranked VIs in early season.

• Another noteworthy VI is the NDVIGreen, which is relatively high ranking for the
LOFO-CV experiments using HRe data.
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• We can also see that the red-edge raw-band is frequently among the top five highest-
ranked VIs, suggesting we could save computational costs and skip the VI calculation
step by using the red-edge band directly.

• Over the entire growing season, the three VIs among the top five best ranking per-
formance for each of HRe, LRe, LOFO-CV, and rev-LOFO-CV, are SRINIR,RedEdge,
NDVIRedEdge, and NG.

Among the five worst-performing VIs for HRe, LRe, LOFO-CV, and rev-LOFO-CV,
which can be found in Table 6, the following observations can be made:

• Approximately 70% of these VIs included the blue band in their definition, whereas
the top five best-ranked VIs rarely included the blue band in their definition. In fact,
the middle of the season had no blue-based VIs that were ranked among the top
five. Interestingly, NDVIBlue was ranked among the top five best VIs for LOFO-CV-
HRe, suggesting the blue band still has prediction power when combined with other
MS bands.

• Approximately 30% of the raw-bands, all of which were RGB, were among the worst-
performing VIs.

• Nearly all the worst-performing VIs (95%) were RGB-based. There were no NIR-based
VIs in the early and middle seasons among the five worst VIs. Only in late season
for rev-LOFO-LRe were there two NIR-based VIs among the worst VIs. On the other
hand, for red-edge-based VIs, there were no red-edge-based VIs among the worst
during late season. Only in the early and middle seasons for LOFO-CV-HRe was there
a red-edge-based VI among the five worst.

Table 6. Five worst-performing VIs on average over the growing season by LR model and LOFO-CV
and rev-LOFO-CV evaluation methods, where VIs listed in cyan-, orange-, and black-coloured font
are NIR-based, red-edge-based, and RGB-based VIs, respectively, LOFO-CV = leave-one-field-out CV,
reverse LOFO-CV = leave-all-but-one-field-out CV, HRe = high spatial resolution dataset, LRe = low
spatial resolution dataset, and the VIs are defined in Tables A1–A3 in Appendix A.

Early Season Mid Season Late Season Entire Season

HRe LRe HRe LRe HRe LRe HRe LRe

LOFO-CV

MCARI
red (raw)
IKAW2
blue (raw)
green (raw)

SRIGreen,Blue
IKAW2
blue (raw)
green (raw)
b

TCARI
SRIGreen,Blue

IKAW2
IKAW5

ExB

IKAW2
CIVE
SRIGreen,Blue
blue (raw)
IPCA

MSRGreen,Red
NGRDI
IPCA
SRIGreen,Red
SRIGreen,Blue

IKAW2
blue (raw)
SRIGreen,Blue
green (raw)
IPCA

DVIg,b
IKAW5
ExB
IKAW2
SRIGreen,Blue

ExB
IKAW2
blue (raw)
SRIGreen,Blue
IPCA

reverse
LOFO-CV

SRIRed,Blue
green (raw)
blue (raw)
b
IPCA

IKAW1
SRIRed,Blue
green (raw)
b
IPCA

red (raw)
green (raw)
MSRGreen,Red
blue (raw)
SRIGreen,Red

green (raw)
b
IKAW1
IPCA
SRIRed,Blue

ExB
DVIg,b
IKAW5
red (raw)
SRIGreen,Blue

blue (raw)
WDRVI
SRIGreen,Blue
NDVI
red (raw)

SRIGreen,Blue
ExB
green (raw)
blue (raw)
red (raw)

SRIGreen,Blue
IPCA
green (raw)
blue (raw)
red (raw)

3.1.2. MS Imagery vs. RGB Imagery

We can see in Figure 6 that in the over-optimistic case when using KF-CV, on average
MS consistently outperforms RGB imagery for both LR and RF and for both HRe and
LRe datasets.

We can see in Figures 2 and 3 that for DoY 193, LR-rev-LOFO-ExR (an over-pessimistic
evaluation method) does better than LR-KF-CV-NDVIRedEdge (an over-optimistic evaluation
method), suggesting RGB imagery can outperform MS imagery. Keep in mind that the
performance trends in Figures 2 and 3 are averaged out over both the HRe and LRe dataset
types, meaning performance trends such as the excellent results of RF-KF-CV-HRe are
masked in this chart. Furthermore, rev-LOFO-ExR also outperforms every othen RGB
camera could be used to obtain reasonable results in early-to-mid season, instead of using
an expensive MS camera. For almost every other DoY other than 193, the NDVIRedEdge
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experimental results consistently did better than the ExR. For LR, even the four more
pessimistic spatial CV techniques for NDVIRedEdge (rev-LOFO-CV, LOFO-CV, rev-SpKF-
CV, and SpKF-CV) outperformed the over-optimistic KF-CV-ExR on multiple occasions
during the middle of the season. This was not observable for RF performance, although RF
overfitting to the spatial structures of the data may explain these trends. Nevertheless, this
suggests MS imagery is generally better for yield prediction than RGB imagery, which is
consistent with the findings in other literature [29].

Figure 6. KF-CV average coefficient of determination (R2) over the growing season for all fields and
VIs, where RF = random forest, LR = linear regression, 10F-CV = 10-fold CV, MS = multispectral
imagery, RGB = red-green-blue imagery, LRe = low spatial resolution dataset, and HRe = high spatial
resolution dataset.

We can see in Figure 4 that in general, NDVIRedEdge led to more standard deviation in
the CC performance compared to ExR, except for the SpKF-CV approach. We can also see
that for the LOFO-CV experiments (and most other types of experiments), NDVIRedEdge
outperforms ExR in average CC performance, whereas for the rev-LOFO-CV experiments,
the opposite is the case, ExR outperforms NDVIRedEdge. The rev-LOFO-CV experiments
were designed to be more pessimistic than LOFO-CV and act as a baseline to evaluate
the true generalizability of a model that is attempting to perform extrapolation from one
field’s imagery to a new field’s unseen imagery. In other words, this type of experiment
simulates the situation where a cold-start SFS is being deployed, and only data from one
farm are available. These results suggest that ExR generalizes better than NDVIRedEdge in a
cold-start situation where limited field imagery is available (for DoY 193). This begs the
question: for MS imagery, is there a VI that has better average performance for rev-LOFO-
CV experiments than NDVIRedEdge? If such a VI exists, it would suggest that such a VI is
better at generalizing when limited field data are available than NDVIRedEdge, meaning the
choice of VI could be made based on the amount of data available.

Source of bias: Note that for DoY 193, there was an issue with the NIR band for Field
11, so no MS imagery for Field 11 was considered, whereas there was RGB imagery for
Field 11. In addition, the SpKF-CV results using Field 11 data had better performance
than the two smallest fields (Fields 4 and 9). This suggests that the LOFO and rev-LOFO
results for DoY 193 might have a bias that favours RGB imagery results due to MS imagery
missing for Field 11 that same day. Furthermore, some days only had imagery from one
field (DoY 211 for both RGB imagery and MS imagery and 231 for MS imagery), so the



Remote Sens. 2024, 16, 683 16 of 39

LOFO-CV and rev-LOFO-CV evaluation methods could not be applied, meaning the data
had to be interpolated in Figures 2 and 3 for plot-line continuity. Similar line continuity
interpolation for DoY 252 was performed for MS imagery plotted in Figure 6. Furthermore,
for DoY 252, we only had RGB imagery available, so the MS performance trends were also
interpolated for that day. In particular, if we observe Figures 2 and 3, for DoY 211 and 231
there are spikes in performance, which may be attributed to only having imagery from a
single field (Field 3 for DoY 211 and Field 11 for DoY 231 for the MS imagery). This could
also be attributed to a previously discussed observation that red-edge-based VIs perform
better during the middle to late season in general.

Takeaway: MS imagery, especially imagery containing the red-edge band, obtains the
best yield prediction results and should be favoured over RGB imagery if it is available.
One could save computational costs and skip the VI calculation step by using the red-edge
band directly. The SRINIR,RedEdge, NDVIRedEdge, and NG VIs were found to be among the
VIs with the best yield prediction power for the entire season.

3.2. Effects of Spatial Autocorrelation on Performance

The effects of SA on yield prediction ML model performance are examined in this
section by analyzing the results of the location-only feature CV experiments. We can see in
Figure 5 that the RF model learns each field’s spatial patterns well, performing virtually
perfectly, whereas LR does more poorly and has trouble doing well on every field.

RF obtained 0.996 CC and 2.281 RMSE, on average, and LR obtained 0.490 CC and
21.260 RMSE, on average. Furthermore, Figure 6 compares the results of KF-CV experiments
for LR vs. RF, HRe vs. LRe, and MS imagery (the average overall NIR-based and red-edge-
based VIs) vs. RGB imagery (the average overall RGB-based VIs from the RGB camera); we
can see that the yield prediction performance results obtained from RF when using HRe
datasets were quite good even early in the season when images mostly contained soil with
little vegetation. Intuitively, good yield prediction performance should be difficult in this
situation. Another explanation could be that RF is sensitive to the number of features in the
dataset (which we discuss briefly in Section 3.4) and does better with an increased number
of features, although, Figure 4 does not support this as the only explanation, since only
when HRe and KF-CV are combined does RF do quite well. In all the other spatial CV cases
with HRe, RF does not do as well. These observations suggest that the results of applying
KF-CV to RF with HRe (RF-KF-CV-HRe) are over-optimistic and are due to RF overfitting
to the spatial structure found in HRe datasets instead of learning the reflectance trends in
relation to yield.

Takeaway: These results illustrate that one has to be careful with how one designs
ML experiments and sampling schemes using crop imagery and yield data, since assuming
independence between the training and testing datasets should be avoided when a spatial
dependence structure exists; otherwise over-optimistic results may be obtained and this
could lead to misinformed decision making by stakeholders.

3.3. ML Model Comparison

We analyze the differences in performance between RF and LR in this section. We can
see in Figures 4 and 6 that RF overfits to the spatial structure when RF-KF-CV-HRe is used,
since in no other spatial CV method did RF outperform RF-KF-CV-HRe.

The observations we made about RF may be explained by using the location-only
feature experiment findings discussed in Section 3.2; that is, RF can make use of the
underlying spatial structure in the data to make yield predictions using the HRe dataset
type instead of learning reflectance trends, since the HRe dataset by design contains more
spatial structure information than LRe. When using LRe datasets, RF appears to overfit less
to the spatial structure, since (a) RF’s performance is lower than LR’s for the entire season
(shown in Figure 6), and (b) in both the RF-rev-LOFO-CV-LRe and RF-rev-LOFO-CV-HRe
experiments ExR did better than RF-KF-CV-LRe (shown in Figure 4).
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In general, LR appears to be better at generalizing, which is consistent with claims
made by Zhang et al. [67], since (a) over the entire season for KF-CV experiments, the
difference in performance of LR for the LRe and HRe datasets is not visibly significant
(shown in Figure 6), although it is worth pointing out that HRe generally does lead to
slightly better performance over LRe, and (b) the over-optimistic KF-CV results are similar
to the over-pessimistic spatial CV results. In fact, LR did generally better than the over-
optimistic KF-CV when using LOFO-CV and rev-LOFO-CV, providing further evidence
that LR generalizes better than RF when the dataset has a spatial structure (shown in
Figure 4).

Furthermore, we can see in Figure 4 that in general, RF tends to have less standard
deviation than LR when using ExR (except in the case of rev-LOFO-CV), suggesting that
RF produces more consistent prediction results than LR for RGB imagery for DoY 193.

Moreover, by observing Table 7, we found that for rev-LOFO-CV, LRe datasets, and
MS imagery, LR does much better than RF, especially at the start of the season. As the
season progresses, the performance difference between RF and LR generally decreases. For
RGB imagery, the performance difference between LR and RF is larger than MS imagery at
the end of the season.

Table 7. Average R2 performance of LR and RF over the entire season for the LRe datasets and
rev-LOFO-CV evaluation method, and for MS imagery (NIR-based and red-edge-based VIs) and
RGB imagery, where RGB = red-green-blue, MS = multispectral, RF = random forest, LR = linear
regression, and DoY = day of year.

DoY

Imagery
Type Model 146 147 148 149 150 151 159 173 179 193 201 216 223 231 237 245 252 257 273

RGB LR 0.08 0.14 0.19 0.15 0.15 0.14 0.01 0.12 0.20 0.37 0.20 0.07 0.07 0.04 0.02 0.03 0.08 0.12 0.23
RGB RF 0.02 0.08 0.07 0.08 0.06 0.07 0.01 0.03 0.03 0.15 0.06 0.01 0.03 0.02 0.01 0.02 0.03 0.04 0.08
MS LR - - - - - - - 0.31 0.41 0.32 0.34 0.23 0.15 - 0.14 0.11 - 0.09 0.25
MS RF - - - - - - - 0.08 0.14 0.11 0.14 0.10 0.07 - 0.06 0.06 - 0.05 0.08

Takeaway: LR has better generalizability than RF when used on yield data with spatial
structure, suggesting that complex models may also overfit to spatial structure in datasets
if the spatial dependence is not addressed via spatial CV. LR also generally does better than
RF with LRe datasets, suggesting LR should be chosen over RF when only satellite imagery
is available.

3.4. High vs. Low Spatial Resolution Imagery Analysis

We examine the performance differences between the HRe vs. LRe datasets in this
section by examining the performance of the various evaluation methods for DoY 193
(one of the acquisition dates that lead to the best performance for RGB imagery), and
NDVIRedEdge and ExR. We can see in Figure 4 that changes in the imagery’s spatial res-
olution have the most impact on RF. RF does better with HRe than with LRe (especially
for KF-CV), suggesting that the good performance of RF-KF-CV-HRe may not exclusively
be the result of overfitting to spatial structure; RF may also be taking advantage of the
higher resolution imagery and the additional features. LR appears to do slightly better on
average with LRe data, except in the case of KF-CV. In particular, the configuration that
achieved the best results for DoY 193 using LR involved the LRe data for the rev-LOFO-CV
method, suggesting cheaper satellite imagery could be used instead of more expensive
UAV imagery.

Takeaway: High spatial resolution imagery obtained from expensive UAV missions is
not necessarily required to obtain reasonable results. The less expensive approach of using
RGB or MS imagery obtained from a satellite instead of a UAV can be applied to obtain
reasonable results if a proper VI is chosen and the image acquisition is well-timed.
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3.5. Evaluation Method Comparison

In this section, the performance difference between standard KF-CV and the spatial
CV evaluation methods is examined. We can see in Figure 4 that RF generally overfits,
whereas LR is better at generalizing. In fact, for two of the pessimistic evaluation techniques,
LOFO-CV and rev-LOFO-CV, LR does comparably well compared to the over-optimistic
KF-CV method. This is particularly the case for LRe datasets, where both LOFO-CV and
rev-LOFO-CV outperform KF-CV. However, the higher LR-LOFO-CV and LR-rev-LOFO-
CV performance compared to LR-KF-CV could be attributed to the increased number of
training samples per fold compared to the fold size of KF-CV for the smaller fields, since
in all cases, both versions of the LR-SpKF-CV did worse than LR-KF-CV, and in these
experiments the dataset sizes were similar. This begs the question: to what extent does fold
size affect performance?

3.5.1. LOFO-CV vs. rev-LOFO-CV

• We can see that for the RGB VI (ExR) for LOFO-CV and rev-LOFO-CV in Figures 2 and 3,
earlier in the season there is no large distinction between both evaluation methods
other than the peak performance achieved for DoY 193 by rev-LOFO-CV, although,
LOFO-CV does generally better than rev-LOFO-CV later in the season. An observable
difference between LR and RF is that negative CC performance is achieved by LR-
LOFO-CV later in the season, whereas RF has positive CC performance.

• For both the NDVIRedEdge and ExR, the peak performance achieved is by rev-LOFO-CV.
• There is also some bias that could be introduced in the two types of LOFO-CV ex-

periments, since imagery missions were occasionally conducted 1 to 3 days apart
(delayed) from the other fields for some weeks, especially at the end of the season.
In fact, LOFO-CV and rev-LOFO-CV do most poorly at the end of the season for
both ExR and NDVIRedEdge, which may be attributed to these delays in field imagery
acquisition missions.

• There are also days when one field was missing, meaning the two LOFO CV methods
(rev-LOFO-CV and LOFO-CV) may have a bias in the results involving experiments
with missing fields due to the reduced number of folds.

3.5.2. LOFO-CV vs. SpKF-CV

When observing the LOFO-CV and SpKF-CV (the k-means-based spatial CV) methods
for ExR, we can see that earlier in the season there is no large difference between the
two; that is, LOFO-CV, rev-LOFO-CV, SpKF-CV, and rev-SpKF-CV are relatively similar in
early season (although SpKF-CV does do slightly better). For both ExR and NDVIRedEdge,
in the middle of the season, LOFO-CV and rev-LOFO-CV generally do slightly better
than SpKF-CV and rev-SpKF-CV, and late in the season, LOFO-CV and rev-LOFO-CV
do generally worse than the SpKF-CV and rev-SpKF-CV approaches (especially for ExR),
further suggesting these delays in field imagery acquisition missions negatively impacted
the LOFO-CV and rev-LOFO-CV performance. Since LOFO-CV is a farm-level evaluation
method and the SpKF-CV is a field-level evaluation method, another possible reason for
LOFO-CV doing better than SpKF-CV earlier in the season and doing more poorly than
SpKF-CV later in the season is that the early-to-middle and middle-to-late season, for ExR
and NDVIRedEdge, respectively, hold spectral information patterns that are strongly tied to
potential yield and are present in each of the fields’ imagery, whereas later in the season
these yield-reflectance relationships weaken and become field-dependent (e.g., depending
on the management practices applied to the field) and have trouble being used by models
to be generalized to each field. Note that the comparison between LOFO-CV and SpKF-CV
is not necessarily fair because the fold sizes are not the same. SpKF-CV is more pessimistic
because of the smaller fold sizes.

The two types of SpKF-CV methods have more standard deviation than LOFO-CV
and rev-LOFO-CV, probably due to the smaller training dataset size.
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3.5.3. SpKF-CV vs. rev-SpKF-CV

From Figures 2 and 3, we can see that, for ExR and NDVIRedEdge, SpKF-CV generally
does better than rev-SpKF-CV for the entire season, except for DoY 211 (and DoY 257 for
LR) for NDVIRedEdge. This suggests increasing the amount of available training data from a
field will increase model performance.

Table 8 presents the combined average R2 performance results of LR and RF for the
two types of SpKF-CV experiments for each field. We can see that generally, Field 11
imagery led to better performance. This might be because the spatially wide clusters in
Field 11 were wide enough to capture the underlying imagery yield trends, whereas the
smaller fields did not have wide enough clusters to do the same. For SpKF-CV experiments,
imagery of Fields 2 and 4 had the worst performance, which may be due to a lack of yield
spatial variability (clusters of low yield areas were mostly found in a single sub-region of
the fields instead of multiple sub-regions). For rev-SpKF-CV experiments, Field 9 imagery
had the worst performance, probably because Field 9 was the smallest field.

Table 8. Combined average LR and RF R2 performance of each field over the entire season for
SpKF-CV and rev-SpKF-CV, HRe and LRe, and for MS imagery (NIR-based and red-edge-based VIs)
and RGB imagery, where SpKF-CV = spatial k-fold CV, rev-SpKF-CV = reverse spatial k-fold CV,
LRe = low spatial resolution dataset, HRe = high spatial resolution dataset, RGB = red-green-blue,
and MS = multispectral.

Field

Imagery Type Imagery Resolution Evaluation Type 1 2 3 4 9 11

MS HRe SpKF-CV 0.24 0.13 0.27 0.17 0.18 0.32
MS LRe SpKF-CV 0.19 0.11 0.22 0.12 0.14 0.25
RGB HRe SpKF-CV 0.17 0.10 0.17 0.12 0.14 0.19
RGB LRe SpKF-CV 0.13 0.09 0.12 0.10 0.10 0.16
MS HRe rev-SpKF-CV 0.13 0.13 0.25 0.18 0.05 0.26
MS LRe rev-SpKF-CV 0.12 0.14 0.23 0.17 0.03 0.23
RGB HRe rev-SpKF-CV 0.08 0.09 0.11 0.09 0.04 0.12
RGB LRe rev-SpKF-CV 0.07 0.10 0.09 0.09 0.02 0.12

Takeaway: Results suggest that LOFO-CV and rev-LOFO-CV have the advantage of
evaluating the extrapolation ability of a model when sampling regions (different fields)
are relatively similar, but when the sampling regions start to differ (field imagery that do
not share the same acquisition date) these two methods become overly pessimistic and the
SpKF-CV should be favoured since the imagery from a single field was typically always
taken on the same day (in rare circumstance a field mission may have been split into two
consecutive days due to drone battery issues). However, the SpKF-CV struggles due to
having lower training dataset sizes compared to LOFO-CV, especially for the smaller fields,
and as a result, is also over-pessimistic. Therefore, the SpKF-CV may be appropriate when
field sizes are sufficiently large, whereas LOFO-CV would be more appropriate when
imagery from multiple smaller fields is available. Using KF-CV alone as an evaluation
method is not sufficient to fairly assess the generalizability and extrapolation ability of a
model; spatial CV and location-only feature CV evaluation methods should also be used.
One should keep in mind that there is bias in the assessment of the extrapolation ability of
the models used in the present work using any of the spatial CV methods since the fields
are all from the same farm and share the same weather conditions.

3.6. Imagery Acquisition Date Analysis

We can see in Figures 2 and 3 that the middle of the season is generally the best time
to capture imagery for maximizing yield prediction performance results, whereas early
season led to poor performance and late season had generally lower performance.

Takeaway: The middle of the season is the best time to acquire imagery to maximize
yield prediction results.
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3.7. Data Processing Time Analysis

An execution time analysis of the image processing and ML models tested in the
present work was performed and is explained in this section to illustrate the feasibility of
deploying the applied methodology to a live setting. Table 9 presents the average execution
times for the image pre-processing steps. Table 10 shows the average execution times to
create all the ML input datasets for a single DoY. Table 11 shows the average execution
times of the ML experiments.

Table 9. Average (sampled over three random acquisition dates) image processing steps execution
time, where VI = vegetation index, RGB = red-green-blue imagery, MS = multispectral imagery,
smaller fields = Fields 1 to 9, min = minute, and h = hours.

Imagery Processing Step Imagery Type
Smaller Fields
Execution Time
(min)

Field 11
Execution Time
(h)

Orthomosaic Cropping RGB 1.6 0.07
Orthomosaic Cropping MS 2.2 0.26
VI Raster Creation RGB 66 5.6
VI Raster Creation MS 12.1 1.1
Yield + Imagery Data Fusion RGB 72 5.5
Yield + Imagery Data Fusion MS 30 2.1

Table 10. Average (sampled over three random acquisition dates) execution time to split and create
all datasets for all VIs and fields, where KF-CV = k-fold CV, LOFO-CV = leave-one-field-out CV,
rev-LOFO-CV = leave-all-but-one-field-out CV, SpKF-CV = spatial k-fold CV, rev-SpKF-CV = reverse
spatial k-fold CV, RGB = red-green-blue imagery, MS = multispectral imagery, and min = minute.

Evaluation Method Imagery Type
LRe Execution
Time (min)

HRe Execution
Time (min)

KF-CV RGB 0.11 0.12
KF-CV MS 0.12 0.13
LOFO-CV and rev-LOFO-CV RGB 1.0 1.5
LOFO-CV and rev-LOFO-CV MS 1.2 2.0
SpKF-CV and rev-SpKF-CV RGB 5.6 8.8
SpKF-CV and rev-SpKF-CV MS 11.9 20.2

Table 11. Average (sampled over three random acquisition dates and five random VIs) execution
times for ML experiments, where KF-CV = k-fold CV, LOFO-CV = leave-one-field-out CV, rev-
LOFO-CV = leave-all-but-one-field-out CV, SpKF-CV = spatial k-fold CV, rev-SpKF-CV = reverse
spatial k-fold CV, location-only = only location features used, LRe = low spatial resolution dataset,
HRe = high spatial resolution dataset, LR = linear regression, RF = random forest, s = second, and
m = minute.

CV Type Resolution Field Size LR Execution
Time (s)

RF Execution
Time (min)

KF-CV HRe big 1 6.0
KF-CV HRe small 1 1.3
KF-CV LRe big 1 6.5
KF-CV LRe small 0 1.2
location-only N/A big 0 1.4
location-only N/A small 0 0.17
LOFO-CV HRe all 0 0.28
LOFO-CV LRe all 0 0.37
rev-LOFO-CV HRe all 0 0.12
rev-LOFO-CV LRe all 0 0.13
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Table 11. Cont.

CV Type Resolution Field Size LR Execution
Time (s)

RF Execution
Time (min)

rev-SpKF-CV HRe big 5 1.6
rev-SpKF-CV HRe small 2 0.22
rev-SpKF-CV LRe big 2 1.3
rev-SpKF-CV LRe small 1 0.22
SpKF-CV HRe big 3 5.0
SpKF-CV HRe small 2 1.1
SpKF-CV LRe big 2 5.1
SpKF-CV LRe small 1 1.2

3.7.1. Imagery Acquisition

During an image capture mission, the UAV captured MS images (five images, one
for each band) and RGB images (a single image) approx. every 1 s and 2 s, respectively.
On average, 114.14 Mbps of raw imagery was created during a mission. The average
UAV flight duration was 474.6 s (7.9 min) for the smaller fields and 1855.5 s (30.9 min) for
Field 11.

3.7.2. Imagery and Yield Pre-Processing

From the imagery stored on the UAV’s SD card, InDro Robotics generated ortho-
mosaics using PIX4D on a machine with the following specifications: 64-bit Windows
10 machine, 64 GB of RAM, a 24-core AMD Ryzen Threadripper 3960X CPU @ 3.8 GHz,
and an NVIDIA GeForce RTX 3080 Ti GPU. For a single UAV mission:

• For RGB imagery, six orthomosaics were typically created (one for each field). Some-
times, Field 11 was split into two orthomosaics for a single UAV mission (this was
conducted for five missions from August onward), so the orthomosaic with the most
imagery and the least amount of noise was chosen for further processing for that DoY.
On average, it took 2.4 and 3.1 h to generate orthomosaics for the smaller fields and
Field 11, respectively.

• For MS imagery, twelve (2 × 6) orthomosaics were typically created, one for each band
and one for NDVI, and two sets of six orthomosaics (one set for Field 11 and another
set for the smaller fields) were generated. On average (ignoring a 74.2 h outlier), it
took 6.8 and 4.8 h to generate the six single-band orthomosaics for the smaller fields
and Field 11, respectively.

The orthomosaic creation process also included 3D surface model creation and a PIX4D
output report. After being delivered via an external hard disk drive (HDD) at the end of
the 2021 growing season, the orthomosaics were then processed using a machine with the
following specifications: a 64-bit Windows 10 desktop, 32 GB of RAM, an 8-core Intel Core
i7 CPU @ 3.50 GHz, and a 1 TB solid-state drive (SSD). For the execution time analysis
discussed next in this section, three DoYs were randomly sampled for MS imagery and
another three DoYs were randomly sampled for RGB imagery; the execution times were
approximated by taking the average execution time over those samples. Table 9 shows
these results, where the smaller field execution time is the average over the smaller fields.
The cropping of the orthomosaics was conducted using QGIS, where fields were cropped
into multiple overlapping tiles to avoid reading entire orthomosaics into memory (this
was especially problematic with Field 11). Fields 1, 2, 3, 4, 9, and 11 were horizontally
partitioned into 5, 6, 4, 6, 5, and 21 tiles, respectively. Some RGB orthomosaics were too big
for further processing, so their spatial resolution was lowered to 1.149 cm. The cropped
orthomosaic tiles were then processed by the R programming language version 4.1.3 to
create VI rasters for each tile. The Rcpp package version 1.0.9 was used to enable the use of
C++ to calculate VI rasters in a memory-efficient manner.

The data fusion of the imagery and yield was conducted using Java version 18.0.1,
where the cropped orthomosaic tiles were progressively read to fuse each yield sample
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to its corresponding pixel neighbourhood, where pixels outside field boundaries were
ignored. Once fused, the resulting dataset contained every feature and had to be split into
smaller HRe and LRe single-VI feature datasets for each fold and for each iteration of the
CV experiments using a combination of Java and R programming languages. The average
total execution time for all VIs for each evaluation method type (averaged over both HRe
and LRe) of this final dataset-splitting step before feeding the datasets to the ML models
can be found in Table 10. For the location-only CV, there was no dataset splitting required:
we just used the interpolated yield dataset and fed it to Weka.

Takeaway: For orthomosaic generation, on average, orthomosaics with the largest
area (greatest number of input images to be stitched together) took the longest execution
time. For VI creation and data fusion, Field 11 took the longest execution time compared
to the smaller fields. For splitting the datasets, the HRe datasets generally took longer
than LRe, probably because HRe had two additional features. The MS imagery took longer
than the RGB imagery when splitting the data. This may be explained by the fact that the
MS imagery was generally less noisy than the RGB imagery, meaning more samples were
found in the MS datasets. The dataset splitting involving clustering took the longest, which
was likely due to the added computational complexity of the clustering step.

3.7.3. Machine Learning

For the execution time analysis discussed in this section, three DoYs were randomly
sampled for MS imagery and another three DoYs were randomly sampled for RGB imagery,
and the execution times were approximated by taking the average execution time over
those samples. In this analysis, the models were trained and evaluated using a desktop
machine with the following specifications: a 64-bit Windows 10 desktop, 48 GB of RAM,
and a 12-core Intel Core i7-12700 CPU @ 2.10 GHz.

The average ML experiment execution time, over a sample of five VIs, is shown in
Table 11, where an experiment in this case consists of all 10 iterations and folds.

Takeaway: Field 11 datasets took longer than smaller field datasets. LR was much
faster than RF. rev-LOFO-CV and rev-SpKF-CV were faster than LOFO-CV and SpKF-CV,
respectively, probably because training took longer than testing and there were less training
data in the reverse CV methods. The LOFO-CV and rev-LOFO-CV methods were among
the fastest methods probably because they had fewer folds than the other methods.

4. Discussion

In this part of the section, we compare our results to the results of similar yield
prediction studies. Sapkota et al. [72] found that using UAV-based imagery led to better
corn yield prediction results than using satellite-based imagery, which is similar to our
findings that suggest that higher spatial resolution imagery may lead to better model
performance. In similar corn yield prediction studies that used KF-CV, Guo et al. [29],
Baio et al. [73], and Ramos et al. [74] also found that RF was the best-performing model.
There are some studies where RF was not found to be the best model: Fan et al. [75] found
that ridge regression outperformed the RF model, where multi-temporal VI features and
multiple VIs were fed as input to their ML models, and Guo et al. [76] found support vector
machine (SVM) to be one of the better-performing models for corn yield prediction. Our
hypothesis discussed in Section 3.4 that RF may have obtained better performance in the
RF-KF-CV-HRe experiments due to the additional number of features is supported by the
results of two studies [77,78], which find that additional imagery features lead to better
model performance. Herrmann et al. [78] found that VI-based models performed generally
worse than partial least squares regression models that included all MS imagery bands.
Kumar et al. [77] found that typically one to two VI features (those most correlated with
yield) led to the best performance and that adding more VIs as features generally did not
improve yield prediction model performance.

We proceed to discuss the works that found similar VI performance results as those
discussed in the present work. Sunoj et al. [30] also found that MS-based VIs performed
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better than RGB-based VIs for corn yield prediction. Our findings showed that OSAVI
and SAVI are among the best-performing VIs in early season. This is consistent with other
studies that found that OSAVI does well earlier in the season [79]. This performance trend
aligns with the fact that SAVI and OSAVI [80] were designed to reduce the unwanted
influence of soil-background reflectance (which is more prevalent in early season) on
VIs [79] such as SRNIR,Red and NDVI [81], although there are studies that found that OSAVI
does not perform well in early growth stages [9]. Furthermore, the good NDVI performance
(in early season) we observed is consistent with the literature: many studies [9,30,74,82]
have found NDVI to be among the most important VI for yield prediction. The good
performance we found with NDVIGreen is also consistent with other yield prediction
literature that found NDVIGreen to be among their top-performing VIs for corn yield
prediction [9,27,74,77]. Barzin et al. [79] found the NDVIGreen to best perform during the
V6-7 stages of corn growth. Our findings that the red-edge imagery tends to lead to good
model performance are consistent with other studies. Herrmann et al. [78] found that
the bands and VIs in the red-edge spectral region led to the best yield prediction model
performance. Kumar et al. [77] also found the red-edge band to enable good corn yield
prediction model performance. Furthermore, our observation that red-edge-based VIs
do better from middle to late season aligns with claims made in the literature [20,83].
NDVIRedEdge was found to be the best-performing VI in Canata et al. [14] for sugarcane
yield prediction, and was among the best-performing VIs in other corn yield prediction
studies [27,74,78]; Barzin et al. [79] found the NDVIRedEdge to best perform during the V6-7
stages of corn growth.

We will now discuss the effects of image acquisition date on model performance. Bose
et al. [56] found that imagery from the middle of the growing season led to better yield
prediction results for winter wheat. Yang et al. [27] found that middle-season imagery (in
particular, during the milking growth stage) produced the best corn yield prediction results.
Sunoj et al. [30] found the R4 growth stage (which would be considered late season in the
present work) to be the best time to acquire imagery to maximize performance, although a
reliable performance was still obtained for most of the mid season, especially when using
imagery acquired after the R1 growth stage. Guo et al. [29] found that mid-season imagery,
especially after the tasselling stage (VT), was the acquisition period that led to the best corn
yield model prediction performance. Fan et al. [75] found the best performance to be during
the VT stage. Oglesby et al. [66] found the VT and R1 growth stages to produce the best
results, although there are some studies that found that imagery from late season produced
the best results [67]. Poor early season performance was also found in other corn yield
prediction studies [29,75,76,84]. Saravia et al. [85] found that imagery from the reproductive
growth stage (mid season) had the most correlation with yield. Sunoj et al. [30] also found
that at the very end of the season (R5) yield prediction performance was considerably
lower. The trend that the middle and sometimes late season imagery leads to better model
prediction performance compared to early season imagery may be explained by the fact
that although corn can be stressed by drought in both early and reproductive growth stages,
stress in the reproductive stages of corn can reduce yield, whereas early-stage stress may
have less of an impact on yield [78].

In the remainder of this section, we summarize the methodology of the literature
related to the present work. What follows is a summary of works that perform corn
grain yield prediction using UAV-based and/or airborne-based imagery using exclu-
sively data-drivenmodels. A detailed comparison of these approaches can be found in
Tables A4 and A5 in Appendix A (Section 4.1 explains the tables in detail).

Uno et al. [86] compare the prediction performance of artificial neural networks (ANN)
and stepwise multiple linear regression (stepwise MLR) models to baseline VI-based
models. They found that the ANN and stepwise MLR model performances were superior
to those of the VI-based approaches.

The following yield prediction works studied the optimal time to acquire imagery and
the optimal VIs (or TIs) to use as features to maximize yield prediction model performance:
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Sunoj et al. [30] found that NDVI and EVI2 are the best VIs during the R3 and R4 growth
stages, producing the most accurate results. Barzin et al. [79] used ML models that include
multi-VI features and found that (a) the Simplified Canopy Chlorophyll Content Index
(SCCCI), where SCCCI = NDVIRedEdge/NDVI, was one of the best VIs for predicting yield
at various growth stages; (b) the V10 and VT growth stages were the best growth stages for
model performance. Saravia et al. [85] compared model performance when using multi-VI
feature datasets vs. single-VI feature datasets. They found a high correlation between
multiple VIs and yield during the reproductive growth stage of corn. Oglesby et al. [66]
found that the period between VT and R1 was the best time to acquire imagery and that the
SCCCI VI was generally the best-performing VI for those growth stages. Ramos et al. [74]
found that the RF model was the better-performing model and that the NDVI, NDVIRedEdge,
and NDVIGreen were the top-ranked VIs for yield prediction performance. Zhang et al. [67]
found that imagery (specifically, using the ExG VI) from crops closer to maturity led to better
yield prediction model performance. Yang et al. [27] found that the use of multi-temporal
features led to better performance compared to using only mono-temporal features. They
found the R3 growth stage to be the best stage for the mono-temporal models, whereas
combining imagery from VT, R1, R3, and R4 for the multi-temporal models produced the
best results. NDVIGreen and NDVIRedEdge were found to be the best VIs for the R3 stage.
Guo et al. [29] searched for optimal indices using stepwise regression models and fed the
optimal indices to more complex ML models. They found that the RF model performed
the best for yield prediction, and that the ML models generally performed better than
the stepwise regression model. Chatterjee et al. [87] used temporally accumulated VIs
as features fed into ML models and found that normalized difference type VIs produced
the best model performance and that the flowering growth stage was the best time to
acquire imagery.

Some yield prediction works explored the prediction power of different types and
combinations of features. Serele et al. [28] varied the types of features fed into a model,
namely (a) only VIs, (b) only TIs, (c) both VIs and TIs, and (d) VIs, TIs, and topography
features. They found ANN models generally performed better than the baseline MLR
models. Fathipoor et al. [88] found that plant height was the most important feature for
yield prediction, and when combined with VI features, slight model performance improve-
ments could be achieved. Dilmurat et al. [22] found that combining VIs with LiDAR-based
texture features improved yield prediction performance compared to using VIs and LiDAR
texture features alone, although alone these features still produced reasonable results.
Garcia et al. [82] fed VIs, and imagery-derived canopy cover and plant density features,
into an ANN model and found that plant density and NDVI were the most important
features for yield prediction. Baio et al. [73] varied the following features input into various
ML models: (a) irrigation management, (b) irrigation management and imagery, and (c)
irrigation management, imagery, and temperature. They found the RF model to be the best
for yield prediction, particularly for the (b) and (c) feature sets. Sapkota et al. [72] found
that a UAV-based RGB VI, GRVI (which is referred to as VIg in the present work), led to
better yield prediction performance than a satellite-based MS VI named NDVI.

Deep learning models were also used in the yield prediction literature. Baghdasaryan
et al. [6] compared ML models with hand-crafted features (e.g., VIs) to deep learning
models with automated feature extraction. They found that the deep learning models
outperformed the ML models. Yang et al. [89] compared the prediction performance of
(a) 2D CNN (model spatial patterns), (b) a 1D CNN (model spectral patterns), and (c) a
2-stream CNN (1D spectral CNN + 2D spatial CNN). They found the 2-stream CNN
performed best. Kumar et al. [77] found that the SVM and k-nearest neighbours (KNN)
models were the best-performing models, whereas their DNN model generally performed
worse due to the limited number of samples. Danilevicz et al. [9] combined multiple data
sources into a learning task by using a multimodal deep learning model. They found that
NDVI and NDVIGreen are the most important VIs for model performance.
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There are works that, in addition to yield prediction, also predicted other crop char-
acteristics. Khanal et al. [90] assessed the impact of field traffic-induced soil compaction
on yield by analyzing the yield precision maps generated by various ML models. Adak
et al. [91] performed a flowering time prediction study using various regression models,
various VIs, and imagery-derived plant height. They found that ridge regression was the
better-performing model for yield prediction. Khanal et al. [24] performed a soil property
prediction study and evaluated multiple ML models using imagery, topography, and soil
features. They found the RF model was the best model for yield prediction. Vong et al. [92]
varied corn seed planting depth to analyze corn emergence spatial variability. The best per-
formance was achieved using multi-temporal and multi-VI features. Herrmann et al. [78]
attempted to identify the crop’s growth stage using imagery. They found that (a) imagery
from the R2 stage produced the best prediction results, (b) partial least square regression
(PLSR) models led to a generally better performance compared to VI-based models, and
(c) red-edge-based VIs had the best performance. Guo et al. [76] perform a chlorophyll
contents estimation study and propose a new VI called modified red blue VI (MRBVI).
They found that MRBVI relatively outperforms the other VIs and that the SVM model was
the best model for yield prediction. Fan et al. [75] performed a flowering time prediction
study and found (a) multi-temporal imagery features led to better model performance than
mono-temporal imagery features, (b) ridge regression was the better-performing model,
and (c) VT was the growth stage that produced the best yield prediction results.

4.1. Comparison of Approaches

To enable the comparison of the works detailed in Section 4 to the present work, a list
of criteria is presented in the next part of this section and is used in Tables A4 and A5 in
Appendix A. The requirements/criteria are listed as follows, where each table’s column
represents a requirement and the column is explained along with any abbreviations used.

Requirement 1. The prediction models used to predict yield.

• Abbreviations: LR = linear regression; MLR = multiple LR; GBDT = gradient-
boosting decision trees; LASSO = Least Absolute Shrinkage and Selection Opera-
tor regression; RR = ridge regression; ENR = elastic net regression; PLSR = partial
least square regression; DRF = distributed RF; ERT = extremely randomized
trees; GBM = gradient-boosting machine; GLM = generalized linear model;
KNN = k-nearest neighbours; CU = cubist; SR = stepwise regression; SMLR =
stepwise multiple linear regression; CNN = convolutional neural network; SGB
= stochastic gradient boosting; ELM = extreme learning machine; 0-R = ZeroR;
DT = decision tree; LME = linear mixed effects; LGBMR = LightGBM regression;
RF = random forest; SVM = support vector machine; VI-based = basic regression
or correlation models applied to VIs; ANN = artificial neural network (with one
hidden layer); and DNN = deep neural network (any ANN with more than one
hidden layer)

Requirement 2. The sensing platforms used to acquire the imagery.

• Abbreviations: SAT = satellite; AIR = airborne/aircraft; UAV = unmanned aerial
vehicle; and HAN = hand-held/tractor-mounted

Requirement 3. The type of imagery used.

Requirement 4. Imagery spatial resolution.

Requirement 5. Imagery temporal resolution (number of acquisitions per season).

Requirement 6. The list of the different types of features included in the models.

• Abbreviations: IMG = imagery; TOP = topography; SOI = soil; MNG = manage-
ment; GEN = genotype information; WEA = weather; LOC = location; LAI = leaf
area index; and BIO = biomass
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Requirement 7. Indicates whether imagery-based plant height was used in the yield
prediction model.

Requirement 8. Number of extracted VIs.

Requirement 9. Number of extracted TIs.

Requirement 10. Number of available spectral bands.

Requirement 11. The yield-sampling technique used to obtain the yield dataset.

• Abbreviations: HA = harvester; YM = yield monitor; and MA = manual

Requirement 12. Number of raw yield samples.

Requirement 13. Total study site size (in hectares).

Requirement 14. Number of growing seasons in the study.

Requirement 15. Growing season period.

Requirement 16. The spatial resolution of the predictions made by the yield prediction
models (the size of the area a prediction covers).

Requirement 17. The temporal resolution of the predictions made by the yield prediction
models (how frequent were predictions made), where:

• ‘multi’ indicates predictions are made every image acquisition;
• ‘annually’ indicates predictions are made once per season/year;
• ‘once’ indicates predictions are made only once.

Requirement 18. The prediction scale of the study, where we refer to a study’s scale as

• pixel-level if the study makes model predictions using multiple input samples
from a management unit (a small plot or a field);

• field-level if the study makes model predictions using only a single input sample
from a management unit.

Requirement 19. Model evaluation methods applied.

Requirement 20. Hyperparameter tuning methods applied.

Requirement 21. Indicates whether temporal structure/features was/were fed to (or used
in) the models. Examples of such features include (a) two imagery features derived
each from two different dates, and (b) a single feature of accumulated (or averaged)
imagery pixels for some location over the growth season.

Requirement 22. Indicates whether spatial structure/features was/were fed to (or used
in) the models. Examples of such features include (a) raw 2D imagery, or (b) statistical
aggregations (such as maximum reflectance or a TI) over a spatial region.

Requirement 23. Indicates whether the spatial generalizability of the models was evaluat-
ed/considered.

Requirement 24. Indicates whether the temporal generalizability of the models was eval-
uated/considered.
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5. Conclusions

In the present work we performed a yield prediction study using UAV-based RGB and
MS imagery and using yield data obtained from a Canadian smart farm. Most UAV imagery-
based yield prediction studies only apply KF-CV for model evaluation, which tends to
lead to over-optimistic results. We applied various spatial generalizability evaluation
techniques to showcase that over-optimistic yield prediction model performance results
may be obtained and that the underestimation of errors can be avoided if a proper spatial
data analysis methodology is applied. We cleaned and interpolated yield data, computed
VIs from the imagery, and fused the yield and imagery (55 VIs + 5 raw-bands) data together
to produce two types of datasets: LRe and HRe. LRe datasets only had mean pixel values,
whereas HRe datasets had the mean, maximum, and minimum pixel values around a yield
point. The fused data were used as input to train and evaluate RF and LR regression models
using 10 iterations of standard 10-fold CV and spatial CV methods. In addition, a dataset
with only location features was used to train and evaluate the two models via standard
10-fold CV. This was performed to have a baseline for spatial analysis and to examine the
effects of SA on model yield prediction performance. We found that the middle of the
season is the best time to acquire imagery. MS imagery provides better results than RGB
imagery, especially when the red-edge band is available. We found that the best-performing
VIs were SRINIR,RedEdge, NDVIRedEdge, and NG. In fact, the red-edge band’s raw reflectance
alone was able to produce reasonable prediction results compared to the other VIs, so
computational resources could be saved by skipping the VI calculation step and using the
red-edge raw-band instead of a VI. Although MS imagery generally does better than RGB
imagery, if the image acquisition date is well timed (e.g., DoY 193) and a good RGB VI
choice is made (e.g., ExR), the RGB imagery’s yield prediction performance can compete
with an MS camera. In terms of the difference between UAV imagery and satellite imagery
(simulated by comparing high spatial resolution performance to low spatial resolution
performance), the choice of the imagery’s spatial resolution most impacted RF, who did
best with high spatial resolution imagery, whereas LR was less impacted by the spatial
resolution of the imagery and did best with low spatial resolution imagery. This suggests
that the choice of the model could be made based on the spatial resolution of the available
imagery and input costs could be reduced by favouring satellite imagery and choosing LR,
since LR had better generalizability than RF. The effects of spatial structure (for example,
SA) on performance depended on the model chosen; that is, RF did not generalize well
and was overfitting to the spatial structure in the location-only and high spatial resolution
imagery datasets, whereas LR generalized better in the presence of spatial structure in
the data. The spatial generalizability experiments performed in the present work are
important because they revealed that over-optimistic model performance may be obtained
if an analyst is not careful when performing ML on yield and UAV imagery data. Improper
management or economic decisions may be made when one relies on an over-optimistic
model, and these decisions could lead to economic loss or other damages (e.g., reduced
crop yield). Therefore, identifying over-optimistic models using spatial CV and estimating
their true extrapolation performance should be considered when predicting yield using
UAV imagery. We hope these findings can help guide the yield prediction community
towards careful model evaluation when working with spatially autocorrelated agriculture
data. A use case of the present work involves deploying models, trained on imagery and
yield data for each week from previous growing seasons, to an SFS such that a farmer could
(a) view weekly yield prediction maps by feeding the system weekly crop imagery, (b)
address the low yield areas, and (c) examine the precision maps generated in the upcoming
weeks to confirm that the issue causing low yield has been addressed by actions conducted
in step (b).

Future work involves:

• Reproducing the present work’s results using (a) 2023 UAV imagery from Area X.O,
and (b) actual satellite imagery instead of simulated satellite imagery.
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• Including an additional benchmark ZeroR model that simply outputs the average of
the training data’s yields to give more insight into how poor models are performing.

• Evaluating additional ML models, especially spatially aware models such as general-
ized least squares [40].

• Evaluating and examining the effects on performance of applying various spatial
sampling schemes (systematic random, simple random, and clustered random [46])
before applying CV.

• Performing hyperparameter tuning.
• Combining features from multiple DoYs in datasets to add a temporal dimension to

the study.
• Performing a temporal generalizability analysis.
• Investigating the effects of number of features on RF performance.
• Expanding on the VI ranking analysis by splitting the mid season in two.
• Exploring multi-band/VI feature models for yield prediction.
• Plotting and analyzing charts similar to Figures 2 and 3 that only involve Field 11 data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16040683/s1, supplementary information can be found along
the present work in the Supplementary Material document, which contains the following informa-
tion: Figure S1: daily average air temperature for the 2021 growing season; Figure S2: daily total
precipitation for the 2021 growing season; Figure S3: SA illustrative example, where chart (a) is a
precision map of the interpolated yield for Field 1, and chart (b) is the corresponding variogram using
a maximum distance of 55 m and lag tolerance of 50%; Table S1: descriptive statistics for the raw yield
(in bu/ac) for each field, where Std. Dev. = standard deviation, Max = maximum, Min = minimum,
Q1 = quartile 1, Q3 = quartile 3, IQR = interquartile range, and n = number of samples; Table S2:
descriptive statistics for the cleaned yield (in bu/ac) for each field, where Std. Dev. = standard
deviation, Max = maximum, Min = minimum, Q1 = quartile 1, Q3 = quartile 3, IQR = interquartile
range, and n = number of samples; and Table S3: descriptive statistics for the interpolated yield (in
bu/ac) for each field, where Std. Dev. = standard deviation, Max = maximum, Min = minimum,
Q1 = quartile 1, Q3 = quartile 3, IQR = interquartile range, and n = number of samples.
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Appendix A

Table A1. Vegetation indices involving only NIR and RGB bands involved in this study, where ρi = the
reflectance of the band i.

Vegetation Index Description Equation Reference

DVINIR,Red NIR-red difference vegetation index ρNIR − ρRed [93]

DVINIR,Green NIR-green difference vegetation index ρNIR − ρGreen [93]

NDVI normalized difference vegetation index (ρNIR − ρRed)/(ρNIR + ρRed) [16,94]

NDVIBlue
blue normalized
difference vegetation index (ρNIR − ρBlue)/(ρNIR + ρBlue) [94]

NDVIGreen green normalized difference

vegetation index (ρNIR − ρGreen)/(ρNIR + ρGreen) [94]

RDVI renormalized difference vegetation index (ρNIR − ρRed)/
√
(ρNIR + ρRed) [16]

WDRVI wide range vegetation index (αρNIR − ρRed)/(αρNIR + ρRed),
where α = 0.2 [13,95]

SAVI soil-adjusted vegetation index (1 + L)(ρNIR − ρRed)/(ρNIR + ρRed + L),
where L = 0.5 [81]

MSAVI improved SAVI 0.5
[

2ρNIR + 1 −
√
(2ρNIR + 1)2 − 8(ρNIR − ρRed)

]
[96,97]

OSAVI optimized soil-adjusted vegetation index (1 + L)(ρNIR − ρRed)/(ρNIR + ρRed + L),
where L = 0.16 [80]

SRINIR,Red NIR-red simple ratio index ρNIR/ρRed [98]

SRINIR,Green NIR-green simple ratio index ρNIR/ρGreen [95]

MSR modified simple ratio index ((ρNIR/ρRed)− 1)/
(√

ρNIR/ρRed + 1
)

[96,98]

GCI or GCVI green chlorophyll (vegetation) index (ρNIR/ρGreen)− 1 [12,99]

NG normalized green index ρGreen/(ρNIR + ρRed + ρGreen) [18]

MCARI2 improved MCARI 1.5[2.5(ρNIR−ρRed)−1.3(ρNIR−ρGreen)]√
(2ρNIR+1)2−(6ρNIR−5

√
ρRed)−0.5

[96]

MTVI2 modified triangular
vegetation index (TVI) 2 (improved TVI)

1.5[1.2(ρNIR−ρGreen)−2.5(ρRed−ρGreen)]√
(2ρNIR+1)2−(6ρNIR−5

√
ρRed)−0.5

[96]

Table A2. Vegetation indices involving only RGB bands involved in this study, where ρi = the
reflectance of the band i between 0 and 1, and R, G, and B are the digital pixel values of the red, green,
and blue bands, respectively, ranging between 0 and 255.

Vegetation Index Description Equation Reference

r red chromatic coordinate ρRed/(ρRed + ρGreen + ρBlue) [18,100]

g green chromatic coordinate ρGreen/(ρRed + ρGreen + ρBlue) [18,100]

b blue chromatic coordinate ρBlue/(ρRed + ρGreen + ρBlue) [18,100]

MSRGreen,Red MSR with NIR band replaced by green ((ρGreen/ρRed)− 1)/
(√

ρGreen/ρRed + 1
) present

work

SRIGreen,Red green-red simple ratio index ρGreen/ρRed [93,100]

SRIRed,Green red-green simple ratio index ρRed/ρGreen [101]
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Table A2. Cont.

Vegetation Index Description Equation Reference

SRIGreen,Blue green-blue simple ratio index ρGreen/ρBlue [100]

SRIRed,Blue red-blue simple ratio index ρRed/ρBlue [100]

DVIGreen,Red green-red difference vegetation index ρGreen − ρRed [93]

DVIr,g normalized red-green difference vegetation index r − g [102]

DVIg,b normalized green-blue difference vegetation index g − b [102]

VIg vegetation index green or green-red vegetation index (ρGreen − ρRed)/(ρGreen + ρRed) [18,93,100,101]

TVIg Tucker index (ρGreen + ρRed)/(ρGreen − ρRed) [93]

NGRDI normalized green-red difference index (g − r)/(g + r) [101]

IKAW1 Kawashima index 1 (ρRed − ρBlue)/(ρRed + ρBlue) [100,103]

IKAW2 Kawashima index 2 (ρGreen − ρBlue)/(ρGreen + ρBlue) [103]

IKAW3 Kawashima index 3 (ρRed − ρGreen)/(ρRed + ρGreen + ρBlue) [103]

IKAW4 Kawashima index 4 (ρRed − ρBlue)/(ρRed + ρGreen + ρBlue) [103]

IKAW5 Kawashima index 5 (ρGreen − ρBlue)/(ρRed + ρGreen + ρBlue) [103]

CIVE color index of vegetation extraction, where band
reflectance values range from 0 to 255 0.441 · R − 0.811 · G + 0.385 · B + 18.78745 [100,104]

CIVEn color index of vegetation extraction, where the
normalized bands are used 0.441 · r − 0.811 · g + 0.385 · b + 18.78745 [18]

ExR excess red vegetation index 1.4 · r − g [100,101]

ExG excess green vegetation index 2 · g − r − b [18,100]

ExB excess blue vegetation index 1.4 · b − g [100,101]

ExGR excess green minus excess red ExG − ExR [101]

IPCA principal component analysis index
0.994 · |ρRed − ρBlue| +
0.961 · |ρGreen − ρBlue| +
0.914 · |ρGreen − ρRed|

[100,101]

GLI green leaf index [(ρGreen−ρRed)+(ρGreen−ρBlue)]
(ρGreen+ρRed+ρGreen+ρBlue)

[100,101,105]

VARI visible atmospherically resistant index (ρGreen − ρRed)/(ρGreen + ρRed − ρBlue) [100,101,106]

Table A3. Vegetation indices involving the red-edge band involved in this study, where ρi = is the
reflectance of the band i.

Vegetation Index Description Equation Reference

SRIRedEdge,Red red-edge-red simple ratio index ρRedEdge/ρRed
present
work

DVIRedEdge,Red red-edge-red difference vegetation index ρRedEdge − ρRed
present
work

SRINIR,RedEdge NIR-red-edge simple ratio index ρNIR/ρRedEdge
present
work

DVINIR,RedEdge NIR-red-edge difference vegetation index ρNIR − ρRedEdge
present
work

NDVIRedEdge or NDRE NDVI with red band replaced by red-edge
(
ρNIR − ρRedEdge

)
/
(
ρNIR + ρRedEdge

)
[99]

MSRRedEdge MSR with red band replaced by red-edge
((

ρNIR/ρRedEdge
)
− 1

)
/
(√

ρNIR/ρRedEdge + 1
)

[99]

TCARI transformed chlorophyll absorption
in reflectance index 3

[(
ρRedEdge − ρRed

)
− 0.2

(
ρRedEdge − ρGreen

)( ρRedEdge
ρRed

)]
[16]

MCARI modified chlorophyll absorption
ratio index

[(
ρRedEdge − ρRed

)
− 0.2

(
ρRedEdge − ρGreen

)]( ρRedEdge
ρRed

)
[96,97]

TCI triangular chlorophyll index 1.2
(
ρRedEdge − ρGreen

)
− 1.5(ρRed − ρGreen)

√
ρRedEdge/ρRed [97]
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Table A4. Part 1: comparison of the UAV- (or airborne)-based imagery yield prediction works summarized in Section 4 using the criteria/requirement defined in
Section 4.1, where y = yes, n = no, U = unclear, and ∼ indicates an approximate value.

Requirement

Reference 1 2 3 4 5 6 7 8 9 10 11 12 13

[77] LR, KNN, RF, SVM, DNN UAV RGB, MS ∼3 cm 2 IMG n 26 0 7 HA 64 ∼0.68

[91] LR, LASSO, RR, ENR, PLSR UAV RGB U 12 IMG y 15 0 3 HA U U

[79] RF, MLR, GBDT UAV MS U 5 IMG n 26 0 5 HA,
MA

32 0.8

[85] LR, MLR UAV MS 2.1 cm 5 IMG y 10 0 4 MA 48 ∼0.16

[22] GBM, DNN, DRF, ERT, GLM UAV HS, LiDAR 3 cm, 900 pts/m2 1 IMG y U U 269 MA 369 U

[66] LR UAV,
HAN

MS U 4 to 5 IMG n 3 0 10 HA U U

[74] RF, LR, KNN, SVM, ANN, 0-R UAV MS <5 m × 0.45 m 1 IMG n 33 0 4 U 88 ∼0.02

[27] RF UAV MS 5.45 cm 9 IMG n 12 8 5 MA 57 ∼0.56

[78] PLSR, VI-based UAV MS <1 m 7 IMG n 14 0 11 MA 151 ∼0.19

[29] ANN, RF, SVM, SR UAV RGB, MS 1 cm, 5 cm 11, 6 IMG y 35 4 8 MA 20 U

[87] RF, LR, RR, LASSO, ENR UAV RGB U 25 IMG y 12 0 3 HA U U

[75] RR, RF, SVM UAV HS 2.45 cm 11 IMG n 81 0 274 MA 1429 ∼1.2

[76] ANN, RF, SVM, ELM UAV RGB 1.8 cm 11 IMG n 8 0 3 U 20 ∼0.16

[72] LR, MLR UAV,
SAT

RGB, MS SAT: 10 m, UAV: 0.5 cm 4 IMG, BIO,
LAI

y 2 0 7 U 5 U

[28] ANN, MLR AIR MS 1.5 m 1 IMG, TOP n 4 4 U YM 673 30

[86] ANN, SMLR, VI-based AIR HS 2 m 3 IMG n 4 0 71 MA 192 ∼92.2

[24] SR, RF, ANN, SVM, SGB, CU AIR MS, LiDAR 30 cm, 76 cm 1 IMG, TOP,
SOI

n 6 0 4 YM U 17.5
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Table A4. Cont.

Requirement

Reference 1 2 3 4 5 6 7 8 9 10 11 12 13

[6] CNN, LASSO, RF, LGBMR AIR MS 10 cm 13 IMG, LOC,
WEA,
MNG

n 5 0 4 YM U U

[90] LR, RF, SVM, SGB, ANN, CU AIR,
UAV

RGB, MS, Li-
DAR

≤35 cm, 12 cm, 76 cm biweekly
and 3

IMG, TOP n 6 0 7 YM,
MA

U 76.9

[32] RF, LR UAV RGB, MS <4 cm 20, 13 IMG n 33 0 5 YM 18,106 ∼25.9

[89] CNN UAV HS ∼4 cm 5 IMG n 0 0 240 U 172 ∼0.48

[30] LME UAV RGB, MS ≤5 cm 12 IMG n 6 0 6 YM 54–288 1.1

[88] PLSR UAV RGB ≤1.01 cm 2 IMG y 6 0 3 MA 59 ∼0.06

[82] ANN UAV RGB, MS ≤2.15 cm 2 IMG n 6 0 7 MA 80 ∼0.24

[92] RF UAV MS 2.1 cm 3 IMG,
MNG

n 15 0 5 YM U 2.6

[67] LR UAV RGB 5 cm 3 IMG n 1 0 3 YM 14,705 36

[9] DNN, CNN, DNN+CNN, RF,
XGBoost

UAV MS 7.4 cm 1 IMG,
MNG,
GEN

n 8 0 5 HA ∼4500 ∼1.6

[73] ANN, M5P and REPTree DT, RF,
SVM, MLR

UAV RGB, MS,
thermal

U, 10 cm, U 3 IMG,
MNG

n U 0 7 MA 72 ∼0.24

present work RF,LR UAV RGB,MS <4 cm 20, 13 IMG,LOC n 55 0 8 YM 18,106 ∼25.9
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Table A5. Part 2: comparison of the UAV (or airborne)-based imagery yield prediction works summarized in Section 4 using the criteria/requirement defined in
Section 4.1, where y = yes, n = no, U = unclear, and ∼ indicates an approximate value.

Requirement

Reference 14 15 16 17 18 19 20 21 22 23 24

[77] 1 2021 12.5 m × 8.5 m multi field-level 5F-CV grid search + 5F-CV n n n n

[91] 1 2019 ∼10.64 m2 once field-level holdout method, 10F-CV grid search y n n n

[79] 3 2017 to 2019 ∼11.64 m ×38 m multi field-level holdout method U n n n n

[85] 1 2021 32.8 m2 multi field-level U U n n n n

[22] 1 2020 U once field-level holdout method random grid search n partial n n

[66] 2 2020 to 2021 U multi field-level basic linear regression None n U n n

[74] 2 2017 to 2019 5 m × 0.45 m once field-level 10F-CV None n n n n

[27] 1 2020 (5 m × 10 m) and
(5 m × 6 m) multi and annually field-level leave-one-out CV U y partial n n

[78] 1 2015 ∼12 m2 multi field-level holdout method None n n n n

[29] 1 2019 U multi field-level 10F-CV grid search n partial n n

[87] 1 2019 ∼170.24 m2 multi and annually field-level 10F-CV U y partial n n

[75] 1 2020 ∼1.38 m × 6.1 m multi and annually field-level 4F-CV grid search y n n n

[76] 1 2019 10 m × 8 m multi and annually field-level leave-one-out CV U y n n n

[72] 1 2021 field-level multi field-level holdout method None n n n n

[28] 1 1998 9 m once pixel-level holdout method U n partial n n

[86] 1 2000 1 m annually pixel-level 10F-CV

holdout method +
Although the Clementine
Data Mining System
tuning

n n n n

[24] 1 2013 U once pixel-level holdout method grid search + 10F-CV n n n n

[6] 2 2020 to 2021 51.2 m, 20 cm once pixel-level holdout method
(stratified+spatial)

U and inspired by
Imagenet y y y y

[90] 3 2016 to 2018 6.32 m × 2 m once pixel-level holdout method + 10F-CV U y n n n
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Table A5. Cont.

Requirement

Reference 14 15 16 17 18 19 20 21 22 23 24

[32] 1 2021 2.5 m multi pixel-level 10F-CV None n partial n n

[89] 1 2015 ∼3 m U pixel-level U U n y n n

[30] 1 2019 1 m multi and annually pixel-level leave-one-out CV None y n n n

[88] 1 2018 1 m × 1.25 m once pixel-level leave-one-out CV None n n n n

[82] 1 2018 4.8 m × 25 m multi pixel-level holdout method holdout method + U n partial n n

[92] 1 2020 ∼3 m multi and annually pixel-level holdout method None y partial n n

[67] 1 2016 4.6 m multi pixel-level holdout method None n n n n

[9] 3 2017 to 2019 ∼2.96 m once pixel-level holdout method + 5F-CV
(stratified)

Optuna framework,
CNN inspired by
ResNet18

n y U n

[73] 2 2020 to 2021 4.05 m2 multi pixel-level 10F-CV (stratified) None n n n n

present work 1 2021 2.5 m multi pixel-level 10F-CV, spatial CV None n partial y n
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50. Beigaitė, R.; Mechenich, M.; Žliobaitė, I. Spatial Cross-Validation for Globally Distributed Data. In Proceedings of the International

Conference on Discovery Science, Montpellier, France, 10–12 October 2022; Springer: Cham, Germany, 2022; pp. 127–140.

http://dx.doi.org/10.1016/j.jag.2021.102436
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.3390/rs14071559
http://dx.doi.org/10.3390/rs14246290
http://dx.doi.org/10.3390/rs13193948
http://dx.doi.org/10.1007/s11119-013-9336-3
https://pro.arcgis.com/en/pro-app/latest/help/analysis/geostatistical-analyst/semivariogram-and-covariance-functions.htm
https://pro.arcgis.com/en/pro-app/latest/help/analysis/geostatistical-analyst/semivariogram-and-covariance-functions.htm
http://dx.doi.org/10.1007/s11119-019-09696-0
http://dx.doi.org/10.1371/journal.pone.0156571
http://dx.doi.org/10.3389/fpls.2022.858711
http://dx.doi.org/10.1016/j.petrol.2021.109885
http://dx.doi.org/10.1016/j.ecolmodel.2019.06.002
http://dx.doi.org/10.1111/ecog.02881
http://dx.doi.org/10.3390/rs11020185
http://dx.doi.org/10.1016/j.ecolmodel.2021.109692
http://dx.doi.org/10.1016/j.envsoft.2017.12.001
http://dx.doi.org/10.3390/ijgi10090600


Remote Sens. 2024, 16, 683 37 of 39

51. Barbosa, A.; Trevisan, R.; Hovakimyan, N.; Martin, N.F. Modeling yield response to crop management using convolutional neural
networks. Comput. Electron. Agric. 2020, 170, 105197. [CrossRef]

52. Barbosa, A.; Marinho, T.; Martin, N.; Hovakimyan, N. Multi-Stream CNN for Spatial Resource Allocation: A Crop Management
Application. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
Seattle, WA, USA, 13–19 June 2020.

53. Davis, I.C.; Wilkinson, G.G. Crop yield prediction using multipolarization radar and multitemporal visible/infrared imagery. In
Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology Viii, Stockholm, Sweden, 11–13 September 2006;
Volume 6359, pp. 134–145.

54. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using
multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [CrossRef]

55. You, J.; Li, X.; Low, M.; Lobell, D.; Ermon, S. Deep gaussian process for crop yield prediction based on remote sensing data. In
Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

56. Bose, P.; Kasabov, N.K.; Bruzzone, L.; Hartono, R.N. Spiking neural networks for crop yield estimation based on spatiotemporal
analysis of image time series. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6563–6573. [CrossRef]

57. Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Crop yield prediction using multitemporal UAV data and spatio-temporal deep
learning models. Remote Sens. 2020, 12, 4000. [CrossRef]

58. MicaSense RedEdge-M Multispectral Camera User Manual. Available online: https://www.geotechenv.com/Manuals/Leptron_
Manuals/RedEdge-M_User_Manual.pdf (accessed on 3 October 2022).

59. Lee, C. Corn Growth and Development. Available online: https://graincrops.ca.uky.edu/files/corngrowthstages_2011.pdf
(accessed on 23 January 2024).

60. Determining Corn Growth Stages. Available online: https://www.dekalbasgrowdeltapine.com/en-us/agronomy/corn-growth-
stages-and-gdu-requirements.html (accessed on 15 October 2020).

61. Predict Leaf Stage Development in Corn Using Thermal Time. Available online: https://www.agry.purdue.edu/ext/corn/news/
timeless/VStagePrediction.html (accessed on 5 May 2023).

62. Gilmore, E., Jr.; Rogers, J. Heat units as a method of measuring maturity in corn 1. Agron. J. 1958, 50, 611–615. [CrossRef]
63. Heat Unit Concepts Related to Corn Development. Available online: https://www.agry.purdue.edu/ext/corn/news/timeless/

heatunits.html (accessed on 4 December 2023).
64. Abendroth, L.J.; Elmore, R.W.; Boyer, M.J.; Marlay, S.K. Understanding corn development: A key for successful crop management.

In Proceedings of the Integrated Crop Management Conference, Ames, IA, USA, 1–2 December 2010.
65. Monsanto Company. Corn Growth Stages and GDU Requirements. In Agronomic Spotlight; Monsanto Company: St. Louis, MO,

USA, 2015.
66. Oglesby, C.; Fox, A.A.; Singh, G.; Dhillon, J. Predicting In-Season Corn Grain Yield Using Optical Sensors. Agronomy 2022,

12, 2402. [CrossRef]
67. Zhang, M.; Zhou, J.; Sudduth, K.A.; Kitchen, N.R. Estimation of maize yield and effects of variable-rate nitrogen application

using UAV-based RGB imagery. Biosyst. Eng. 2020, 189, 24–35. [CrossRef]
68. Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE,

MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [CrossRef] [PubMed]
69. Flach, P. Machine Learning: The Art and Science of Algorithms That Make Sense of Data; Cambridge University Press: Cambridge,

UK, 2012.
70. Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers; John Wiley & Sons: Hoboken, NJ, USA, 2010.
71. Ploton, P.; Mortier, F.; Réjou-Méchain, M.; Barbier, N.; Picard, N.; Rossi, V.; Dormann, C.; Cornu, G.; Viennois, G.; Bayol, N.; et al.

Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020, 11, 4540.
[CrossRef] [PubMed]

72. Sapkota, S.; Paudyal, D.R. Growth Monitoring and Yield Estimation of Maize Plant Using Unmanned Aerial Vehicle (UAV) in a
Hilly Region. Sensors 2023, 23, 5432. [CrossRef] [PubMed]

73. Baio, F.H.R.; Santana, D.C.; Teodoro, L.P.R.; Oliveira, I.C.d.; Gava, R.; de Oliveira, J.L.G.; Silva Junior, C.A.d.; Teodoro, P.E.;
Shiratsuchi, L.S. Maize Yield Prediction with Machine Learning, Spectral Variables and Irrigation Management. Remote Sens.
2022, 15, 79. [CrossRef]

74. Ramos, A.P.M.; Osco, L.P.; Furuya, D.E.G.; Gonçalves, W.N.; Santana, D.C.; Teodoro, L.P.R.; da Silva Junior, C.A.; Capristo-Silva,
G.F.; Li, J.; Baio, F.H.R.; et al. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral
indices. Comput. Electron. Agric. 2020, 178, 105791. [CrossRef]

75. Fan, J.; Zhou, J.; Wang, B.; de Leon, N.; Kaeppler, S.M.; Lima, D.C.; Zhang, Z. Estimation of maize yield and flowering time using
multi-temporal UAV-based hyperspectral data. Remote Sens. 2022, 14, 3052. [CrossRef]

76. Guo, Y.; Wang, H.; Wu, Z.; Wang, S.; Sun, H.; Senthilnath, J.; Wang, J.; Robin Bryant, C.; Fu, Y. Modified red blue vegetation index
for chlorophyll estimation and yield prediction of maize from visible images captured by UAV. Sensors 2020, 20, 5055. [CrossRef]

77. Kumar, C.; Mubvumba, P.; Huang, Y.; Dhillon, J.; Reddy, K. Multi-Stage Corn Yield Prediction Using High-Resolution UAV
Multispectral Data and Machine Learning Models. Agronomy 2023, 13, 1277. [CrossRef]

78. Herrmann, I.; Bdolach, E.; Montekyo, Y.; Rachmilevitch, S.; Townsend, P.A.; Karnieli, A. Assessment of maize yield and phenology
by drone-mounted superspectral camera. Precis. Agric. 2020, 21, 51–76. [CrossRef]

http://dx.doi.org/10.1016/j.compag.2019.105197
http://dx.doi.org/10.1016/j.rse.2019.111599
http://dx.doi.org/10.1109/TGRS.2016.2586602
http://dx.doi.org/10.3390/rs12234000
https://www.geotechenv.com/Manuals/Leptron_Manuals/RedEdge-M_User_Manual.pdf
https://www.geotechenv.com/Manuals/Leptron_Manuals/RedEdge-M_User_Manual.pdf
https://graincrops.ca.uky.edu/files/corngrowthstages_2011.pdf
https://www.dekalbasgrowdeltapine.com/en-us/agronomy/corn-growth-stages-and-gdu-requirements.html
https://www.dekalbasgrowdeltapine.com/en-us/agronomy/corn-growth-stages-and-gdu-requirements.html
https://www.agry.purdue.edu/ext/corn/news/timeless/VStagePrediction.html
https://www.agry.purdue.edu/ext/corn/news/timeless/VStagePrediction.html
http://dx.doi.org/10.2134/agronj1958.00021962005000100014x
https://www.agry.purdue.edu/ext/corn/news/timeless/heatunits.html
https://www.agry.purdue.edu/ext/corn/news/timeless/heatunits.html
http://dx.doi.org/10.3390/agronomy12102402
http://dx.doi.org/10.1016/j.biosystemseng.2019.11.001
http://dx.doi.org/10.7717/peerj-cs.623
http://www.ncbi.nlm.nih.gov/pubmed/34307865
http://dx.doi.org/10.1038/s41467-020-18321-y
http://www.ncbi.nlm.nih.gov/pubmed/32917875
http://dx.doi.org/10.3390/s23125432
http://www.ncbi.nlm.nih.gov/pubmed/37420599
http://dx.doi.org/10.3390/rs15010079
http://dx.doi.org/10.1016/j.compag.2020.105791
http://dx.doi.org/10.3390/rs14133052
http://dx.doi.org/10.3390/s20185055
http://dx.doi.org/10.3390/agronomy13051277
http://dx.doi.org/10.1007/s11119-019-09659-5


Remote Sens. 2024, 16, 683 38 of 39

79. Barzin, R.; Pathak, R.; Lotfi, H.; Varco, J.; Bora, G.C. Use of UAS multispectral imagery at different physiological stages for yield
prediction and input resource optimization in corn. Remote Sens. 2020, 12, 2392. [CrossRef]

80. Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107.
[CrossRef]

81. Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
82. García-Martínez, H.; Flores-Magdaleno, H.; Ascencio-Hernández, R.; Khalil-Gardezi, A.; Tijerina-Chávez, L.; Mancilla-Villa, O.R.;

Vázquez-Peña, M.A. Corn grain yield estimation from vegetation indices, canopy cover, plant density, and a neural network
using multispectral and RGB images acquired with unmanned aerial vehicles. Agriculture 2020, 10, 277. [CrossRef]

83. Overview of Agriculture Indices. Available online: https://support.micasense.com/hc/en-us/articles/227837307-Overview-of-
Agricultural-Indices (accessed on 22 March 2022).

84. Wu, G.; Miller, N.D.; De Leon, N.; Kaeppler, S.M.; Spalding, E.P. Predicting Zea mays flowering time, yield, and kernel dimensions
by analyzing aerial images. Front. Plant Sci. 2019, 10, 1251. [CrossRef]

85. Saravia, D.; Salazar, W.; Valqui-Valqui, L.; Quille-Mamani, J.; Porras-Jorge, R.; Corredor, F.A.; Barboza, E.; Vásquez, H.V.;
Casas Diaz, A.V.; Arbizu, C.I. Yield Predictions of Four Hybrids of Maize (Zea mays) Using Multispectral Images Obtained from
UAV in the Coast of Peru. Agronomy 2022, 12, 2630. [CrossRef]

86. Uno, Y.; Prasher, S.; Lacroix, R.; Goel, P.; Karimi, Y.; Viau, A.; Patel, R. Artificial neural networks to predict corn yield from
compact airborne spectrographic imager data. Comput. Electron. Agric. 2005, 47, 149–161. [CrossRef]

87. Chatterjee, S.; Adak, A.; Wilde, S.; Nakasagga, S.; Murray, S.C. Cumulative temporal vegetation indices from unoccupied
aerial systems allow maize (Zea mays L.) hybrid yield to be estimated across environments with fewer flights. PLoS ONE 2023,
18, e0277804. [CrossRef] [PubMed]

88. Fathipoor, H.; Arefi, H.; Shah-Hosseini, R.; Moghadam, H. Corn forage yield prediction using unmanned aerial vehicle images at
mid-season growth stage. J. Appl. Remote Sens. 2019, 13, 034503. [CrossRef]

89. Yang, W.; Nigon, T.; Hao, Z.; Paiao, G.D.; Fernández, F.G.; Mulla, D.; Yang, C. Estimation of corn yield based on hyperspectral
imagery and convolutional neural network. Comput. Electron. Agric. 2021, 184, 106092. [CrossRef]

90. Khanal, S.; Klopfenstein, A.; Kushal, K.; Ramarao, V.; Fulton, J.; Douridas, N.; Shearer, S.A. Assessing the impact of agricultural
field traffic on corn grain yield using remote sensing and machine learning. Soil Tillage Res. 2021, 208, 104880. [CrossRef]
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