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Abstract: Similar to other single-island endemic Hawaiian honeycreepers, the critically endangered
‘ākohekohe (Palmeria dolei) is threatened by climate-driven disease spread. To avert the imminent
risk of extinction, managers are considering novel measures, including the conservation introduction
(CI) of ‘ākohekohe from Maui to higher elevation habitats on the Island of Hawai’i. This study
integrated lidar-based habitat suitability models (LHSMs) and population viability analyses (PVAs)
to assess five candidate sites currently considered by managers for CI. We first developed an LHSM
for the species’ native range on Maui. We then projected habitat suitability across candidate CI sites,
using forest structure and topography metrics standardized across sensor types. Given the structural
variability observed within the five candidate sites, we identified clusters of contiguous, highly
suitable habitat as potential release sites. We then determined how many adult individuals could
be supported by each cluster based on adult home range estimates. To determine which clusters
could house the minimum number of ‘ākohekohe birds necessary for a stable or increasing future
population, we conducted PVAs under multiple scenarios of bird releases. We found that canopy
height and relative height 90 had the greatest effects on model performance, possibly reflecting
‘ākohekohe’s preference for taller canopies. We found that a small release of at least nine pairs of
equal sex ratios were sufficient for an 80% chance of success and a <1% chance of extirpation in
20 years, resulting in a minimum release area of 4.5 ha in size. We integrated the results of the LHSM
and PVA into an interactive web application that allowed managers to consider the caveats and
uncertainties associated with both LHSMs and PVAs in their decision-making process. As climate
change continues to threaten species worldwide, this research demonstrates the value of lidar remote
sensing combined with species-specific models to enable rapid, quantitative assessments that can
inform the increasing consideration of time-sensitive conservation introductions.

Keywords: ‘ākohekohe; lidar; sensor fusion; population viability analysis; habitat suitability models;
conservation introductions; texture analysis

1. Introduction

The escalating global impacts of climate change, anthropogenic development, disease
outbreaks, and other dynamic factors have pushed many species to the brink of extinction,
rendering their historical habitats and ranges unfit to sustain viable populations [1]. In-
creasingly, managers are considering relocating plants and animals outside their historical
range to locations deemed more suitable for species survival. These actions, termed conser-
vation introductions (CIs), have received widespread attention in recent years as traditional
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conservation approaches fail to address current threats [2]. However, a CI is a leap into
the unknown, introducing species to ecosystems where they did not evolve, potentially
leading to numerous unforeseen consequences [3]. This inherent uncertainty stresses the
importance of careful planning in release site selection, as habitat suitability in these novel
environments will greatly affect the likelihood of success [2].

Hawaiian honeycreepers are a group of species in which CIs are being considered to
prevent extinction [4,5]. Avian malaria (Plasmodium relictum) is the primary driver of recent
declines in multiple honeycreeper species, placing them at risk of imminent extinction.
Avian malaria is vectored by the southern house mosquito (Culex quinquefasciatus), and
both the mosquito and the malaria parasite require sufficient temperatures to develop [6].
This has historically kept high-elevation forests free of disease because temperatures were
too cool for mosquito populations to develop. However, climate change has facilitated the
rapid spread of C. quinquefasciatus into higher elevations on the Hawaiian Islands, threat-
ening disease-sensitive honeycreeper species that had once been safe from disease [4,7–9].
Isotherms associated with critical temperatures for Plasmodium development (13 ◦C) have
historically delineated disease lines on the Hawaiian islands in both current and future
climatic conditions [10]. ‘Ākohekohe (Palmeria dolei) is a federally endangered honeycreeper
species endemic to the islands of Maui and Moloka‘i [11], now restricted to a range of less
than 3000 ha above ~1600 m of elevation in east Maui [12]. The nectar of ‘ōhi’a (Metrosideros
polymorpha) flowers comprises 50–75% of their diet [13]. Post-natal juveniles often travel
long distances in search of food resources, which can include lower elevations, placing them
at an elevated risk of contracting malaria [14]. From 2001 to 2017, the ‘ākohekohe range
contracted by 61%, with population estimates declining by 78% to a current population
of 1768 (95% confidence interval = 1193–2411) birds [12]. Expert assessment of current
declines and remaining population size indicated that ‘ākohekohe could become extinct
within 10 years [5].

Given the current and projected population trends for ‘ākohekohe, novel approaches to
managing the species are being considered, such as possible inter-island CIs [5]. Given the
narrow elevational extent of ‘ākohekohe’s habitat on Maui, the potential CI of the species
to the Island of Hawai’i, which has more native habitat within suitable elevations for forest
birds, could help safeguard the species from future warming-induced extinction risk [8,15].
A previous strengths, weaknesses, opportunities, and threats (SWOT) assessment started
the process of evaluating the plausibility of this action by comparing the quality of candidate
CI sites on the Island of Hawai’i for the release of kiwikiu (Pseudonestor xanthophrys),
‘ākohekohe, ‘akikiki (Oreomystis bairdi), and ‘akeke’e (Loxops caeruleirostris) [16,17]. This
analysis identified several candidate CI areas for ‘ākohekohe on the Island of Hawai’i
(Figure 1). These sites were evaluated qualitatively based on the input of expert biologists,
which provided an important first step in the process of identifying quality release sites.
However, a more quantitative assessment of strength, weakness, and threat indicators
could better inform the viability of the considered sites. An additional limitation of this
qualitative approach was that each site was viewed as a whole rather than considering how
the indicators varied across the landscape within each site.

A major challenge in achieving successful CI arises from an incompatible habitat at
the release site compared with the habitat of origin [18,19]. A global review of CI success
found that habitat-related factors were the largest drivers of initial declines for birds and
other taxa released in novel habitats [2]. In fact, expert biologists in Hawai’i gave some of
the highest weights to species-specific habitat indicators during a previous SWOT analysis.
Therefore, in our research, we sought to elucidate this issue of habitat compatibility by
trying to identify suitable habitats for ‘ākohekohe based on forest structure and topography
within the candidate CI areas. The particular diets of ‘ākohekohe as nectarivores indicate a
specialized use of forest habitat, making them particularly vulnerable to forest cover and
connectivity [13,20,21]. We chose to derive forest structure and topographic metrics from
various light detection and ranging (lidar) point clouds that matched those used to build
lidar-based habitat suitability models (LHSMs) for Hawaiian honeycreepers in previous
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research [22,23]. Gallerani et al. (2023) [22] used maximum entropy modeling (Maxent) to
transfer habitat suitability models of ‘akikiki and ‘akeke’e from Kaua’i to east Maui. The
‘akikiki and ‘akeke’e models performed exceedingly well (AUC > 0.80), showing that a
similar methodology is reasonable for the implementation of Maui birds on the Island of
Hawai’i.
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Figure 1. Candidate sites on the Island of Hawai’i that were investigated through a 2022 SWOT
analysis for conservation introductions of ‘ākohekohe and further analyzed by this study.

While habitat-related factors pose an important challenge to successful CIs, quantifying
habitat suitability alone does not guarantee long-term population viability. Ensuring that
translocated populations can grow and persist over time also requires identifying areas of
contiguous suitable habitat of sufficient extent. Therefore, in our work, we enacted the novel
approach of incorporating habitat suitability models with population viability analyses
(PVAs) to better inform decisions on optimal release sites. By integrating habitat quality and
quantity constraints, managers can choose among potential sites with greater confidence in
supporting self-sustaining ‘ākohekohe populations into the future. We hypothesize that our
analysis will fill knowledge gaps from previous qualitative and quantitative CI assessments
for Hawaiian forest birds through an integrated approach of remote sensing modeling
and demographic modeling. In addition, this analysis will help identify essential areas of
connected suitable habitat for ‘ākohekohe release within each of the top candidate sites.
This study aimed to build the necessary evidence base for a potentially critical conservation
action to save not only ‘ākohekohe, but other endangered Hawaiian forest birds.

2. Materials and Methods
2.1. Study Area

We collected species and remote sensing information from the island of Maui, where
‘ākohekohe are currently found, to develop LHSMs for the species. The wet, windward
slopes of Haleakalā on Maui are home to six Hawaiian honeycreeper species, including
‘ākohekohe, of which two are endangered species and another is a threatened species. This
area consists of federal land, private land, and several state-managed forest reserves and
Natural Area Reserves (NARS) and is collectively referred to as east Maui throughout
this paper. East Maui contains some of the most pristine remaining native forests on
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Maui [24–26]. These forests are characterized as dense, montane wet forests with an
average rainfall across the ‘ākohekohe habitat of ~4.7 m annually [27].

The Island of Hawai’i is the youngest, largest, and tallest island of the archipelago, and
consequently is where all current candidate CI sites for the species are being considered. We
considered the five candidate CI sites identified in the previous SWOT analysis, all located
within state and federal lands above the critical isotherm for Plasmodium development
(1675 m in elevation) [17]. Hakalau National Wildlife Refuge is owned by the U.S. Fish and
Wildlife Service (USFWS) and is located on the windward side of Mauna Kea. The Ka’ū site
consists of a state Forest Reserve and Hawai’i Volcanoes National Park Kahuku Unit on
the southeastern slopes of Mauna Loa. The remaining sites, Pu’u Wa’awa’a, Kı̄puka, and
Pu’u Maka’ala, are all managed by the Hawai’i State Department of Land and Natural and
Resources (DLNR). Kı̄puka is located in the Upper Waiākea Forest Reserve and Kı̄puka
Ainahou Nēnē Sanctuary. Pu’u Maka’ala NAR is located just south of Kı̄puka, and is also
one of the National Science Foundation’s (NSF) National Ecological Observatory Network
sites (NEON). All of these sites receive an average of ~2.2 m of annual rainfall [27]. Finally,
Pu’u Wa’awa’a is a Forest Bird Sanctuary located on the northern slopes of Hualālai volcano
on the leeward side of the island. Being on the leeward side of the Island of Hawai’i, this
site receives less annual rainfall, with an average of 0.7 m [24].

2.2. Lidar and Bird Data Acquisition

‘Ākohekohe occurrence locations in east Maui were collected during the Hawai’i Forest
Bird Surveys, point count surveys conducted at regular intervals by experienced observers
from multiple agencies [24,28]. From 2012 to 2018, these surveys yielded 587 occurrence
locations of individual ‘ākohekohe. These occurrences were concentrated in The Nature
Conservancy’s Waikamoi Preserve, Hanawı̄ NAR, and Haleakalā National Park. In order
to avoid sample selection bias in the spatially clustered ‘ākohekohe occurrence data, we
implemented background weight correction with the FactorBiasOut algorithm, as described
by Gallerani et al. (2023) [22].

Mapping forest structure over large distances, such as Maui to the Island of Hawai’i,
usually involves heterogeneous datasets of small footprint lidar data with varying acquisi-
tion parameters [29]. The Global Airborne Observatory (GAO) collected high-resolution
aerial lidar data over east Maui using an Optech HA 500 dual-channel sensor in January
2018. The lidar coverage area contains high-value bird habitat and some lower elevation
forests. High-resolution aerial lidar point clouds were obtained for all candidate CI sites on
the Island of Hawai’i from several different sources. The U.S. Geological Survey (USGS)
provided lidar data for parts of Pu’u Maka’ala, Hakalau, and Kı̄puka sites and was the
sole source of lidar data for Ka’ū and Pu’u Wa’awa’a sites [30]. USFWS also provided
lidar data for the Hakalau site [31]. Additional coverage of the Pu’u Maka’ala site was
obtained via the NSF [32]. USGS data were acquired using a Leica single-photon lidar (spl)
sensor, whereas the NSF data were acquired using Optech Incorporated Airborne Laser
Terrain Mapper (ALTM) Gemini sensors as the full-waveform lidar instrument. USFWS
data were acquired using a Riegl LMS-Q680i. Relevant specifications of the sensors were
compared (Table A1) to determine which sensor would collect point clouds most similarly
to the GAO Maui data. We matched all data from the Island of Hawai’i to the GAO data to
ensure the transferability of the LHSMs built on the Maui lidar data. The Optech Gemini
sensor used in the NSF collections was found to have the most similar beam divergence
(0.25 mrad), pulse repetition frequency (~100 kHz), and wavelength (1064 mm) to the
Optech HA-500 sensor used in the east Maui collection. We ran regression models for
each vegetation structure metric between NSF and USGS data in the Pu’u Maka’ala and
Kı̄puka sites, and between USGS and USFWS at the Hakalau site. The areas of overlap were
inspected to make sure that they covered a variety of forest structure types so that they
could be representative of lidar collected at all sites. These regression relationships were
then used to sensor-correct all USGS metrics to more closely resemble data collected by the
NSF sensor. A summary of the regression results is presented in Table A2. Additionally,
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the USFWS Hakalau data were adjusted in a two-step process based on its relationship to
the USGS data.

2.3. Lidar Data Processing

All lidar point clouds were processed using the lidR package in R (version 4.3.1) [33].
The raw lidar point cloud data were first preprocessed to remove noise and outliers. Points
with height values below 0 m were dropped to remove erroneous data below ground
level. Then, statistical noise filtering was applied to remove points with height values more
than 1.2 times the 95th percentile height within each 100 m cell. This effectively removed
spuriously high points not representative of true vegetation structures. After denoising,
a ground classification algorithm (multiscale curvature classification) was applied to the
data, using the default scale parameter of 1.5 and curvature threshold of 0.3, as they yielded
satisfactory ground classification results [34]. Once ground classification was complete, we
applied a nearest-neighbor interpolation algorithm to convert absolute point heights to
heights relative to the ground surface. For each non-ground point, the height value was
calculated relative to the interpolated ground surface below it. After height normalization,
additional outliers with heights exceeding 50 m or below −50 m were removed to eliminate
any residual noise. This processing chain produced a cleaned, normalized point cloud
ready for further analysis.

Forest structure metrics, including a canopy height model and four relative height
metrics (RH25, RH50, RH75, and RH90), were derived at a 100 m resolution using standard
pixel metrics in the lidR package. The canopy height model, referred to simply as canopy
height throughout, is the average height of vegetation returns, and not the top of canopy.
Relative height metrics describe the forest structure by representing the height distribution
of a point cloud. The RH metrics selected here shed light on the vertical profile of the forests
in the candidate CI sites. For example, a higher RH25 value means a taller understory
and a large spread between RH25 and RH75; RH90 indicates a complex forest with a
diverse range of height structures. We wrote a custom function to derive a canopy density
metric using 1.37 m as the height threshold to match Maui data. Canopy density represents
the percentage of lidar returns above a certain height threshold. The 1.37 m threshold
represents the height at which diameter at breast height (DBH) is measured for individual
trees. Terrain metrics (i.e., the slope and topographic wetness index) were derived from
the 1/3 arc-second (~10 m) bare-earth digital terrain model (DTM) available through the
USGS 3D Elevation Program (3DEP). Slope was derived using the raster package in R [35].
Topographic wetness index (TWI) represents the potential for water accumulation based on
topographic characteristics such as the slope and contributing area, and has implications
for the presence of mosquito breeding habitats [23]. This measurement is typically used to
assess the extent of the upslope contributing area that flows through a particular pixel in
the DTM weighted by the tangent of the slope. We calculated TWI using a Python script
from Fricker et al. (2015) used in ArcGIS Pro (version 3.1.0) which can be found here:
https://github.com/africker/Topographic-Wetness-Index (accessed on 30 June 2023) [36].
Once we derived the terrain variables, we clipped and resampled them to match the
vegetation structure metrics derived at the 100 m scale in the lidR package.

2.4. Habitat Suitability Models

We conducted a novelty analysis using the command prompt tool Novel [37] to
analyze the potential transferability of Maui lidar-based models to the Island of Hawai’i.
This analysis found that slope most often contributed to the novelty of the Island of
Hawai’i pixels when compared with the east Maui lidar data. Furthermore, we plotted
the distributions of the nine metrics on east Maui with distributions of the same variables
from the candidate CI areas on the Island of Hawai’i (Figure 2). These histograms show
that the lidar coverage on east Maui has a wide range of slope values, centered around
25 degrees, whereas the candidate CI sites on the Island of Hawai’i have a narrower
distribution, centered around 5 degrees (Figure 2d). Similarly, the elevational range on

https://github.com/africker/Topographic-Wetness-Index
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east Maui is much larger than in the candidate CI sites, with the Island of Hawai’i sites
having a higher median than east Maui (Figure 2a). When transferring models to novel
habitat, collinearity is of particular concern as the relationships between variables may
differ from island to island [38]. To determine collinearity, we performed Spearman rank
correlation between the nine lidar-derived metrics on the Island of Hawai’i (Table A3).
Given the collinearity concern and the fact that mismatched distributions from the training
site (Maui) to the projection site (Island of Hawai’i) can reduce transferability, we chose
to exclude variables with the most novel distributions on the Island of Hawai’i that were
highly correlated to other variables that had more similar distributions. With the high
levels of correlation between variables being excluded and those being retained to build
the model, not much information is lost to the model from the exclusion of said variable.
Elevation stands as an exception in our decision-making process. The large discrepancy in
elevation distribution between Maui and the Island of Hawai’i would likely reduce model
transferability between islands. Additionally, because elevation can be a strong predictor
of forest bird distributions due to avian malaria [8], the preliminary model runs showed a
prevalent elevational pattern that obscured the importance of other site-specific factors. The
primary focus of our work was to identify compatible areas for Cis based on forest structure
characteristics, as important determinants of forage and nest habitat [22]; therefore, we
dropped elevation as a variable in the model. The finalized list of variables used in the
models is shown in Table 1. The metrics include three of the four structural type classes
defined by a recent review of lidar vegetation metrics in bird species distribution modeling,
cover, height, and vertical variability [39]. Bakx et al. (2019) found that metrics related to
canopy height and canopy cover were those that most often led to an effective explanation
of species distributions. Although vertical variability metrics, in this case RH25 and RH90,
were less effective than cover and height, they were the second most widely used metric
class in avian species distribution modeling.
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Table 1. Lidar metrics used as inputs into the ‘ākohekohe models.

Variable Name Description

Canopy Density (DNS) Percentage of lidar points > 1.37 m (4.5 ft) above ground in
the selected region

Canopy Height (CHM) Height (m) of the modeled canopy surface above the ground

RH25
25th relative height above the ground for all lidar points in

the selected region

RH90
90th relative height above the ground for all lidar points in

the selected region
Topographic Wetness Index

(TWI) Relative wetness of the selected region within the landscape

We ran the ‘ākohekohe models using the same Maxent software (version 3.3.4 k)
following Gallerani et al. (2023) [22]. Maxent is a presence-only machine learning software
that models the predicted suitability of gridded metrics based on known locations of
individuals. To reduce overfitting, we implemented a bootstrapped resampling method
that produces 100 sub-models, averaged to determine habitat suitability. The iterative
modeling process can also help overcome the general consensus that finer scales are more
appropriate for modeling rare species [40]. We used a moderately fine scale of 100 m for
the lidar metrics in order to optimize transferability of these models to novel environments.
Area under the receiver operating characteristic curve (AUC) scores, used here to measure
model performance, reflect a model’s ability to rank observations higher than random
background pixels in presence-only modeling [41]. Standard deviations between outputs
are used to measure uncertainty. The percentage contribution and permutation importance
of each environmental variable are reported to determine which metrics were the most
valuable in predicting ‘ākohekohe suitability. Percentage contribution is derived from
the addition or subtraction of the increase in regularized gain during each iteration of
the training algorithm to or from the contribution of a given variable. In the estimation
of permutation importance, each environmental variable’s values within the training
presence and background data are randomly transformed one at a time. The model is
then re-evaluated using these permuted data and the resulting reduction in training AUC
is normalized to a percentage. Additionally, response curves representing ‘ākohekohe
suitability models created using only one variable were interpreted to determine species-
specific habitat preferences for highly correlated variables.

2.5. Candidate Translocation Introduction Site Assessment

We evaluated each candidate CI site by calculating mean ‘ākohekohe habitat suitability
and uncertainty. The site with the highest mean habitat suitability and lowest mean
uncertainty would therefore be considered the most suitable on the grounds of vegetation
structure and topography. Some of the candidate CI areas contained lava flows, immature
forest, or other land cover types that do not constitute potential habitats for ‘ākohekohe. To
not bias the summary statistics of these areas, we decided to further segment the ‘ākohekohe
LHSM results into forested areas only. We used the Food and Agriculture Organization
of the United Nations (FAO) definition of forests as follows: “Land spanning more than
0.5 hectares with trees higher than 5 m and a canopy cover of more than 10 percent, or
trees able to reach these thresholds in situ” [42]. The mean suitability and uncertainty were
then calculated based on strictly forested areas. Another concern for the determination of
candidate release sites is the connectedness of the suitable habitat. We therefore used a
gray-level co-occurrence matrix (GLCM) with a 3 × 3 moving window to calculate several
texture statistics for the LHSM results at each candidate release area. A GLCM in this
instance captures the spatial relationship of habitat suitability by analyzing the frequency of
pairs of suitability levels at various distances and directions within the 3 × 3 window [43].
We ultimately decided on homogeneity as our main texture statistic, as it quantifies the
uniformity of a given image region, providing us with a more comprehensive interpretation
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of the candidate release areas. We performed quantile analysis of the homogeneity texture
statistic for the ‘ākohekohe suitability results to determine an appropriate threshold for
homogenous areas. We used the median as our cut-off, equivalent to a homogeneity
value of ~0.2. We refer to these areas as homogenous forested areas (HFAs) because they
are defined by both forest cover and homogeneity values. We then used the minimum
training presence (MTP) threshold defined by Gallerani et al. (2023) [22] to determine
which homogenous areas are also suitable for ‘ākohekohe release. The areas of clusters that
are both homogenous and suitable were then summarized across candidate CI sites.

2.6. Population Viability Analysis

To estimate the minimum area and associated number of birds required for a CI release,
we performed PVA using stochastic simulations in R. The model was developed consid-
ering the available demographic parameters for the species based on previous research.
Simulations focused on determining the number of bird pairs needed per release, assuming
an equal sex ratio in the releases. Several demographic parameters were integrated into
the discrete-time model, including pairs renesting within season, nest success, chicks per
nest, juvenile survival rate, and adult survival rate for first year post release (to account
for release effects) and long term. A full explanation of these parameters and their values
is presented in Appendix B. To account for the inherent stochasticity and uncertainty in
the demographic parameters, 10,000 stochastic simulations were executed for each release
scenario considered, each generating a unique population trajectory. The stochasticity was
incorporated by allowing the adult and juvenile survival rates and nest success to vary ran-
domly within specified bounds derived from the available literature. Further explanation
of the stochastic simulations is detailed in Appendix B. A successful run was defined as a
simulation where the population was stable or increasing over the 20-year simulation (i.e.,
the population size at year 20 was equal to or greater than the initial population size). The
proportion of successful runs was then calculated across all stochastic simulations (10,000).
To examine the influence of initial population size on the projected success rate, the model
was run across a range of initial release sizes ranging from 1 to 20 bird pairs. We then
selected the minimum release population size that led to an >80% chance of resulting in
a stable or increasing population as the input for sensitivity analyses. We explored how
variations in long-term and first-year adult survival rates and juvenile survival rates affect
the probability of success in the 20-year period through several sensitivity analyses.

2.7. Web Application

In order to empower managers to consider the trade-offs in habitat area and quality
associated with our integrated LHSM and PVA, we developed an interactive decision-
making tool. We used the Shiny web application package in R to create a web-based tool for
filtering potential release sites based on personalized criteria [44]. The known home range
of adult ‘ākohekohe is ~0.5 ha, with little evidence of overlap and strong evidence of strictly
defended territories [13,14,20]. With this knowledge, we estimated how many ‘ākohekohe
adult individuals could be supported by each homogenous forest cluster by calculating the
cluster area in hectares and multiplying those values by 2. We also incorporate the results
of the PVA into the web application by representing the probability of viability for the
maximum population supported by each cluster. These calculations allow for the efficient
integration of our PVA results as well as the input of managers into CI planning.

3. Results
3.1. ‘Ākohekohe on the Island of Hawai’i

The ‘ākohekohe habitat suitability models with our curated list of vegetation structure
and topography metrics performed well, with an average AUC score amongst 100 sub-
models of 0.891. The standard deviation amongst these 100 iterations was 0.013, indicating
a low level of uncertainty. Canopy height was the metric with the highest average percent
contribution (40.8%) over replicate runs of the ‘ākohekohe models (Table A4). Relative
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height 90 (RH 90) had a high percentage contribution (30.9%) and the highest permutation
importance (37.8%). RH 90 was also the variable with the highest regularized training gain
when used in isolation, and decreased the gain the most when it was omitted (Figure A1).
Response curves show that the effect of canopy height on the suitability prediction peaks
at ~10 m (Figure A2a), whereas the dependence of predicted suitability on canopy density
peaked around 75% (Figure A2b).

3.2. Candidate Site Evaluation

The Ka’ū candidate CI site had the greatest area that could be classified as forest based
on the FAO definition (~28 km2), as well as the highest mean ‘ākohekohe habitat suitability
score within that forested area, with moderate mean uncertainty (0.77 ± 0.18) (Figure 3).
Pu’u Maka’ala had the lowest mean ‘ākohekohe habitat suitability score of all the candidate
CI sites (0.21 ± 0.12). When incorporating the mean uncertainty (standard deviation
amongst 100 sub-models) of the habitat suitability predictions at each candidate site, the
mean suitability of Pu’u Maka’ala fell below that of Hakalau, Ka’ū, and Pu’u Wa’awa’a
(Figure 3). Kı̄puka had the second lowest average suitability amongst the sites (0.35 ± 0.15).
Habitat suitability results at Pu’u Wa’awa’a had the highest average uncertainty (0.19).
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Figure 3. The average ‘ākohekohe habitat suitability score by candidate CI site, represented by the
blue bars. The black lines represent the range of average suitability when considering the standard
deviation of the 100 sub-model habitat suitability predictions for each site. The green line represents
the MTP threshold of ‘ākohekohe suitability, as determined by Gallerani et al. (2023) [22].

We summarized the habitat suitability score and uncertainty of each 100 m pixel within
the candidate CI sites through a set of maps (Figures 4 and A3). The HFAs on the suitability
map display clusters of forests with homogenous suitability scores as discrete candidate CI
release sites. The results of the GLCM homogeneity texture analysis without the application
of a threshold are detailed in Appendix A (Figure A4). Upon visual inspection, areas that
were the most suitable and homogenous were concentrated on the northern edge of Pu’u
Wa’awa’a, the southeastern portion of Hakalau, and throughout Ka’ū (Figure 4). Hakalau
had the most homogenous forested clusters (21) that also fell above the MTP threshold for
‘ākohekohe habitat suitability (0.362) determined by Gallerani et al. (2023) [22] (Table 2).
The combined area of these suitable clusters in Hakalau was ~3 km2. Ka’ū had the second
highest number of suitable clusters, with the average size of those clusters being around
10 times as large as the average cluster size in Hakalau, resulting in a combined suitable
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area of ~19 km2. All of Pu’u Maka’ala’s 11 homogeneous forested clusters fell below the
MTP threshold of ‘ākohekohe suitability. Even with the exclusion of elevation from the
model, the suitable habitat for ‘ākohekohe was not found at elevations above ~1903 m,
with the median elevation for suitable habitat clusters being ~1740 m.
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Table 2. Summary of homogenous forested areas clusters in each candidate CI site based on their
suitability score as ‘ākohekohe habitat. Clusters with an average suitability ≥ 0.362 were suitable;
those below that score were not suitable. This table also contains the average size of suitable
homogenous forested area clusters per candidate CI site.

Candidate Sites Suitable Clusters Average Area (km2) Total Area of Clusters (km2) Not Suitable Clusters

Hakalau 21 0.15 3.14 1
Ka’ū 13 1.48 19.22 2

Pu’u Maka’ala 0 NA 0 11
Pu’u Wa’awa’a 3 0.11 0.32 0

Kı̄puka 2 0.04 0.09 5

3.3. Population Viability Analysis

Results from the initial deterministic individual run of our demographic model, as
well as more detailed results from stochastic runs and sensitivity analyses, are presented in
Appendix B. When exploring the effect of the starting population on the success rate, we
found that after 1000 stochastic runs, at least nine pairs of birds are necessary for the release
to have an >80% chance of resulting in a stable or increasing population. Additionally,
at a release population size of eight pairs, there was a less than 1% chance of complete
failure or extirpation (100% mortality) within the first 20 years after release. Our sensitivity
analysis on long-term adult survival found that below 91% long-term adult survival after
the initial year post release, the chance of CI success drops below 50%. When juvenile
survival deviates below 0.20, the success rate drops below 50%. Success rates varied little
based on adult survival for the first year post release (Appendix B). Beyond using the PVA
to identify a minimum viable cluster size for CI, and the overall probability of success of
CI for the species, we also used PVA to calculate the probability of population stability by
population size of naturalized populations. This allowed us to estimate the population
stability of individual clusters based on individual cluster carrying capacity (Appendix B).
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3.4. Web Application

The HFAs, as discrete candidate CI release sites, are displayed in a web application
with attributes of the mean habitat suitability, area in km2, the number of adult ‘ākohekohe
individuals that could be supported by said area, and the probability of population stability
given the PVA results. This application can be found at the following link: https://rconnect.
usgs.gov/akohekohe_CI_tool/. Managers can scroll over the clusters in each of the five
candidate CI sites to see these attributes. Additionally, they can select a suitability threshold
from an interactive slider, along with the number of ‘ākohekohe adults they wish to release
that could lead to a viable population in the release site. The sites that meet these criteria
will then be displayed on the map with different colors to represent average suitability. This
allows managers to see how our results change by modifying specific criteria of potential
release population success. If a manager wanted to explore clusters that could support
18 adult ‘ākohekohe, then 26 clusters throughout all five candidate sites have a large enough
area to support such a population. That number would continue to decrease depending on
the threshold for ‘ākohekohe suitability.

4. Discussion
4.1. Lidar Sensor Correction

One significant factor likely contributing to any model uncertainty in this study is
the diversity of sensors used to collect lidar data across the candidate CI sites. We tried to
reduce this uncertainty through our sensor correction procedure. Previous research has
found that when considering appropriate factors, the combination of data from various lidar
projects does not hinder the accurate estimation of canopy structure [29]. We compared
sensor specifications that would most likely lead to differences in point clouds collected
over similar areas. Beam divergence indicates how wide or narrow the laser pulse spreads
as it travels from the sensor to the Earth’s surface. A wider (narrower) beam divergence can
result in a larger (smaller) footprint on the ground. This works in concert with the altitude
at which the sensor is flown, which controls the resolution of the data, and therefore, the
coverage on the ground per laser pulse [45]. Depending on these two parameters, sensors
can collect either finer or coarser point clouds over the same area [46,47]. Similarly, the
pulse repetition frequency (PRF) affects the density of point clouds. PRF is the rate at which
a sensor emits laser pulses, typically measured in Hertz (Hz) [40]. This parameter allows
sensors to capture more (or fewer) data points per unit of time. Finally, the wavelength
of light used by the sensor will determine how well the laser light can penetrate the
canopy and capture lower vegetation and ground points [48]. Differing wavelengths
could therefore greatly affect the comparison of forest structure metrics such as RH 25
between different sensor point clouds in the same forested area. Considering these relevant
parameters, we were able to create relationships to standardize the data, and thereby reduce
uncertainty in our model results. Furthermore, the mixed ground cover types of the overlap
areas between sensors ensured that our regression equations were applicable in both dense
canopies and more open landscapes.

4.2. Habitat Preferences

The relative importance of canopy height, RH 90, and canopy density to the model
performance can shed light on habitat preferences of ‘ākohekohe. It is important to note
that despite our efforts to eliminate highly correlated variables, RH 90, canopy density and
canopy height do experience high correlations. Therefore, it is difficult to parse out the
individual metric importance. However, the effect of RH 90 on the ability of the model
to predict suitable ‘ākohekohe habitat suggests the importance of upper canopy forest
structure in habitat selection for this species. RH 90 more specifically encapsulates the top
of canopy structure than the canopy height model, and it can be representative of forest
biomass [49,50]. It is also highly correlated to RH 75 which was used in previous research to
represent the majority of overstory vegetation [23]. In addition to evaluating the importance
of individual metrics, we can assess how the range of each metric’s values affects the model

https://rconnect.usgs.gov/akohekohe_CI_tool/
https://rconnect.usgs.gov/akohekohe_CI_tool/
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predictions using response curves. The ideal forest structure for ‘ākohekohe suitability
based on our model at the 100 m scale was ~10 m average tree height, a canopy density of
~75%, an understory height (RH 25) of ~2 m, and a tall upper canopy with RH 90 peaking at
~15 m (Figure A2a–d). This is corroborated by a previous observational study of ‘ākohekohe
foraging, which found that they foraged in the canopy during 64% of all observations at a
mean height of 9.5 m ± 0.90. Foraging from subcanopy trees and shrubs was seasonal, and
mainly occurred when ‘ōhi’a bloom declined [13]. These preferences highlighted by our
model results show that the management of canopy tree species is essential for the success
of translocated ‘ākohekohe. Evaluation and monitoring of rapid ‘ōhi’a death (ROD) at any
potential release sites would help ensure the continued quality of the candidate site [51]. The
timing of ‘ākohekohe breeding has also been shown to be positively correlated with a high
abundance of ‘ōhi’a lehua blossoms. Therefore, quantitative analysis of ‘ōhi’a phenology in
these candidate CI sites could be incorporated as an assessment of CI potential.

It Is important to note that the habitat preferences elucidated by this model reflect
‘ākohekohe behavior in its current restricted range on east Maui. Historically, ‘ākohekohe
were found in a wider range over Maui, and even on the island of Moloka’i [11]. We
therefore cannot definitively rule out some shift in vegetation structure preferences over the
past century, given their range limitations due to changing disease and climate landscapes.
However, ‘ākohekohe appear specialized to particular forest types and vertical stratification
within native wet forests; such traits are not likely to have shifted greatly in a matter of
decades. Assuming historical stands occupied by ‘ākohekohe shared broad structural
similarities to current forest, our models have likely captured the key structural elements
of suitable habitat despite the more recent input data. Using the forest structure decoupled
our results from confounding temporal factors, allowing us to elucidate effective suitable
habitats in the absence of disease.

4.3. Candidate Conservation Introduction Site Comparison

Considering suitability scores, homogeneity, and uncertainty, Ka’ū and Hakalau were
the top candidate CI sites amongst the five sites considered. Pu’u Wa’awa’a followed
closely behind Hakalau in average habitat suitability score; however, the site did have a
higher average uncertainty amongst results of the 100 sub-models. Additionally, it was
quite a small site with only 0.32 km2 of total suitable and homogenous ‘ākohekohe habitat.
Although Hakalau had the highest number of discrete suitable ‘ākohekohe habitat clusters,
Ka’ū had the largest area of homogenous suitable habitat. During the 2022 SWOT analysis,
experts gave the best habitat indicator scores for ‘ākohekohe to Hakalau when considering
species-specific indicators [17]. Hakalau also ranked higher in quality than Ka’ū in several
crucial categories, such as the current limited presence of threats such as avian malaria,
pigs, and mosquito breeding habitat. Quantitative analyses to defend these expert rankings
are essential to determine which candidate CI site is truly more suitable. However, strictly
based on forest structure, Ka’ū is the most species-specific suitable candidate CI site for
‘ākohekohe. Other habitat qualities conducive to ‘ākohekohe success, such as the presence
of specific understory plant species, which provide nectar or major arthropod prey, may not
be fully captured by our model. Weighing additional habitat characteristics and potential
threats would allow for more confidence when choosing a CI site. Specifically, more work
would be beneficial to determine the presence and potential future presence of avian
malaria at these sites.

Based on our LHSM results, Pu’u Maka’ala had the lowest average suitability score
of all candidate CI sites (Figure 3). In addition, Pu’u Maka’ala had no homogenous areas
above the MTP threshold for ‘ākohekohe (Table 2). We would expect that forested area in a
candidate CI site would follow a close relationship to the total area of suitable ‘ākohekohe
habitat. This was certainly true for Ka’ū, the site with the largest forested area (28.41 km2)
and most homogenous suitable ‘ākohekohe habitat (19.22 km2). However, Pu’u Maka’ala
had the third largest forested area (7.38 km2) of the candidate sites and the least amount
of suitable habitat (Table 2). The fact that there were non-suitable homogenous forested
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clusters indicates that the determination of species-specific suitable forest structures is
more complex than simple metric thresholds. In fact, the complex relationships between
relative height metrics, canopy density, canopy height, and even topography seem to
drive ‘ākohekohe habitat suitability across our examined sites. Our results emphasize the
importance of the quantitative analysis of forest structure and composition to determine
suitable habitats for avian species CI both in Hawai’i and globally. Furthermore, caution is
warranted when considering Pu’u Maka’ala for ‘ākohekohe release, despite its high scores
in the 2022 SWOT analysis, as the forest structure appears unsuitable based on our results.

4.4. Release Site Selection

The substantial benefit of our 100 m analysis is the determination of suitable release
sites within the larger candidate CI areas. With clusters that met specific homogeneity and
suitability criteria, we were able to identify specific areas fit for the release of ‘ākohekohe
individuals. One caveat of our cluster-based analyses is that every cluster is considered
independent regardless of their proximity to other clusters. Some of these smaller clusters
in the Hakalau site, for example, may be functionally connected for birds moving across
landscapes. Our results are still useful in identifying areas in which released populations
would minimize movement across unsuitable habitat. However, additional inquiry into
the degree of risk incurred by traveling short distances over less suitable habitat could be
considered in the future when selecting release sites.

A key element in determining the appropriateness of a release site is if the area is large
enough to support a population that can persist many years into the future. After several
simulations, our demographic model results indicated that nine pairs is an initial release
population of ‘ākohekohe that is robust against stochasticity and will likely result in a stable
or growing translocated population. Although the PVA provided a useful initial estimate of
release size and ‘ākohekohe CI viability, these results warrant careful interpretation given the
underlying data limitations and biological assumptions. Several key demographic parameters,
especially juvenile survival, are based on estimates from other Hawaiian honeycreeper species
due to the lack of empirical data for ‘ākohekohe specifically. Furthermore, the model does not
account for potential density dependence effects on vital rates as the population grows. The
sensitivity analyses revealed adult survival and first-year effects as critical knowledge gaps.
The CI success appeared highly contingent on maintaining high adult survival rates typical of
wild ‘ākohekohe populations on Maui. If CI substantially reduces long-term adult survival,
the population growth may be insufficient to sustain the population, as the models currently
predict. However, when a much lower bar for success was applied to these results, the
likelihood of complete extirpation of the population within 20 years was much less sensitive
to variability in adult and juvenile survival. A further discussion of caveats and uncertainties
is presented in Appendix B.

Our web application allows for the interaction of managers with the results of our
integrated LHSMs and PVAs and serves as a model for future applications of our method-
ology. The application also makes it possible to see how refined release size estimates
would reshape our suitability results. One limitation of our web application is that we only
consider adult home ranges. There is strong evidence that ‘ākohekohe juveniles travel long
distances during the post-fledging and pre-breeding periods, and occupy areas closer to
25.02 ha in size [14]. This may indicate that non-territorial juveniles require a much larger
area than adults. However, because the juveniles are not territorial during this period, they
exhibit a great deal of overlap in the habitats within which individuals occupy [14]. A high
degree of overlap makes the estimation of the total required release area more challenging.
However, the consideration of the surrounding habitat suitability when selecting release
sites would help to ensure the ability of juveniles to travel and establish new territories.
This also further highlights the potential importance of contiguous habitats and/or a matrix
of habitat patches that facilitates adequate juvenile dispersal.
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5. Conclusions

This study demonstrates the value of high-resolution lidar data for assessing habitat
compatibility to support endangered species CI. By standardizing vegetation structure
metrics across differing lidar sensors in the native and potential introduction ranges, habitat
suitability models were successfully transferred between islands with high AUC scores.
Our methods for sensor correction provide a useful guide to working with lidar data on
larger landscapes given the patchwork of sensors and parameters used for collection in
Hawai’i and elsewhere. The LHSM revealed distinct habitat preferences of ‘ākohekohe
that transcend beyond simple forest structure metric thresholds. The dependence of
the ‘ākohekohe habitat suitability scores on average canopy height and canopy density
peaked at ~10 m and 75%, respectively. Compared with a previous study [22], we took
our research further through our consideration of the spatial heterogeneity of suitable
habitat. We thus identified patches of consistent suitable habitat using a texture analysis
of model results across the landscape rather than relying on site-wide averages. Ka’ū
proved to be the candidate site with the most suitable habitat, while Pu’u Maka’ala was
found to be the least suitable. However, the consideration of several other abiotic, biotic,
logistical, and management factors is essential when selecting a CI site. Initial PVA results
show that a minimum of nine pairs is necessary for establishing a successful translocated
population of ‘ākohekohe. The web application provides an interactive decision support
tool for the consideration of PVA caveats when selecting viable founder population release
sites. The methodology developed here establishes a framework to quantitatively evaluate
habitat suitability and connectivity for CI of any species dependent on forest structure and
topography globally.
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‘ākohekohe locations. Any use of trade, firm, or product names is for descriptive purposes only, and
does not imply endorsement by the U.S. Government.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Comparison of sensor specifications from different aerial lidar data. Abbreviations used:
AGL, above ground level; GAO, global airborne observatory; NSF, National Science Foundation;
USGS, U.S. Geological Survey; FWS, U.S. Fish and Wildlife Survey.

Source Sensor Name Beam Divergence (mrad) Altitude (m AGL) PRF (kHz) Wavelength (nm)

GAO Optech HA-500 0.25 2000 100–500 1064
NSF Optech Gemini 0.25–0.8 1000 100 1064

USGS Leica SPL 0.08 3200–4420 60 532
FWS Riegel LMS-Q680i ≤0.5 500 80–400 Near-infrared (700–1400)

https://doi.org/10.5066/P1CEQA9X
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Table A2. Regression coefficients and adjusted R-squared values of the linear relationships between
overlapping lidar data collected from different sensors on the Island of Hawai’i. These coefficients
were then used to sensor-correct the different lidar data to better match data collected by the Optech
Gemini sensor implemented by NSF. All p-values of the regression models were <2 × 10−16.

Metrics
Hakalau (USGS~FWS) Pu’u Maka’ala (USGS~NSF)

Intercept Slope R2 Intercept Slope R2

Canopy Height −0.22 0.82 0.94 0.44 0.87 0.94
Relative Height25 0.21 1.16 0.54 −0.02 0.33 0.81
Relative Height50 1.15 0.65 0.82 0.16 0.81 0.92
Relative Height75 0.23 0.74 0.92 0.55 1.00 0.93
Relative Height90 −1.21 0.80 0.91 0.69 1.09 0.93
Canopy Density −3.20 0.89 0.85 6.51 1.02 0.89

Table A3. Spearman rank correlation analysis of nine lidar-derived vegetation structure and to-
pographic metrics in the candidate conservation introductions (CI) areas on the Island of Hawai’i.
Abbreviations used: CHM, canopy height model; DNS, canopy density; DTM, digital terrain model
(elevation); RH, relative height (25, 50, 75, and 90 represent the percentages of returns that fall below
the relative height); TWI, topographic wetness index.

CHM DNS DTM RH25 RH50 RH75 RH90 SLOPE

CHM 1.00
DNS 0.89 1.00
DTM −0.04 −0.15 1.00
RH25 0.82 0.88 −0.16 1.00
RH50 0.98 0.88 −0.02 0.82 1.00
RH75 0.98 0.84 −0.01 0.75 0.97 1.00
RH90 0.97 0.83 −0.02 0.73 0.94 0.99 1.00

SLOPE 0.40 0.31 0.23 0.19 0.41 0.46 0.47 1.00
TWI −0.14 −0.09 −0.27 0.05 −0.17 −0.21 −0.21 −0.67

Table A4. Variable percent contribution and permutation importance of the ‘ākohekohe (Palmeria
dolei) habitat suitability models.

Variable Percent Contribution Permutation Importance

Canopy Height 40.8 18.7
RH90 30.9 37.8

Canopy Density 20.9 18.9
TWI 4.5 3.9
RH25 2.9 20.7
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Canopy Density  −3.20 0.89 0.85 6.51 1.02 0.89 

Table A3. Spearman rank correlation analysis of nine lidar-derived vegetation structure and topo-
graphic metrics in the candidate conservation introductions (CI) areas on the Island of Hawai’i. Ab-
breviations used: CHM, canopy height model; DNS, canopy density; DTM, digital terrain model 
(elevation); RH, relative height (25, 50, 75, and 90 represent the percentages of returns that fall below 
the relative height); TWI, topographic wetness index. 

 CHM DNS DTM RH25 RH50 RH75 RH90 SLOPE 
CHM 1.00        
DNS 0.89 1.00       
DTM −0.04 −0.15 1.00      
RH25 0.82 0.88 −0.16 1.00     
RH50 0.98 0.88 −0.02 0.82 1.00    
RH75 0.98 0.84 −0.01 0.75 0.97 1.00   
RH90 0.97 0.83 −0.02 0.73 0.94 0.99 1.00  

SLOPE 0.40 0.31 0.23 0.19 0.41 0.46 0.47 1.00 
TWI −0.14 −0.09 −0.27 0.05 −0.17 −0.21 −0.21 −0.67 

Table A4. Variable percent contribution and permutation importance of the ‘ākohekohe (Palmeria 
dolei) habitat suitability models. 

Variable Percent Contribution Permutation Importance 
Canopy Height 40.8 18.7 

RH90 30.9 37.8 
Canopy Density 20.9 18.9 

TWI 4.5 3.9 
RH25 2.9 20.7 

 
Figure A1. Jackknife or regularized training gain plot for ‘ākohekohe (Palmeria dolei) habitat suitability.
This graph displays how the model performance changes when a model is built using just one
environmental variable or when one environmental variable is excluded. All variables have the suffix
“_100 m” to represent the scale of the environmental variables.
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Figure A2. Response curves, each representing a different model created using only the corresponding
lidar-derived metric at the 100 m scale. These charts illustrate how the predicted suitability of
‘ākohekohe (Palmeria dolei) is influenced by the chosen variables and the correlations they share with
other variables. The metrics are as follows: canopy height (a), canopy density (b), relative height 25
(c), relative height 90 (d), topographic wetness index (e).
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Figure A4. Results of the 3 × 3 gray-level co-occurrence matrix texture statistic as applied to
‘ākohekohe (Palmeria dolei) habitat suitability scores at the 100 m scale in areas that meet the Food and
Agriculture Organization of the United Nations (FAO) forest definitions. Purple areas represent more
heterogeneous habitat scores; orange areas represent more homogenous habitat scores.

Appendix B. Population Viability Analysis for ‘Ākohekohe (Palmeria dolei)
Conservation Introductions on the Island of Hawai’i

To estimate the minimum number of birds required for a conservation introduction
(CI) release, we performed population viability analysis (PVA) using stochastic simulations
in R. The model was developed considering the available demographic parameters for
the species based on previous research. Simulations focused on determining the number
of bird pairs needed per release; however, as often conducted with monogamous animal
species [53,54], the calculations were based on the number of female birds, assuming an
equal sex ratio in the releases. Several demographic parameters were integrated into the
model, detailed subsequently. Pairs Renesting within Season (p): The proportion of pairs
that would attempt to renest within a single breeding season was set to 0.42 [55]. Nest
Success (s): The probability of a nest being successful was allowed to vary uniformly
between 0.59 and 0.83, which are low and high yearly estimates from field observations [55].
Chicks per Nest (c): The average number of chicks produced per successful nest was set
to 1.1 [55]. Juvenile Survival Rate (sj): The juvenile survival rate is a key demographic
parameter influencing population viability. However, limited data are available on juvenile
survival specifically for the ‘ākohekohe. To derive a reasonable estimate, we performed
weighted mean calculations using available juvenile survival data from other Hawaiian
honeycreeper species [56]. This resulted in an initial juvenile survival mean of 0.2526 and
standard error of 0.0507. Given that the ‘ākohekohe’s closest relatives, the i’iwi (Vestiaria
coccinea) and ‘apapane (Himatione sanguinea), have markedly lower juvenile survivorship,
we also initially considered a lower bound estimate calculated only for these two species
(mean, 0.1107; standard error (SE), 0.0604). However, unpublished observational data
from Wang et al. (2020) [14] showed a much high juvenile survivorship for ‘ākohekohe.
Therefore, we opted to utilize the weighted mean juvenile survival rate calculated across
all honeycreeper species (mean, 0.2526; SE, 0.0507) in our primary analysis. We conducted
sensitivity analyses based on lower mean juvenile survival rates to further explore the
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influence of this important parameter. The probability of a juvenile surviving was modeled
to stochastically range normally around the mean of 0.25 with an SE of 0.05. To avoid
probability values below 0 or above 1, we used truncated normal distribution to sample
values from year to year using the R package truncnorm. Adult Survival Rate (sa): The
survival probability of adults was allowed to stochastically range normally around a
mean of 0.95 with an SE of 0.1 [55]. To avoid probability values below 0 or above 1, we
used a truncated normal distribution to sample values from year to year using the R
package truncnorm. The initial number of adult females (Nf,0): This value was varied
between 1 and 30 across different simulations to assess the impact of release size on the
future trajectory of the translocated population. Impact of conservation introduction
on population demography: We assumed that the first year after release, adult survival
probabilities would be lower due to the stress of captivity, transportation, and adaptation
to a new environment. Following consultation with experts in prior bird CIs, this effect was
simply simulated as a 10% decrease in mean annual survival of adults. We also assumed
no successful nesting in the first year following release; thus, there was no need to define
the impact of CI on juvenile survival.

The population was projected over a 20-year period using a discrete-time model,
encapsulating the demographic parameters and their inherent stochasticity. For each year
(t), the following computations were executed:

Nests Producedt = Adultst + (Adultst × p)

Nest Sucesst = Uni f orm
(
slower, supper

)
Nests Success f ult = Nests Prodcuedt × Nest Successt

Juveniles Producedt = Nests Success f ult × c

Juvenile Survival Ratet = Truncated normal
(
sj
)

Juveniles Survivingt = Juveniles Producedt × Juvenile Survival Ratet

Juvenile Females Survivingt = Juveniles Survivingt/2

Adult Survival Ratet = Truncated normal(sa)

Adult Survival Ratet = Truncated normal(sa)

Nt = Juvenile Females Survivingt + Surviving Adult Femalest

where Uni f orm(a, b) generates a random number following a uniform distribution between
a and b, and Truncated normal(a) generates a random number following a truncated normal
distribution around a using the available standard error estimate for the parameter. The
number of adults in the subsequent year was determined by the value of Nt, forming the
basis for the calculations in the subsequent year.

Appendix B.1. Single Run and Stochastic Simulations

A single run of the model provided a deterministic trajectory of the population,
offering insight into the possible future state of the population under specified conditions.
For these individual runs, the surviving numbers of individuals were rounded to ensure
that demographic stochasticity would be a factor in the projections. To account for the
inherent stochasticity and uncertainty in the demographic parameters, 1000 stochastic
simulations were executed, each generating a unique population trajectory over the 20-year
period. The stochasticity was incorporated by allowing the adult and juvenile survival
rates and nest success to vary randomly within specified bounds. The model was based
on modeling the females only, and an additional source of demographic stochasticity was
added by using a binomial distribution to determine the number of females born out of the
total number of juveniles born in each year of each individual simulation. This was thought
to be an important source of demographic stochasticity [57] given the generally small
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number of bird pairs considered for a potential CI release. Furthermore, to avoid potential
bias when modeling small populations, we incorporated stochastic rounding whenever
simulating discrete values such as number of nests or surviving adults and juveniles.
Deterministic nearest rounding could, for instance, result in a situation where populations
never dropped below 1 individual, as with just 1 female remaining, a 95% ± 0.1 SE adult
survival rate would always round up to 1 surviving female. Rather than deterministic
rounding, we implemented stochastic rounding so that a value such as 1.6 successful nests
would have a 60% chance of rounding down to 1 and 40% chance of rounding up to 2. This
introduced additional demographic stochasticity that is characteristic of small populations.
Specifically, stochastic rounding was applied when calculating the rounded number of
nests produced, successful nests, surviving juveniles, surviving adults, and total remaining
population each year. This helps ensure that extinction is possible in the model even when
multiplying very small populations by high survival rates.

A successful run was defined as a simulation where the population was stable or
increasing over the 20-year simulation (i.e., the population size at year 20 was equal or
greater than the initial population size). The proportion of successful runs was calculated
across all stochastic simulations (10,000), providing an estimate of the probability of the
population remaining stable or increasing over the 20-year period under the defined
conditions.

Appendix B.2. Sensitivity Analysis

To examine the influence of initial population size on the projected success rate, the
model was run across a range of initial female population sizes from 1 to 20. For each
starting population size, the model was run 1000 times and the success rate was computed,
facilitating the exploration of the relationship between initial population size and future
population viability.

Appendix B.3. R Code and Results

This section presents all relevant R scripts necessary to replicate the PVA embedded
within the text, to allow for easier replicability of the analysis and associated findings.

Appendix B.3.1. Defining Constants

Initially, we defined constants for our PVA model. These constants represent estimates
and assumptions about the ‘ākohekohe bird species and were used in our single and
multiple run simulations [55].
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firstyr_adult_survival_effect <- -0.1 
firstyr_nest_success_upper <- 0 
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starting_N_females <- 9 
num_years <- 20 
num_simulations=10000 
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Appendix B.3.2. Creating Model for Individual Release Population Projection

First, we created a function, run_population_projections, which generates a single run
population projection based on the demographic variables defined above.
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frac_part <- x - floor(x) 
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if (runif(1) < frac_part) { 

return(ceiling(x)) 
} else { 

return(floor(x)) 
} 

} 
# Test the function 
#stochastic_round(1.5) 

#define function for creating a single population projection 
run_population_projection <- function(pairs_renest_within_season, chicks_per_nest, 

juvenile_survival_mean, juvenile_survival_se, 
adult_survival_mean, adult_survival_se, 
nest_success_upper, nest_success_lower, 
firstyr_juvenile_survival_effect, 
firstyr_adult_survival_effect, 
firstyr_nest_success_upper, firstyr_nest_success_lower, 
starting_N_females, num_years = 20, binomial_sexratio=T) { 

# Initialize a data frame to store results 
results <- data.frame(matrix(nrow = num_years, ncol = 12)) 
colnames(results) <- c("Year", "Adults", "NestsProduced", "NestSuccess", "NestsSuccessful", "J 
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g", 
"JuvenileSurvivalRate", "JuvenilesSurviving", "JuvenileFemalesSurvivin 

"adult_survival_rate", "surviving_adult_females", "N") 

# Set initial state for year 1 
results$Year[1] <- 1 
results$Adults[1] <- starting_N_females 

# Model loop for num_years years 
for (year in 1:num_years) { 

if (year > 1) { 
results$Adults[year] <- results$N[year - 1] 

yr_juvenile_survival_mean=juvenile_survival_mean 
yr_nest_success_lower=nest_success_lower 
yr_nest_success_upper=nest_success_upper 
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Appendix B.3.3. Running a Deterministic Individual Release Population Projection

We first applied the function above and visualized a single run of the population
projection using the deterministic rates of adult survival (0.95) [55], juvenile survival
(0.25) [56], and nest success (0.68) [55], based on rates extracted from the literature.
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Appendix B.3.4. Stochastic Release Population Projection

The next step was to create a function, simulate_population, which performs multiple
runs (stochastic projection) and calculates the proportion of runs that result in a final
population greater than the initial population.
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les 

} 
}else{ 

if (results$N[num_years] >= starting_N_females) { #results$N[num_years] >= starting_N_fema 

 
successful_runs <- successful_runs + 1 

} 

Appendix B.3.5. Explore the Success Rate by Starting Population

Using the stochastic projection function defined above, we then explored how different
initial population sizes affect the success rate of ‘ākohekohe releases. This is the key result
we used to estimate the minimum release size for the rest of the study.
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output_prob_success_by_release_size=data.frame(starting_N_females_range, success_rates) 
write.csv(output_prob_success_by_release_size, "output_prob_success_by_release_size.csv", row.na mes 
= F) 

Conclusions: Based on the results above, at least nine pairs of birds are necessary for
release to have an >80% chance of resulting in a stable or increasing population.

For comparison, we assess how release size relates to the probability of avoiding
extirpation (i.e., complete failure of release). This is important to consider as even a mildly
declining introduced population can still serve as a safe haven for the species while new
approaches to handle disease in its home range are developed.
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Conclusions: Based on the results above, defining success as the translocated popula-
tion not being extirpated, at least five pairs of birds are necessary for a release to have a
>95% chance of being successful. With eight pairs, that chance rises to >99%.

Based on both results above, we performed multiple sensitivity analyses considering
nine pairs and our original goal of population stability/increase.

However, before the sensitivity analyses, we first created PVA estimates for popu-
lation sizes that spanned the wider range of population sizes possible across the cluster
sizes we identified with our lidar-based habitat suitability model (LHSM) analysis, and
without considering CI effects on species, so we could estimate the probability of natural-
ized/established population stability by population size.
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Appendix B.4. Sensitivity Analyses of PVA

Survival may vary widely in a new environment; therefore, we performed several
sensitivity analyses to explore the effect of varying survival rates on release success. We
first tested the effect of CI on long-term adult and juvenile survival.

Appendix B.4.1. CI Success Rate by Long-Term Mean Adult Survival Effect

We ran the PVA under multiple values of long-term mean survival rates of adults
(from 0.85 to 1).
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Conclusions: CI success is linearly and positively related to the long-term survival
rate of ‘ākohekohe in its new environment. Below a 91% adult survival after the initial year
post release, the chance of CI success drops below 50%.

Appendix B.4.2. Success Rate by Long-Term Mean Juvenile Survival Effect

We considered values of juvenile survivorship varying from −10 to +5% of the calcu-
lated means.
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Conclusions: The success of a CI hinges slightly less on juvenile survivorship, in
comparison to adult survival, but can still have a large influence on release outcomes if
observed values deviate from the estimated mean value across Hawaiian honeycreepers.

Appendix B.4.3. Sensitivity Analysis of CI Success and First-Year Survival Effects on Adults

We calculated the sensitivity of CI success and first year survival effects on adults,
considering a wider range of survival values for that first year, given that survival may be
largely affected by CI (a −45% to 0% effect on adult survival estimates, translating to mean
adult survival ranging from 50% to 95%).
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Conclusions: First-year adult survival has a generally small effect on the release
success rate; additional runs showed that this effect can be mitigated with larger initial
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Appendix B.5. Discussion

Although the PVA provides a useful initial estimate of release size and ‘ākohekohe
CI viability to contextualize our estimates of available release habitat, these PVA results
warrant careful interpretation given inherent data limitations, and the additional factors
detailed below.

Several key demographic parameters, especially juvenile survival, were based on
estimates from other Hawaiian honeycreeper species due to the lack of empirical data
for ‘ākohekohe specifically. Furthermore, the model did not account for potential density
dependence effects on vital rates as the population grew. The sensitivity analyses revealed
adult survival and first year effects as critical knowledge gaps. The CI success appears to
be highly contingent on maintaining high adult survival rates typical of wild ‘ākohekohe
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populations. If CI substantially reduces long-term adult survival, the population growth
may be insufficient to sustain the population, as the models currently predict.

Another factor affecting the viability of releases, which is not incorporated into stan-
dard PVAs, is the issue of the dispersal behavior of released birds from release sites.
Experiences from similar CIs indicate that introduced birds may attempt to return to their
original location or disperse away from the release site, thereby affecting the effective
‘survival rate’ within the new habitat. This was true for the experimental movement of
movement of two other forest bird species, palila (Loxioides bailleui) and i’iwi, both species
which are less aggressive and territorial than ‘ākohekohe [20,58]. Counterbalancing this
risk, several homogenous forested areas (HFAs) that our analysis identified as potential
CI candidate sites were close to one another which, with some movement by released
individuals, could greatly increase the amount of territory available for a new population.
We had no data for ‘ākohekohe to reduce these uncertainties; thus, this issue of dispersal
and movement remains a critical uncertainty that may directly influence the stability and
growth of newly established populations.

Another behavior-related limitation of our work is the assumption of the successful
pairing of male and female ‘ākohekohe post translocation. The variability in pair–bond
formation is a pivotal consideration, as our study did not delve into the methods to ensure
the required number of breeding pairs, such as translocating known breeding pairs or
strategies to encourage the pairing of translocated birds. This represents an area for future
research that could be useful for refining the PVAs developed in our study.

Although this first PVA for ‘ākohekohe was developed to support wider CI habitat
modeling, future work could expand on its utility. For instance, the consideration of
supplemental releases could be investigated, as well as a wider set of plausible CI scenarios.
The code presented here is a replication of the entire PVA, for those interested in such future
analyses.

Lastly, we also performed the analyses above using the same number of individuals
but with the goal of avoiding extirpation (a much lower bar); all the sensitivity analyses
which were under that goal showed that the likelihood of complete extirpation of the
population within that 20-year period was much less sensitive to variability in the survival
of both adults and juveniles. This adds extra assurance to our results that, even though
the probability of a stable or increasing population under the release considered was not
extremely high, the probability we would entirely lose the new population was very low,
and not as susceptible to large variability in critical vital rates.
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