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Abstract: Human space exploration has brought a growing crowded operating environment for
in-orbit spacecraft. Monitoring the space environment and detecting space targets with photoelectric
equipment has extensive and realistic significance in space safety. In this study, a local spatial–
temporal registration (LSTR) method is proposed to detect moving small targets in space. Firstly, we
applied the local region registration to estimate the neighbor background motion model. Secondly,
we analyzed the temporal local grayscale difference between the strong clutter and target region
and measured the temporal local–central region difference to enhance the target. Then, the temporal
pixel contrast map was calculated, which further retains the target signal and suppresses the residue
clutter. Finally, a simple adaptive threshold segmentation algorithm was applied to the saliency
map to segment the targets. Comparative experiments were conducted on four groups of image
sequences to validate the efficiency and robustness of the algorithm. The experimental findings
indicate that the proposed method performs well in target enhancement and clutter suppression
under different scenarios.

Keywords: space target detection; image sequences; spatial–temporal domain; interframe registration

1. Introduction
1.1. Background

Space targets refer to all objects in outer space, including space debris, spacecraft,
meteorites, and comets. With the deepening of space exploration, the increasing number of
space targets is bringing an ongoing crowded space environment and interfering with space
exploration tasks [1]. Space situational awareness (SSA) refers to observing, understanding,
and predicting the physical location of organic and artificial objects in orbit around the
Earth [2]. Investigating the detection and tracking of space targets using image data
surrounding spacecraft acquired from space-based optical detection equipment is beneficial
to advancing SSA technology and ensuring space environment safety [3,4].

As the main task of SSA, spaceborne space-target-monitoring technology has received
much attention. Under the space-based monitoring scenario, it is common to use wide-field
view optical detection equipment to obtain comprehensive space environment informa-
tion [5]. Moreover, the space target appears as a dim point in the image due to the long
distance between the target and the focal plane of photoelectric equipment [6]. Most previ-
ous research efforts have concentrated on space-based space target detection in deep-space
backgrounds [7]. These studies have been dedicated to addressing various challenges,
including star map matching [8], stellar target suppression [9], and the enhancement of low
signal-to-noise ratio space targets [10]. However, the clutter interference derived from the
ground surface, moving clouds, and atmospheric turbulence will invariably enter the field
of view, increasing the complexity of the space target image background and the difficulty
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of target detection. Therefore, this work aims to provide a reliable moving-space-target
detection algorithm under a complex background that can achieve the accurate detection
of weak and small space targets under the space-based monitoring scenario.

1.2. Motivation

The challenges of space moving-target detection in the complex space-based back-
ground can be summarized as the following two points: Firstly, with a broad detection
range, the distance between the target and the imaging plane may reach hundreds of
kilometers. The detection distance and the target size often lead to a reduction in the pixel
number and a relatively weak grayscale response of the space target on the image. It means
that the detector fails to use the morphological information of the target with a limited
number of pixels, leading to primary demands for optimizing the target enhancement
capability of the detector. Secondly, the clutter interference derived from the ground sur-
face, moving clouds, and atmospheric turbulence will invariably enter the field of view,
increasing the complexity of the space target image background. Strong background clutter
is often imaged in blocks or dots with a high grayscale intensity on the focal plane. In
particular, the distribution pattern of point clutter may be similar to the target, affecting
the detection accuracy. Strong non-stationary background interferences must be rejected to
obtain better detection and false alarm rates.

Some existing dim and weak target detection algorithms are often applied to the
ground scene with a simple and stable background. The existing detection methods that
utilize spatial and temporal grayscale feature information can effectively detect targets in
simple backgrounds of sequence images. However, they fail to extract targets accurately
when the image background changes under space-based platforms. There is still limited
research on space target detection algorithms in the space-based scenario.

In this study, we propose a local spatial–temporal registration (LSTR) method to
enhance weak targets and alleviate background interference for the space moving-target
detection of sequence images. This method is suitable for small-moving-target detection
under space-based complicated scenes. Specifically, the contributions of the proposed LSTR
method are mainly in four aspects:

1. A method for space moving-target detection under complex backgrounds is pro-
posed. It uses the motion difference between the target and its local surrounding
background region to highlight the target and reduce strong background clutter. A
spatial–temporal difference enhancement map and A temporal pixel contrast map are
calculated to enhance the target signal.

2. A local neighborhood spatial–temporal matching strategy is proposed, which esti-
mates the local surrounding background motion model by registering local slices with
a shielded center region.

3. A spatial–temporal difference enhancement map (STDEM) target enhancement factor
is designed based on the spatial–temporal registration results. By analyzing the
grayscale difference of the central matching blocks between the target and clutter, the
STDEM extracts the positive and negative grayscale peaks of the difference results to
strengthen the target energy.

4. Extensive experiments are conducted on the simulated datasets synthesized by the
actual optical image background. The experimental results show that the proposed
method can filter most of the strong background clutter composed of ground sur-
face and complicated clouds and has an excellent target detection performance in
complex backgrounds.

The rest of this article is structured as follows: In Section 2, the proposed method
is introduced in detail. Section 3 provides the results and analysis of the comparison
experiments. The discussion and conclusion of this article are presented in Sections 4 and 5,
respectively.
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2. Related Works

As a research hotspot in computer vision, numerous solutions have been developed
for the weak- and dim-target detection problem, which can be broadly categorized into
four types: image filtering-based, human visual contrast-based, optimization-based, and
deep learning methods, as shown in Table 1.

Table 1. Summary of small-target detection algorithms.

The Method Category The Detection Method

Image filtering-based
Top-Hat [11], Max–Mean and Max–Median [12], 2D Least Mean Square (TDLMS)
filter [13], multi-directional ring top-hat (MDRTH) [14], and Multi-directional
Improved Top-Hat Filter (MITHF) [15].

Single-frame Human visual system-based

LCM [16], Improved LCM (ILCM) [17], Relative LCM (RLCM) [18], Weighted
LCM (WLDM) [19], Weighted Double LCM (WDLCM) [20], Weighted Local
Ratio-Difference Contrast Method (WLRDCM) [21], Neighborhood Saliency Map
(NSM) [22], multi-scale Tri-Layer LCM (TLLCM) [23], and Weighted Strengthened
LCM (WSLCM) [24].

Temporal human visual system-based
Spatial–Temporal Local Contrast Filter (STLCF) [25], Spatial–Temporal LCM
(STLCM) [26], Interframe Registration and Spatial Local Contrast (IFR-SLC)-based
method [27], Spatial–Temporal Local Difference Measure (STLDM) [28].

Single-frame optimization-based Infrared Patch-Image (IPI) [29], NRAM [30], PSTNN [31].

Temporal optimization-based

Spatial–Temporal Tensor Ring Norm Regularization (STT-TRNR) [32],
Multi-Frame Spatial–Temporal Patch-Tensor Model (MFSTPT) [33], Edge and
Corner Awareness-Based Spatial–Temporal Tensor (ECA-STT) Model [34],
Spatiotemporal 4D Tensor Train and Ring Unfolding (4-DTTRU) [35].

The deep learning method
Multi-task UNet (MTUNet) framework [36], FTC-Net [37], Region Proposal
Network and Regions of Interest (RPN-ROI) network [38], ConvBlock-1-D
framework [39].

The traditional research direction is the single-frame detection algorithm based on
image filtering [11–15], which generally uses image filters to estimate and suppress the
background. These algorithms utilize the grayscale information of pixels in the filtering
window to estimate the image background and suppress background noise and clutter, but
they may fail for strong background clutter points.

The mainstream small-target detection method is derived from the human visual
system (HVS), which relies on target pattern characteristics of the ratio and difference
types. The local contrast measure (LCM) [16] provides a basic target enhancement model.
Various improved HVS algorithms [17–24] have been proposed, which usually involve
weighted enhancement functions [19] or multi-layer filtering windows [20] or incorporate
preprocessing operations [22] to increase detection accuracy, leading to a more intricate
detector structure. Motivated by the temporal domain correlation, studies [25–28] have
combined the spatial and temporal contrast features and proposed a spatial–temporal local
contrast filter (STLCF) [25], interframe registration, and spatial local contrast (IFR-SLC) [27]
and spatial–temporal local difference measure (STLDM) [28]. However, these algorithms
cannot deal with the suppression of clutter that is similar to the target.

The optimization algorithm [29–31] has also been focused on, based on the data
structure that segments targets based on the sparsity of small targets and the low-rank
characteristics of the image background, such as the non-convex rank approximation
minimization joint l2, 1-norm (NRAM) [30] and the partial sum of the tensor nuclear
norm (PSTNN) [31]. Motivated by the temporal domain correlation, some improved
optimization algorithms [32–35] incorporate temporal information into the tensor model to
further separate the target from the background strong clutter. However, most optimized
separation algorithms often perform iterative calculations, which requires considerable
computing time and resources to achieve a better detection performance.

Furthermore, some deep learning algorithms [36–39] are also used to detect small
targets. Qi et al. provided a fusion network of Transformer and a CNN (FTC-Net) [37],
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which extracts local detail features and global contextual features. Du et al. [38] proposed
a spatial–temporal feature-based detection framework based on the interframe energy
accumulation enhancement mechanism and used the small intersection over union (IOU)
strategy to suppress the strong spatially non-stationary clutter. It is difficult for the deep
learning method to learn features from small and weak targets with a sensitive size. More-
over, these methods often require a large amount of data, making them impractical for
space-based applications.

By investigating the above literature, most existing algorithms focus on the ground
scene, and there is little research on space moving-target detection in a space-based complex
background. Detecting space moving targets submerged in complex backgrounds remains
a critical challenge.

3. Methodology

The framework of the proposed local spatial–temporal registration method is illus-
trated in Figure 1. First, local neighborhood spatial–temporal matching is conducted on the
selected three-frame images to estimate the motion vector of the local neighborhood. Then,
we extract the spatial–temporal matching center block based on the background motion
vector and conduct the difference operation to obtain the STDEM. Further, to acquire the
TPCM, we calculate the background image using the matching results and the reference
frame image and analyze the residual image after removing the background from the base
frame. Finally, the classical threshold segmentation algorithm is applied to the LSTR map
generated by combining the above two enhancement factors to extract the target.
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Figure 1. Flowchart of the proposed algorithm.

3.1. Local Neighborhood Spatial–Temporal Matching

Let {F1, . . . , Fn−l , . . . , Fn, . . . , Fn+l , . . . , Fm} be a space target image sequence, in which
Fn denotes the currently processed frame image in the sequence and Fn+l represents the
currently processed frame image with a backward interval of l frames. To create an image
group, {Fn−t, Fn, Fn+t}, we select the reference frame according to the frame interval (t) for
the currently processed base frame (Fn). The local neighborhood block matching will be
conducted on this image group.

Under the space-based surveillance platform, space images usually contain the ground
surface and the deep space background. Hot spots on the Earth and cloud clutter are the
primary background interference influencing the target detection. In a single-frame image,
distinguishing between space targets and ground targets can be challenging. However, in
sequence images, ground targets move with the surrounding ground background, while
space targets move according to their orbits, resulting in differences in motion speed and
direction in the images. Meanwhile, the reflected light from space targets is relatively
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consistent, and the bright cloud reflection point and ground clutter point may change
dramatically from a temporal perspective.

In this study, we utilize spatial–temporal correlation and motion model differences
between the space target and the background clutters on Earth caused by the different
orbital altitudes to suppress clutter and enhance targets. In brief, the motion model of the
background and target remains stable in a short time for continuous images but slightly
differ due to their respective trajectories.

According to the characteristics above, we simulated the simplified motion diagram
of the target and surrounding clutter, as illustrated in Figure 2. The red square representing
the target moves as the blue arrow indicates, and the blue squares denoting the background
clutter move as the black arrow indicates. The proposed algorithm first estimates the
neighbor background motion model by the spatial–temporal matching of the surrounding
neighborhood. Then, we extract the temporal matching center block group according to
the registration results and analyze the difference in the block group in grayscale intensity.
As shown in the central region with orange pixels in Figure 2, the blue background clutter
point position is consistent in the matched central block group, while the red target point
position varies. Subsequently, we use this difference characteristic to enhance the target
and suppress the background noise.
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For the pixel (x, y) in the base frame (Fn), we segment the registration slice around the
pixel and set the center region as zero, where the target may exist. The specific matching
operation is as follows:

First, an image patch (Bl) is split for the pixel (x, y) in the base frame (Fn), as shown in
Figure 3. The formula of the image patch Bl,n is defined as follows:

Bl,n = {(i, j)|max(|i − x|, |j − y|) ≤ br} (1)

where (i, j) is the pixel coordinate in Fn, br means the half-size of the image patch (Bl,n)
with a recommended range of 5~10.

To shield the central region that may contain the target and accurately estimate the
motion model of the neighborhood background, we multiply the image patch (Bl,n) by the
slice mask (Bm) to form a neighborhood matching block (Bn), and the formula is as follows:

Bn = Bl,n × Bm (2)

Bm(p, q) =
{

0, max(|p − br|, |q − br|) ≤ tr
1, otherwise

(3)
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where (p, q) is the pixel coordinate in the slice mask (Bm), br denotes the half-size of the
slice mask (Bm), and tr indicates the half-size of the center region with the recommended
range of 1~3. After that, the grayscale intensity of pixels in the central region of the slice is
set to 0, and the other pixels are retained.
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Figure 3. The local neighborhood region segmentation diagram.

Then, centered around the pixel (x, y) in the reference frame, a neighborhood matching
block group of the same size as the matching block (Bn) is segmented within the search
step size (sr), and the pixel of the central region is set to zero. The similarity between the
neighborhood matching block group and block Bn is calculated to confirm the most similar
matched block with block Bn and estimate the neighborhood background motion model.

The search direction of the matching block for the reference frames Fn−t and Fn+t, is
shown in Figure 4.
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Fn+t.

As shown in Figure 4a, we extract the local surrounding background matching block
(Bk1,k2

n−t ) of Fn−t. The formula is as follows:

Bk1,k2
n−t = Bk1,k2

l,n−t × Bm, k1 = k2 = −sr, . . . , sr (4)

Bk1,k2
l,n−t = {(i, j)|max(|i − (x + k1)|, |j − (y + k2)|) ≤ br} (5)

where (i, j) is the pixel coordinate in the reference frame (Fn−t), br is the half-size of the
slice (Bk1,k2

n−t ), sr is the half-size of the search matching range, and (k1, k2) is the displacement
of slice (Bk1,k2

l,n−t) center coordinate relative to (x, y), ranging from −sr to sr. The search
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starting point of the local neighborhood background matching block (Bk1,k2
l,n−t) for Fn−t is

(x − sr, y − sr).
Meanwhile, the similarity coefficient (rk1,k2

n−t ) between the background matching blocks
of the base frame and the reference frame is calculated. The formula is as follows:

rk1,k2
n−t =

∑i,j Bn(i, j)× ∑i,j Bk1,k2
n−t (i, j)√

∑i,j Bn(i, j)2
√

∑i,j Bk1,k2
n−t (i, j)

2
, k1 = k2 = −sr, . . . , sr (6)

Furthermore, as shown in Figure 4b, we extract the local neighbor background match-
ing block (Bk1,k2

n+t ) for Fn+t by referring to Formulas (4) and (5). The similarity coefficient
(rk1,k2

n+t ) of the neighboring matching block (Bn) and Bk1,k2
n+t is calculated using Formula (6).

The search starting point position of the local neighborhood background matching block in
the reference frame (Fn+t) is (x + sr, y + sr), which is different from the Fn−t.

Finally, we integrate the matching results of the reference frame and calculate the
enhanced similarity matrix (rk1,k2

n ) to estimate the motion model of the local background
accurately. The formula is as follows:

rk1,k2
n = rk1,k2

n−t + rk1,k2
n+t (7)

Based on the enhanced similarity matrix (rk1,k2
n ), we identify the search number with

the maximum similarity coefficient value as the direction and displacement of the local
neighborhood background motion at the pixel. The formula is as follows:

(dx, dy) = argmax
(

rk1,k2
n

)
, k1 = k2 = −sr, . . . , sr (8)

where (dx, dy) represent the local neighborhood background motion vector in the X-axis
and Y-axis direction, respectively. The registration operation is applied to each pixel in Fn,
calculating the neighbor background motion model for the entire image.

3.2. Spatial–Temporal Difference Enhancement Map Calculation

In this step, the analysis of spatial–temporal difference is conducted on the temporal
matching center blocks based on the local neighborhood motion model. By analyzing the
temporal grayscale difference between the strong clutter and the target, it can be seen that
the strong clutter moves with the overall Earth background in the image sequences, and
the grayscale distribution of the background clutter matched by the estimated neighbor
background motion model is similar. However, the target area will move relative to the
background, and the grayscale distribution of the target region matched by the estimated
neighbor background motion model will differ. The difference operation is as follows:

First, the center block (Tn) of the pixel (x, y) is extracted from the base frame (Fn). The
Tn is defined as

Tn = {(i, j)|max(|i − x|, |j − y|) ≤ tr} (9)

where (i, j) is the pixel coordinate in the base frame (Fn); tr is the half-size of the center
block Tn.

Then, based on the local neighborhood motion vector (dx, dy), we separate the center
blocks Tn−t and Tn+t from the reference frames Fn−t and Fn+t, respectively. The formulas
of Tn−t and Tn+t are defined as follows:

Tn−t = {(i, j)|max(|i − (x + dx)|, |j − (y + dy)|) ≤ tr} (10)

where (i, j) is the pixel coordinate in the reference frame Fn−t.

Tn+t = {(i, j)|max(|i − (x − dx)|, |j − (y − dy)|) ≤ tr} (11)
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where (i, j) is the pixel coordinate in frame Fn+t. We call these three extracted blocks the
temporal matching center block group.

According to the previous analysis, when there is clutter interference in the central
region block with the same motion vector as its neighbor background, the temporal match-
ing center block group will show the same distribution of grayscale intensity, as shown in
Figure 5b. The maximum grayscale location of this temporal matching center block group is
different when it contains a target in the center region, as illustrated in Figure 5c. After the
center block difference operation, the difference result of the clutter region will be low and
close to zero. There will be a positive and negative peak pair with an enormous difference
in the result of the target region. The STDEM extracts the positive and negative grayscale
peaks of the difference results to shorten the strong clutter and highlight the target. The
specific calculation is as follows:
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We first perform a frame difference operation for the center block (Tn) to obtain the
difference block ( d1, d2). The formula is defined as follows:

d1 = Tn−t − Tn (12)

d2 = Tn − Tn+t (13)

After the difference operation, the signal energy of the target region is retained, and
a group of positive and negative peak pairs is generated in the target region difference
block, as shown in Figure 5c. As shown in Figure 5b, the strong background clutter can
be suppressed since the pixel grayscale intensity of the difference result is lower in the
clutter region.

Further, difference block d3 between d1 and d2 is calculated to restrain the residual
interference of highlighted clutter. The formula of d3 is defined as follows:

d3 = d1 − d2 (14)
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As shown in Figure 5b,c, after the enhanced difference operation, the grayscale inten-
sity of the pixel is closer to 0, and the signal energy of the target is further enhanced.

We calculate the STDEM by extracting the positive and negative peak pairs for the
spatial–temporal local difference results (d3). The formula of STDEM is as follows:

STDEM(x, y) = (max(d3)− min(d3))
2 (15)

After the above enhancement calculation of grayscale intensity difference, if the
background clutter appears at the pixel (x, y), the value of STDEM(x, y) is lower. In
contrast, the grayscale intensity difference extraction operation can obtain a higher value of
STDEM(x, y) when a target exists at the pixel (x, y).

3.3. Temporal Pixel Contrast Map Calculation

In this step, the pixel-level temporal contrast map is calculated to suppress background
clutter further. Although the background clutter of continuous image sequences has a
temporal correlation, the long detection distance inevitably leads to slight changes in the
shape of the background clutter between continuous image frames, which may lead to a
strong energy signal in the STDEM. The temporal pixel contrast map is a more accurate
pixel difference operation based on the estimation results of the local background motion
model to suppress the background clutter with interframe morphological changes.

Specifically, we use the matching results of the neighborhood background to conduct
temporal differential calculations for each pixel. Then, a matching residual image is
generated, suppressing the residual clutter generated by the above phenomenon.

First, we use the local neighborhood motion vector (dx, dy) to obtain a residual image.
The specific formula is as follows:

Pe(x, y) = Fn(x, y)− Fnb(x, y) (16)

Fnb(x, y) = [Fn−t(x + dx, y + dy) + Fn+t(x − dx, y − dy)]/2 (17)

where Pe(x, y) is the value of the pixel coordinate (x, y) in the matching residual image
(Pe), Fn denotes the base frame, Fn−t and Fn+t denote the reference frame, and (dx, dy)
mean the local neighborhood motion vector of the pixel coordinate (x, y).

From the formula above, the pixel-level time-domain difference of the image frame
may be understood as the difference between the base frame (Fn) and the predicted back-
ground image (Fnb) estimated by the reference frame and the local neighbor motion vector.
The high-brightness clutter points can be suppressed by matching the corresponding back-
ground pixels in the reference frame. In contrast, the target center energy is retained by
matching to the neighbor background points. The residual image is displayed in Figure 6c.
It can be seen from the 3D view of the residual image that the grayscale intensity of the
target region is retained and positive. The residual image in the clutter region may give
a negative value due to the temporal grayscale intensity change. However, the residual
grayscale value in the clutter region is distributed close to 0. To avoid negative values in
subsequent calculations, we set the negative value in the residual image to 0 to obtain the
temporal pixel contrast map, as shown in Figure 6d. The formula of the temporal pixel
contrast map (TPCM) is shown as follows:

TPCM(x, y) =
{

Pe(x, y), Pe(x, y) > 0
0, otherwise

(18)

where TPCM(x, y) is the value of the pixel coordinate (x, y) in the TPCM.



Remote Sens. 2024, 16, 669 10 of 21

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 22 
 

 

TPCM(𝑥, 𝑦) = {
𝑃𝑒(𝑥, 𝑦), 𝑃𝑒(𝑥, 𝑦) > 0
0, otherwise                 

 (18) 

where TPCM(𝑥, 𝑦) is the value of the pixel coordinate (𝑥, 𝑦) in the TPCM. 

 

Figure 6. The TPCM calculation process diagram. (a) The raw image and 3D view of the base frame 

𝐹𝑛. (b) The image and 3D view of the predicted background image. (c) The image and 3D view of 

the residual image after background suppression. (d) The image and 3D view of the temporal pixel 

contrast map. 

3.4. Local Spatial–Temporal Registration Map Calculation 

Finally, we combine the spatial–temporal difference enhanced map (STDEM) and 

temporal pixel contrast map (TPCM) to calculate the LSTR map to separate the target from 

the surrounding background noise. The formula is as follows: 

LSTR(𝑥, 𝑦) = STDEM(𝑥, 𝑦) × TPCM(𝑥, 𝑦) (19) 

where LSTR(𝑥, 𝑦) is the value of the pixel coordinate (𝑥, 𝑦) in the LSTR map. The target 

saliency map shows a high target signal and low background energy. The adaptive thresh-

old segmentation algorithm, which uses the image average and standard deviation to cal-

culate a specific threshold for target segmentation, can boost the precision of target detec-

tion of the image sequences. The threshold is calculated as follows. 

𝑇ℎ = 𝜇 + 𝑘 × 𝜎 (20) 

where 𝜇 denotes the average value of the LSTR map, 𝜎 represents the standard devia-

tion value of the LSTR map, and 𝑘 is the adaptive segmentation threshold. The range of 

this threshold parameter, which ranges from 200 to 300, is effective in this study. 

  

Target

(a) (b)

Target

Target

(c) (d)

Figure 6. The TPCM calculation process diagram. (a) The raw image and 3D view of the base frame
Fn. (b) The image and 3D view of the predicted background image. (c) The image and 3D view of
the residual image after background suppression. (d) The image and 3D view of the temporal pixel
contrast map.

3.4. Local Spatial–Temporal Registration Map Calculation

Finally, we combine the spatial–temporal difference enhanced map (STDEM) and
temporal pixel contrast map (TPCM) to calculate the LSTR map to separate the target from
the surrounding background noise. The formula is as follows:

LSTR(x, y) = STDEM(x, y)× TPCM(x, y) (19)

where LSTR(x, y) is the value of the pixel coordinate (x, y) in the LSTR map. The tar-
get saliency map shows a high target signal and low background energy. The adaptive
threshold segmentation algorithm, which uses the image average and standard deviation
to calculate a specific threshold for target segmentation, can boost the precision of target
detection of the image sequences. The threshold is calculated as follows.

Th = µ + k × σ (20)

where µ denotes the average value of the LSTR map, σ represents the standard deviation
value of the LSTR map, and k is the adaptive segmentation threshold. The range of this
threshold parameter, which ranges from 200 to 300, is effective in this study.

4. Experiment and Analysis

This section first discusses the experimental datasets used in this study. Then, a group of
3D receiver operating characteristic (ROC) curve-derived detection metrics are presented to
assess the effectiveness of the proposed method. Finally, a comprehensive analysis is provided
based on the qualitative and quantitative results. We conducted all of the experiments on a
computer with 16 GB of RAM and an Inter Core i7-10750H CPU 2.60 GHz processor.

4.1. Experimental Datasets

In this study, we conducted tests on four image sequences sized 512 × 512 with
different backgrounds to evaluate the effectiveness and robustness of the proposed method.
The experimental datasets were synthesized by actual space-based short-wave infrared
and visible-light background image sequences and simulated space moving targets. The
background image data used in this test were derived by decomposing a public video of
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the Earth from a space perspective. Seq.1 and Seq.2 were simulated based on the motion
trajectories and grayscale changes of the targets in the real space target image sequences.
The details of the experimental datasets are listed in Table 2. There is a space moving target
in each group of image sequences. In detail, Seq.1 and Seq.4 have a similar background
that contains the high-contrast edge of the Earth and bright-point ground clutter. Seq.2
simulates the space-based tracking mode where the target remains motionless and the
background image is a stationary cloudy landscape. Seq.3 has a background comprising
complex ground clusters, cloud clutter, and bright pixel-sized noise. The signal-to-clutter
ratio (SCR) evaluates the background clutter intensity by calculating the ratio of the target
signal to its neighboring noise distribution level. The lower the signal-to-clutter ratio,
the more it challenges the target enhancement and clutter suppression capabilities of the
proposed algorithm. The SCR is defined as follows:

SCR = (µt − µb)/σb (21)

where µt denotes the average of the target region; µb and σb are the average and standard
deviation of the neighboring background, respectively.

Table 2. Details of the experimental datasets.

Datasets Frame Image Resolution Average SCR Scene Description

Seq.1 210 512 × 512 2.78
Bright ground; strong clutter; background speed

is 1 pixel/frame; the target speed is
2 pixels/frame.

Seq.2 130 512 × 512 3.61
Heavy cloud; non-uniform stripe; background

speed is 1 pixel/frame; the target speed is
0.7 pixels/frame.

Seq.3 300 512 × 512 2.58
Fragmented cloud; bright-spot noise; background

speed is 0.24 pixel/frame; the target speed is
1.4 pixels/frame.

Seq.4 300 512 × 512 2.79
Bright ground; strong clutter; background speed

is 0.3 pixel/frame; the target speed is
1.4 pixels/frame.

4.2. Evaluation Metrics

The detection probability (PD) and false alarm rate (PF) are the primary evaluation
indicators that can accurately quantify the detection performance. The formulas of PD and
PF are given as follows:

PD = Nd/Nt (22)

PF = N f /Np (23)

where Nd is the number of detected targets, Nt is the number of real targets, N f is the
number of false detected targets, and Np is the total pixel number of the image. In addition,
the target enhancement and background suppression abilities are the commonly used
evaluation indicators to measure the effectiveness of the detector, since boosting the target
signal increases the target detection probability. Existing research employs the signal–noise
ratio gain (SNRG), the background suppression factor (BSF), the ROC curve of PD and PF,
and the area under the ROC curve (AUC) to assess the detector. However, the calculation
of SNRG and the BSF relies on the statistics of the local standard deviation of the detection
results, which may produce misleading statistics caused by ambiguous values. The ROC
curve (PD, PF) may produce the same result when calculating the AUC value that cannot
provide persuasive comparison results.

Chang et al. [40] proposed a three-dimensional ROC (3D-ROC) analysis tool and a
group of related detection indicators to address the abovementioned issues, extending
the conventional 2D ROC curve (PD, PF) by introducing the threshold, τ. Three 2D ROC
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curves (PD, PF), (PD, τ), and (PF, τ), can be separated from the 3D-ROC curve (PD, PF, τ)
using the threshold τ. The closer the ROC curve (PD, PF) is to the upper left corner, the
better the detection effect of the detector; the closer the ROC curve (PD, τ) is to the upper
right corner, the better the detection effect of the detector; the closer the ROC curve (PF, τ)
is to the lower left corner, the better the background suppression effect of the detector.
Simultaneously, the three 2D ROC curves can be utilized to conduct the calculation of
extended eight AUC metrics, including AUC(D,F),AUC(D,τ), AUC(F,τ), AUCTD, AUCBS,
AUCTDBS, AUCODP, and AUCSNPR. AUC(D,F) is the AUC value of the (PD, PF) ROC curve.
AUC(D,τ) is the AUC value of the (PD, τ) ROC curve. AUC(F,τ) is the AUC value of the
(PF, τ) ROC curve. AUCTD, AUCBS, AUCTDBS, AUCODP, and AUCSNPR are, respectively,
the evaluation index of target detection (TD), background suppression (BS), joint evaluation,
overall detection probability (ODP), and signal-to-noise probability ratio (SNPR). They are
defined as follows:

AUCTD = AUC(D,F) + AUC(D,τ) (24)

AUCBS = AUC(D,F) − AUC(F,τ) (25)

AUCTDBS = AUC(D,τ) − AUC(F,τ) (26)

AUCODP = AUC(D,F) + AUC(D,τ) − AUC(F,τ) (27)

AUCSNPR = AUC(D,τ)/AUC(F,τ) (28)

4.3. Comparative Experiments

This research compares seven state-of-the-art detection methods to verify the detec-
tion performance of the proposed algorithm. Three HVS-based single-frame detection
algorithms are included in the comparison methods: WSLCM, NSM, and TLLCM. We also
compare two HVS-based methods combining spatial and temporal feature information,
IFR-SLC and STLDM. Furthermore, two optimization algorithms based on data structure,
NRAM and PSNN, are also used for comparison as they have solid background suppression
capabilities. Table 3 provides the parameter settings for the comparison algorithms.

Table 3. Parameter settings for comparative methods.

Methods Parameter Settings

NRAM [30]
Path size: 40 × 40, sliding step: 40, λ = 1/

√
min(M, N),

µ0 = 3
√

min(M, N), γ = 0.002, ε = 10−7

NSM [22] Window size: R = 7 × 7.

PSTNN [31] Path size: 40 × 40, sliding step: 40,
λ = 0.6/

√
min(M, N), ε = 10−7

IFR-SLC [27] Window size: R = 7 × 7, l = 3

STLDM [28] Subblock size: 3 × 3, l = 3

TLLCM [23] Cell size: 9 × 9, 7 × 7, and 5 × 5

WSLCM [24] Cell size: 11 × 11, 9 × 9, and 7 × 7

Ours Matching block size: br = 7, tr = 2, frame interval: l = 1

A saliency map of four datasets processed by the comparative methods is shown in
Figures 7–10. The red circles indicate the target’s position in the input image. The detection
results of the image in Seq.1 are shown in Figure 7. The target cannot be recognized since
the NRAM and PSTNN algorithms boost the clutter and the target to the same degree. NSM,
STLDM, TLLCM, and WSLCM can enhance the target, but they are much more sensitive
to clutter. Only the proposed method and IFR-SLC achieve a better target enhancement
and clutter suppression performance. The background clutter distribution in Seq.4 is
similar to Seq.1, and only the proposed algorithm showed a convincing performance,
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while other algorithms failed to separate the target from the clutter. In Seq.2, as shown in
Figure 8, the cloud clutter distribution in the background appears smooth and uniform. In
the detection results of NSM, STLDM, NARM, and WSLCM, the target signal energy is
accurately enhanced, but some point-sized clutter noise remains. Cloud clutter interference
influenced PSTNN, IFR-SLC, and TLLCM. The proposed method can suppress cluttered
backgrounds and highlight targets more effectively. The background of Seq.3 is a non-
stationary intense clutter scenario, as shown in Figure 9. All comparative methods failed
to suppress the fragmented cloud clutter besides the proposed method and NRAM. The
experimental results demonstrated that the proposed method performs satisfactorily in
target enhancement and strong clutter suppression.
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After conducting a qualitative analysis of the detection results, a quantitative analysis
is also provided to evaluate the proposed algorithm further. The 3D ROC curve and three
2D ROC curves (P D, PF), (PD, τ), and (PF, τ), for the experimental results are shown in
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The image of the Seq.1 dataset contains a large number of bright ground hot-spot
clutter with a shape distribution that closely resembles the target. In Table 4, the AUC(D,F)
values of NRAM and NSM both reach 0.999. Although the AUC(D,F) value of IFR-SLC is
not high, its joint evaluation index and overall detection probability are better than other
algorithms. All indices of the proposed algorithm are superior to those of other algorithms,
indicating that the algorithm can guarantee the detection rate of the target under heavy
clutter interference.

For the Seq.2 dataset, the images are contaminated by the fluent cloud background
clutter. It can be seen in Table 4 that the AUCBS values for the NRAM, NSM, and WSLCM
algorithms reach 0.999, but they are not dominant in target detection, indicating that they
have a better suppression effect on stable background clutter. The AUCODP and AUCSNPR
values of STLDM are higher than those of other comparative algorithms, demonstrating its
ability to balance target detection and background suppression. The proposed approach
demonstrates superior performance in all indices compared to comparative algorithms,
exhibiting its ability to detect the target while accurately reducing stationary cloud back-
ground interference.

The images in Seq.3 are generated in a background containing many patches and spots
of high-brightness cloud clutter and an uneven ground scene. Table 4 shows that the NSM
has significantly higher values in the background suppression evaluation parameters than
other algorithms and performs better in other comprehensive evaluation indicators. In
addition, the evaluation of NRAM and our proposed algorithm are close, and the target
detection index (AUCTD) of the proposed algorithm is slightly higher than that of the
NRAM algorithm, indicating that both of them are suitable for small spatial target detection
in scenes with non-stationary strong clutter and noise.

The image of Seq.4 contains a high-contrast Earth edge background and non-uniform
background clutter points. In Table 4, both the NSM and STLDM obtain high background
suppression effects. There are no significant differences between NARM and the proposed
algorithm except for the background suppression evaluation index, AUCBS. As a result, the
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proposed algorithm can detect targets accurately in scenes with large grayscale fluctuations
in the background. The NSM single-frame detection algorithm did not effectively utilize
the temporal information of the target. However, with the preprocessing step of TDLMS,
it can more efficiently suppress clutter noise in the image and reduce the occurrence of
false alarms. While the IFR-SLC algorithm uses a frame registration strategy for target
enhancement, it cannot solve the target detection problem in this research due to the
limited application scenario. Additionally, NRAM and STLDM, which use spatial–temporal
features, can effectively suppress most stationary background clutter. With high robustness
and good detection performance, the proposed algorithm can adapt to detecting targets
under different dynamic backgrounds.

Table 4. AUC values calculated from the 3D ROC of Seq.1–4.

Method
Seq.1

AUC(D,F) AUC(D,τ) AUC(F,τ) AUCTD AUCBS AUCTDBS AUCODP AUCSNPR

NRAM 0.9994 0.3841 8.73 × 10−5 1.3835 0.9994 0.3840 1.3835 4.39 × 103

NSM 0.9998 0.2250 2.01 × 10−5 1.2248 0.9998 0.2250 1.2248 1.11 × 104

PSTNN 0.8942 0.6000 9.35 × 10−4 1.4942 0.8933 0.5991 1.4933 6.41 × 102

IFR-SLC 0.9871 0.7212 1.08 × 10−5 1.7083 0.9871 0.7212 1.7083 6.64 × 104

STLDM 0.9748 0.0699 5.44 × 10−4 1.0447 0.9743 0.0694 1.0442 1.28 × 102

TLLCM 0.8105 0.0899 1.54 × 10−4 0.9004 0.8104 0.0897 0.9002 5.80 × 102

WSLCM 0.8916 0.0222 5.74 × 10−5 0.9138 0.8915 0.0221 0.9137 3.86 × 102

Ours 1.0000 0.8030 1.30 × 10−8 1.8030 1.0000 0.8030 1.8030 6.14 × 107

Method
Seq.2

AUC(D,F) AUC(D,τ) AUC(F,τ) AUCTD AUCBS AUCTDBS AUCODP AUCSNPR

NRAM 0.9999 0.2007 3.88 × 10−6 1.2006 0.9999 0.2007 1.2006 5.17 × 104

NSM 0.9999 0.2790 1.06 × 10−5 1.2790 0.9999 0.2790 1.2789 2.62 × 104

PSTNN 0.9982 0.2631 1.84 × 10−4 1.2613 0.9980 0.2629 1.2611 1.42 × 103

IFR-SLC 0.5047 0.0000 1.07 × 10−5 0.5047 0.5047 0.0000 0.5047 0.1665
STLDM 0.9826 0.4727 4.44 × 10−4 1.4553 0.9822 0.4723 1.4549 1.06 × 103

TLLCM 0.9954 0.3500 2.13 × 10−4 1.3455 0.9952 0.3498 1.3453 1.64 × 103

WSLCM 0.9999 0.3028 1.21 × 10−5 1.3026 0.9998 0.3028 1.3026 2.49 × 104

Ours 1.0000 0.8249 8.67 × 10−8 1.8249 1.0000 0.8249 1.8249 9.50 × 106

Method
Seq.3

AUC(D,F) AUC(D,τ) AUC(F,τ) AUCTD AUCBS AUCTDBS AUCODP AUCSNPR

NRAM 1.0000 0.5914 5.19 × 10−7 1.5914 1.0000 0.5914 1.5914 1.13 × 106

NSM 0.9999 0.4872 1.30 × 10−5 1.4872 0.9999 0.4872 1.4872 3.74 × 104

PSTNN 0.9377 0.4902 1.77 × 10−4 1.4279 0.9375 0.4900 1.4277 2.75 × 103

IFR-SLC 0.5671 0.0155 1.11 × 10−5 0.5826 0.5671 0.0155 0.5826 1.38 × 103

STLDM 0.9914 0.3218 1.24 × 10−3 1.3131 0.9901 0.3205 1.3119 259.452
TLLCM 0.9781 0.1868 2.97 × 10−4 1.1649 0.9778 0.1865 1.1646 627.105
WSLCM 0.9941 0.0318 1.21 × 10−4 1.0260 0.9940 0.0317 1.0258 262.502

Ours 1.0000 0.7799 1.07 × 10−6 1.7799 1.0000 0.7799 1.7799 7.26 × 105

Method
Seq.4

AUC(D,F) AUC(D,τ) AUC(F,τ) AUCTD AUCBS AUCTDBS AUCODP AUCSNPR

NRAM 0.9837 0.5559 3.07 × 10−5 1.5396 0.9837 0.5558 1.5395 1.80 × 104

NSM 0.9998 0.3904 3.47 × 10−5 1.3902 0.9998 0.3903 1.3902 1.12 × 104

PSTNN 0.8438 0.3636 7.77 × 10−5 1.2074 0.8437 0.3636 1.2073 4.67 × 103

IFR-SLC 0.6064 0.1319 8.71 × 10−6 0.7383 0.6064 0.1319 0.7383 1.51 × 104

STLDM 0.9867 0.2691 6.65 × 10−4 1.2558 0.9861 0.2684 1.2552 404.262
TLLCM 0.8733 0.3470 3.88 × 10−5 1.2203 0.8733 0.3469 1.2203 8.94 × 103

WSLCM 0.9433 0.3240 2.30 × 10−5 1.2673 0.9433 0.3240 1.2673 1.40 × 104

Ours 1.0000 0.6312 4.57 × 10−7 1.6312 1.0000 0.6312 1.6312 1.37 × 106
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5. Discussion

The comparative experiment proves the capacity to detect moving targets in com-
plex backgrounds of the proposed algorithm from both a quantitative and qualitative
perspective. This section provides an analysis of the parameter settings which influence
the performance of proposed algorithms. Firstly, the frame interval (t) and search step size
(sr) during the local neighborhood spatial–temporal matching stage affect the registration
accuracy. The search step size in this research is set to three, meaning that the matching
result may fail when the background motion speed of the image exceeds three pixels/frame.
Thus, it is critical to set a suitable frame interval parameter to avoid a large displacement of
the image background during neighboring region motion estimation. For example, when
the background velocity is one pixel/frame, we recommend that the frame interval (t) does
not exceed three.

Secondly, it is worth noting that the setting of the registration block size may affect
the matching results. The recommended range of the registration block’s outer half-size
(br) is 5~10. If br is less than the recommended range, the match operation in Section 3.1
may fail without enough background features. If br is too high, the algorithm execution
time in the registration stage may increase. The recommended range of the registration
block’s inner half-size (tr) is one~three, depending on the target size. A smaller tr may
affect the prediction of the background motion state, whereas a larger may interfere with
the background matching. It also means that the proposed algorithm performs well in
detecting small targets with a half-size of one~three. When the target is too large, the center
pixel in the base frame may match the target edge pixel in the reference frame, which will
weaken the target energy.

Furthermore, the extraction of the candidate target is affected by the adaptive segmen-
tation threshold k for the saliency map. It is essential to analyze the impact of parameter k
values on PD and PF. Figure 15 exhibits the variation trend of the PD and PF under different
k values. It can be seen from Figure 15 that both the PD and PF increase as the k value
decreases. The PD obtained from the four experimental datasets can reach 95% when k is
less than 300. When the value of k decreases from 200 to 0, PF will be greater than 10−5 and
produce exponential growth. Thus, the value of k is recommended to be [200, 300] to reach
a PD > 95% with PF < 10−5.
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6. Conclusions

This study proposes a local spatial–temporal registration method for space small-
moving-target detection under complex scenes. A local neighborhood temporal matching
strategy is introduced to calculate local surrounding background motion vectors based
on the temporal correlation of the background features. Then, we analyze the temporal
grayscale difference of the center region and calculate the spatial–temporal difference
enhanced map using the motion model of the neighborhood background. After the back-
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ground prediction and difference, the time-domain pixel contrast map that preserves the
target signal and suppresses clutter energy is also obtained. Finally, the LSTR map is
constructed by synthesizing the two enhancement factors. Qualitative and quantitative
analyses of the experimental results prove that our proposed algorithm has better target
enhancement and background suppression capabilities than other methods.

However, the proposed method is still limited, as it does not apply to scenes where
the background clutter undergoes rapid changes, and it is also time-consuming. When
the background grayscale distribution around the target changes dramatically in the time
domain, the algorithm cannot use the neighborhood feature information to conduct the
spatial–temporal match, which may fail detection. In future work, we will verify the
detection performance of the proposed method in other complex scenes and conduct
algorithm optimization to solve the mismatch problem caused by the sudden change
in the interframe background. We will also try to deploy the proposed algorithm on
onboard processing platforms to realize real-time space target detection and provide
decision support for in-orbit evasion.
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