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Abstract: Pan-sharpening is a fusion process that combines a low-spatial resolution, multi-spectral
image that has rich spectral characteristics with a high-spatial resolution panchromatic (PAN) image
that lacks spectral characteristics. Most previous learning-based approaches rely on the scale-shift
assumption, which may not be applicable in the full-resolution domain. To solve this issue, we
regard pan-sharpening as a multi-task problem and propose a Siamese network with Gradient-based
Spatial Attention (GSA-SiamNet). GSA-SiamNet consists of four modules: a two-stream feature
extraction module, a feature fusion module, a gradient-based spatial attention (GSA) module, and a
progressive up-sampling module. In the GSA module, we use Laplacian and Sobel operators to extract
gradient information from PAN images. Spatial attention factors, learned from the gradient prior, are
multiplied during the feature fusion, up-sampling, and reconstruction stages. These factors help to
keep high-frequency information on the feature map as well as suppress redundant information. We
also design a multi-resolution loss function that guides the training process under the constraints
of both reduced- and full-resolution domains. The experimental results on WorldView-3 satellite
images obtained in Moscow and San Juan demonstrate that our proposed GSA-SiamNet is superior
to traditional and other deep learning-based methods.

Keywords: panchromatic sharpening; multi-task network; spatial attention; multi-resolution
loss function

1. Introduction

With the launch of a lot of earth observation satellites, multi-spectral (MS) images
play an important role in agriculture, disaster assessment, environmental monitoring, land
cover classification, etc. The ideal MS images are acquired at multiple wavelength bands
with high spatial resolution. However, limitations include the incoming radiation energy
and the volume of data collected [1], but one solution can be found by obtaining two kinds
of images: a high-spatial resolution panchromatic (HR PAN) image and an MS image
with fewer spatial details. These images contain both redundant and complementary
information; hence, pan-sharpening, which refers to the fusion of a PAN image and an
MS image to produce an HR MS image of the same size as a PAN image, has received
significant attention, [1,2].

Numerous endeavors have been dedicated to the development of pan-sharpening
algorithms in the past few decades. For conventional techniques, there are three categories:
component substitution (CS) methods, multi-resolution analysis (MRA) approaches, and
variational optimization-based (VO) techniques. The CS methods inject spatial informa-
tion by displacing components with PAN images. The most well-known algorithms are
intensity–hue–saturation [3], principal component analysis [4], Brovey transforms [5], and
Gram–Schmidt spectral sharpening [6]. The two types of methods could have low compu-
tational costs and promising outcomes but sometimes may suffer from spectral distortions.
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The MRA approaches assume spatial details can be obtained through a multi-resolution
decomposition of the PAN image. The injection of high frequencies from PAN images to the
MS bands improves the spatial resolution. On the basis of the different decomposition algo-
rithms, the MRA methods comprise the decimated wavelet transform [7], the smoothing
filter-based intensity modulation [8], à trous wavelet transform (ATWT) [9], contourlet [10],
etc. Compared to the CS and MRA approaches, VO-based approaches are relatively new.
Methods in this category always consider the observed MS images as degraded versions
of an ideal HR MS image. Based on this assumption, the recovery results for HR MS
images can be obtained using the optimization algorithm. Representative methods include
model-based fusion using PCA and wavelets [11], the sparse representation of injected
details [12], and model-based, reduced-rank pan-sharpening [13]. VO-based techniques can
yield competitive results, but a large number of hyperparameters and insufficient feature
representation could result in spatial and spectral distortions.

Over the past few years, deep learning has become more in vogue, and scholars have
attempted to explore the high nonlinearity of convolutional neural networks (CNNs) in
the context of the pan-sharpening problem. In PNN [14], the results are pan-sharpened by
a simple CNN with a structure similar to that of a super-resolution CNN (SRCNN) [15].
Ref. [16] is similar to that of a PNN, and the difference is that the network is used to
super-resolve MS images in HIS space; then, the MS and PAN images are further enhanced
by GS transform to accomplish the pan-sharpening. TFNet [17] first fuses the MS and PAN
images in the feature level, and then the pan-sharpened images are reconstructed from
the fused features. Yang et al. [18] propose a deep network architecture called PanNet
for pan-sharpening. The network learns the residuals between the up-sampled MS image
and the HR MS image. The training process operates within the domain of high-pass
filtering. PSGAN [19] introduces the generative adversarial network (GAN) to produce
high-quality pan-sharpened images. MSDCNN [20] adds multi-scale modules on basic
residual connections, and SRPPNN [21] utilizes high-pass residual modules to inject more
abundant spatial information. Multi-scale structured sub-networks are used for the fusion
of spatial details in LPPN [22]. These networks are trained under a complete supervision
framework in a reduced resolution domain. The parameters that have converged are
then utilized to fuse the target full-resolution PAN/MS images. Obviously, there is a gap
between the assumption and the actual situation. For this reason, the above-mentioned
methods exhibit satisfactory performance in the reduced resolution domain; however, they
cannot ensure optimal performance in the target domain.

Valuable efforts have been made by other groups to overcome the deterioration in the
generalization ability due to scale-shift. Ref. [23] proposes a dual-output and cross-scale
strategy in which each sub-network is equipped with an output terminal that generates
reduced- and target-scale results, respectively. However, its weakness is that it involves
separate training processes and cascaded sub-networks, which make it computationally
inefficient. PancolorGAN [24] applies data augmentation in the training by randomly
varying the down-sampling ratios. Some GAN-based models, such as Pan-Gan [25],
PercepPAN [26] and UCGAN [27], introduce unsupervised architectures to avoid scale-
shift assumptions. Unsupervised learning architectures perfectly avoid the scale-shift issue;
however, the training process of GANs is susceptible to vulnerabilities [28], which can lead
to suboptimal outcomes.

The Siamese net [29] was initially introduced as a solution for addressing signature
verification as an image-matching problem. This Siamese neural network architecture
consists of two identical feed-forward sub-networks that are tied by an energy function
at the final layer. These parameters are shared between the sub-networks, which means
the same networks G(·) correspond with the same parameter W. Weight bundling ensures
that two similar images cannot be mapped to different positions within the feature space.
The input pairs are embedded as representations in a high-dimensional domain. Then,
the similarity of the two samples is compared by computing the distance between the two
representations through a cosine distance. The network is optimized by minimizing the
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similarity metric when input pairs are from the same category and maximizing it when
they belong to different categories.

At present, there have been several studies applying Siamese networks to solve pan-
sharpening problems. In [30], the Siamese network is applied in a cascade up-sampling
process in which multi-level local and global fusion blocks share network parameters. The
intermediate-scale MS image outputs are used as part of the loss function. This method
employs a Siamese fusion network to preserve the cross-scale consistency, but it still remains
shifted with full-resolution domain. Ref. [31] proposes a knowledge distillation framework
for pan-sharpening, aiming to imitate the ground-truth reconstruction process in both the
feature space and the MS domain. The student network has the same architecture as the
teacher network, and loss terms are applied in two intermediate feature layers. CMNet [32]
combines the classification and pan-sharpening networks in a multi-task learning way. The
pan-sharpening network performs better under the guidance of the classification network.
It learns ideal high-resolution MS images from an application-specific perspective but
introduces additional labels that are not easily accessible.

The scale-shift issue created by the lack of ground-truth in the full-resolution domain is
still a challenge for deep-learning based methods. Thus, we propose a Siamese architecture
named GSA-SiamNet equipped with a multi-resolution loss function. In Figure 1, we
also perform a comparison of common network architectures and our Siamese design.
We could divide the previous network architectures into two main categories. One takes
reduced-resolution MS images as inputs, or up-samples them first, and then stacks them
with the PAN images. The networks learn a mapping function using original MS images.
The other category is the two-stream network, which fuses the PAN and MS images in
the feature domain. Some researchers still train the pan-sharpening mapping function
using reduced-resolution images. However, unsupervised approaches, such as GANs,
are trained in the full-resolution domain, and their training processes are susceptible to
vulnerabilities. Compared to the previous methods, we consider pan-sharpening to be a
multi-task problem that aims to retain information in both the reduced- and full-resolution
domains. We adopt the Siamese network and take both a reduced-resolution image pair and
a full-resolution image pair as inputs. It is worth noting that our approach differs slightly
from conventional Siamese networks. Instead of using a similarity constraint for the last
layer, a multi-resolution loss function is designed for both the reduced- and full-resolution
domain to preserve spectral and spatial consistency. The details are illustrated in Figure 2.
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training process in both reduced- and full-resolution domains. 

Figure 1. The architecture of different networks for pan-sharpening in training. ↓ denotes that the
images are in the reduced-resolution domain. Dashed borders represent independent samples of
different resolutions. (a) The model has single input which is MS only or stacks both MS and PAN
images. (b) The network has a two-stream structure, and original MS and PAN images are usually
used in GAN-based models. (c) The Siamese architecture is our GSA-SiamNet that constrains the
training process in both reduced- and full-resolution domains.

The major contributions of this paper are summarized as follows. First, we propose a
Gradient-based Spatial Attention (GSA) module to optimize the injection process of spatial
information in multi-level intermediate layers. The high-pass information is extracted by
gradient operators. Then, learned gradient-based prior is shared as the input. Here, we uti-
lize gradient-based prior as a spatial attention mask to guide texture recovery for different
regions (with different levels of spatial details). Second, a multi-resolution loss function
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is designed to constrain the network training in both the reduced- and full-resolution
domains. Full-resolution pan-sharpening, as an auxiliary task, markedly improves the
pan-sharpening performance, and the reduced-resolution pan-sharpening task supports
spectral consistency. The multi-task strategy helps GSA-SiamNet achieve better scale-shift
adaptation compared to other approaches.
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Figure 2. Architecture of our GSA-SiamNet for pan-sharpening. L_D, P_D, and H_D denote the
reduced-resolution MS image, PAN image, and the corresponding fused HR MS image; L, P, and H
denote the original full-resolution images.

This paper is organized as follows. In Section 1, we provide a detailed comparison with
previous learning-based network architecture and introduce the background of Siamese
architecture. We propose a novel GSA-SiamNet architecture and give details in Section 2.
Section 3 describes experiments, followed by a series of comparisons with other methods.
The conclusion and discussion are provided in Section 4.

2. Materials and Methods

In this section, we give a detailed description of our method. For convenience, we
denote the original MS and PAN images as L ∈ Rm×n×c and P ∈ RM×N , where m, n, and c
respectively denote the width, height, and the number of channels of the MS image, while
M and N are the width and height of the PAN. The ratio of spatial resolution between
MS and PAN images is defined as r = M/m = N/n. The reduced-resolution MS and
PAN images are represented as L_D and P_D, whose resolution also satisfies the above
relationship. The pan-sharpened HR MS image H ∈ RM×N×c has both high spectral and
spatial resolutions.

The pan-sharpening task is to reconstruct high-quality MS images with both advan-
tages of PAN and MS images. A general formulation of the deep learning-based approaches
can be defined as:

Hk =↑ Lk + G(L, P) (1)

where the subscript k denotes the kth spectral band, and ↑ Lk ∈ RM×N indicates the
upscaling version of the kth band of L. G(·) denotes the detail extraction function learned
by the network. Most state-of-the-art methods treat the function as minimizing an objective
of the form:

L = L1(H, L) + αL2(H, P) + βL3(H) (2)
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where L1(·) enforces spectral consistency, L2(·) enforces structural consistency, and L3(·)
is other possible image constraints on sharpened MS images.

2.1. Network Architecture

PAN and MS images focus on preserving both geometric details and spectral infor-
mation. Unfortunately, there is no well-defined boundary between spatial and spectral
information. Those undesirable pan-sharpened results are caused by redundant spectral
information on flat regions or insufficient extraction of spatial characteristics at edges.
Furthermore, the single-resolution loss function, which treats the original MS images as the
ground truth, overlooks the importance of PAN images. Motivated by this fact and the fact
that the complexity of enhancing the image varies spatially, we propose a GSA-SiamNet for
pan-sharpening. In this section, we introduce the four key components shown in Figure 2.
Because of the symmetry of the Siamese network, we just describe the full-resolution image
pairs as inputs in the next paragraphs.

2.1.1. Two-Stream Features Extraction Module

In this paper, we use a two-stream network as a generator to generate pan-sharpened
images [19]. Instead of directly stacking PAN and MS images [25], we accomplished fusion
in the feature domain, which has proved to reduce spectral distortion [33]. One sub-network
took a multi-band up-sampled MS image as input, while the other sub-network took a
single-band PAN image. In both sub-networks, there were four convolutional layers with
3 × 3 convolutional kernels used to extract the features. The stride of the first two layers is
1, and for the rest, it is 2 in order to compress the features. All of the convolution layers
were activated through the Leaky Rectified Linear Unit (Leaky ReLU) with a slope of 0.2.

2.1.2. Feature Fusion Module

This module enables the proper fusion of PAN and MS images in the feature space.
Instead of a cascade connection, we introduce a skip connection method which shares the
source features [34] among Gradient-based Spatial Attention Dense Blocks (GSADBs). The
residual function of layer l is:

xl = Gl(xl−1) + x0 (3)

where x0 refers to the feature maps from the first convolution layer of this module and l is
set to 4 in this study. Each layer, called a Gain Block (GB), consists of two 3 × 3 convolution
layers with a Leaky ReLU activation function and is adjusted via a GSA mask. By simply
multiplying these two vectors together, we can adaptively amplify the pairs with high
spatial correlation and enhance the network’s ability to capture valid features. The details
can be written as:

xl = x2
l ◦ (1 +A ) + x0 (4)

x2
l = σ

(
f 3×3
conv

(
x1

l

))
, x1

l = σ
(

f 3×3
conv

(
x0

l

))
(5)

where f 3×3
conv(·) denotes the convolutional layer with 3 × 3 kernel, A is spatial attention

features (see the following section for detailed descriptions), and σ(·) denotes Leaky
Rectified Linear Unit activation layer. xi

l is the feature-map of the l GSADBs of the i
GBs. The end of the fusion module is a [w, h, 32] tensor that encodes both spatial and
spectral features.

2.1.3. Gradient-Based Spatial Attention Module

As part of feature fusion module, this GSA module is a flexible plugin that generates
spatial attention features A and refines the intermediate features within GSADBs. The
high-pass information extracted from the PAN image has been used in many variational
methods, and it has been shown to be effective in enforcing structural consistency. We no
longer use high-pass information as a constraint in the loss function, which is different
from the above variational methods. First, we utilize Laplacian and Sobel operators to
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obtain high-pass information from PAN images as attention prior. These gradient maps
guide texture recovery for different regions. Second, the gradient-based prior helps to
capture delicate texture. Through learning the GSA, we obtain a spatial attention mask
that enhances spatial texture and inhibits the distortion to original spectral information in
flat regions. The feature fusion module becomes more sensitive to spatial details in edge
regions and less disruptive to spectral characteristics of smoothing regions.

In detail, we employ gradient maps as input and then employ a two-layer branch to
generate a gradient-based prior, which is shared among GSA modules within the same
stages. We set the size of the convolutional kernel to 3 and the stride to 1. However,
we vary the kernel size to 4 and the stride to 2 to align the size of the attention masks
and features. Then, a shared gradient-based prior performs forward passes through two
successive convolutions to capture spatial attention A.

2.1.4. Progressive Up-Sampling Module

Fusion features are progressively up-sampled to the PAN image size with two sub-
pixel convolution layers, which can learn parameters for the upscaling process. Each
up-sampling branch is also followed by a local residual block with a GSA module to modify
features. The skip concatenation will help inject the details into higher layers, thereby
noticeably easing the training process. A flat convolutional layer is applied last to generate
the final residual of the up-sampled MS ↑ L_D and the ideal HR MS H. This global residual
learning [35] avoids the complicated transformation from input image pairs to targets and
simply requires learning a residual map to restore the missing high-frequency details.

2.1.5. Loss Functions

In this paper, we decompose pan-sharpening into two sub-problems and regard it as a
multi-task problem. The multi-resolution loss function L is proposed, aiming to retain both
spectral and spatial information at different resolution scales. It is defined as follows:

L = LLR + λLHR (6)

where λ is the coefficient to balance different loss terms, which is set to 0.1 in this paper.
The first term LLR measures the pixel-wise difference between the spectral information
of the fused HR MS image with reduced-resolution and that of the original MS image,
as follows:

LLR =
1
N ∑N

n=1∥L − G(↑ L_D, P_D)∥1 (7)

where N is the size of a train batch. Although ↕2 loss has been widely used in this term,
the ↕2 loss function can lead to a local minimum, which makes the performance of our
model unsatisfactory in flat areas [17]. Here, we adopt ↕1 loss to measure the accuracy of
the network’s reconstruction.

The second term LHR measures difference in gradients between the generated full-
resolution HR MS image and the original PAN image, which is defined as follows:

LHR =
1
N ∑N

n=1∥∇AP(G(↑ L, P))−∇P∥1 (8)

where ∇ denotes the gradient operator using the Laplacian operator and AP(·) is an
average pooling along the channel dimension. This loss function takes advantage of the
PAN image and gives a spatial constraint at a higher resolution.

3. Experimental Results and Analysis

In this section, we compare the proposed GSA-SiamNet with six widely used tech-
niques: AWLP, MTF-GLP, BDSD, PCNN, PSGAN, and LPPN. All the codes of these com-
pared methods are publicly available [2], and we train them on our datasets with the default
parameters. Here, we use Q4 [36], sCC [37], ERGAS [38], SAM [39], and PNSR [40] to
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evaluate the performance of the proposed method. The metrics QNR, DS, and Dλ, which
do not need reference images, are employed in full-resolution validation.

3.1. Datasets

To validate the performance of the proposed method, a WorldView-3 (WV-3) Dataset
was used for the pan-sharpening experiments. The number of spectral bands is 8 (coastal,
blue, green, yellow, red, red edge, near-IR1, and near-IR2) for the MS image taken from
WV-3 sensors. Sensors carried by the WV-3 satellite can acquire MS images with a spatial
resolution of 1.24 m and PAN images with a resolution of 0.31 m. The WV-3 dataset used in
this paper is collected by the DigitalGlobe WV-3 satellite over Moscow and San Juan. The
images from these three regions were acquired at different times and also differ significantly
in their geographical settings.

3.2. Implementation Details

The mini-batch size is set to 16. The parameters in our GSA-SiamNet are updated by
the Adam optimizer. The GSA-SiamNet is implemented in PyTorch and trained in parallel
on two NVIDIA GeForce GTX 1080 GPUs. Then, the original MS and PAN images are used
as the ground truth for spectral and spatial constraints. The size of the raw MS images is
320 × 320 and that of the PAN images is the corresponding 1280 × 1280. The training set,
collected from Moscow and Mumbai, includes 2211 samples, and one-tenth is used as the
validation. There are 399 images used for the test that were collected over Moscow and San
Juan. The number of epochs trained is controlled by early stopping.

3.3. Ablation Study
3.3.1. Evaluation of GSA

The GSA module can be stacked flexibly at any stage of the pan-sharpening process.
As shown in Figure 3, we conducted an experiment to show the effectiveness of the GSA
module. By varying its integration position, we evaluate the contribution to each stage. For
a fair comparison, we compare them to architectures of the same depth that do not include
GSA. The skip connection residual block in the feature fusion module is also replaced with
a single convolution operator. In Table 1, bold represents the best result. The average
values and standard deviations of each station are listed. From a quantitative perspective,
the network’s performance is improved to different degrees, regardless of the stage of
module insertion. In particular, the three metrics (Q8, ERGAS, and PSNR) are optimal
when the module is inserted in the image fusion phase, while the remaining two metrics are
suboptimal. These results indicate that our GSA layer indeed leads to valid performance
improvement and improves the network’s ability to handle spatial details with less spectral
loss. In this paper, the complete GSA-SiamNet inserts these GSA modules into all stages.

Table 1. Quality metrics at a reduced resolution of different portions of the GSA module applied to
the whole test datasets.

Position Q8↑ sCC↑ SAM↓ ERGAS↓ PSNR↑
None 0.9423 ± 0.0062 0.9459 ± 0.0043 3.6224 ± 0.1213 3.2377 ± 0.1493 38.6865 ± 0.3066
1 0.9437 ± 0.0059 0.9463 ± 0.0041 3.5965 ± 0.1190 3.2197 ± 0.1467 38.7144 ± 0.3014
2 0.9421 ± 0.0061 0.9468 ± 0.0042 3.5833 ± 0.1199 3.2485 ± 0.1522 38.6929 ± 0.3088
3 0.9430 ± 0.0060 0.9468 ± 0.0042 3.6126 ± 0.1193 3.2228 ± 0.1503 38.7078 ± 0.3131

The best result is represented in bold. ↑ denotes that the larger the value, the better the model performance. ↓ has
the opposite meaning.
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Figure 3. Evaluation of GSA. By varying its integration position, we evaluate the contribution in
each stage. For a fair comparison, the skip connection residual block in the feature fusion module
is replaced by a single convolution operator to maintain the same depth. The network uses the
concatenation operation and residual structure as GSA-SiamNet in Figure 2 but omits them in
this figure.

3.3.2. Evaluation of Number of Recursive Blocks

Because of weight-sharing sets among the residual units within a recursive block, the
parameter volume remains the same as the layers of the network become deeper. As shown
in Figure 4, we explore various combinations of F, U, and R to construct models at different
depths and observe how these three parameters affect the performance. Here, F, U, and R
represent the number of recursions of GSADB at each stage.
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Figure 4. Evaluation of number of recursive blocks. F, U, and R denote the number of recursive blocks
in the image fusion, up-sampling, and reconstruction stages. The network uses the concatenation
operation and residual structure as GSA-SiamNet in Figure 2 but omits them in this figure.

To clearly show the impact of the number of recursive blocks, we plot three sets of
line graphs in Figure 5. The experiment was divided into two groups (setting F = 4 and
F = 6). The data in these three subplots are the same, but we have connected the results of
the fixed recursive number in different stage situations with dashed lines. For example, we
connect the results of the same number of U in subplot (a). The darker color of the dots
represents the larger recursive number in the group.
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Figure 5. PSNR of various GSA-SiamNet structures at different combinations of F, U, and R. The
experiment is divided into two groups, with settings F = 4 and F = 6. Dots of darker color represent
the larger recursive number in the inner group. (a) The results are connected by points with the same
number of U in both groups. (b) The results are connected by points with the same number of R in
both groups. (c) The results are connected by points with the same number of F between groups.

Figure 5 shows that increasing the recursion number makes the network deeper and
achieves better performance, indicating that deeper networks are generally better. In terms
of intra-group comparisons, we fixed the parameter F at 4 or 6 and observed that increasing
U resulted in a greater performance improvement compared to increasing R when the
depth was the same. For example, F4U1R2 (d = 15) and F4U2R1 (d = 16) achieve 39.54
and 39.55 dB. The performance gains diminish as depth increases: F4U2R2 (d = 16) and
F6U2R2 (d = 16) are two obvious turning points. In addition, the slope of the fold in (b) is
greater compared to that in (a). We prefer to use our GSA module in shallower layers.

When making comparisons between groups, the performance improvement is less
pronounced as the depth increases, specifically in the case of F is 6. This result is con-
sistent with previous findings. Despite the different depths, the three networks achieve
comparable performances (F6U4R1, d = 6, 39.612 dB; F6U4R2, d = 6, 39.614 dB; F6U4R4,
d = 5, 39.612 dB) and outperform the previous shallow networks. Under this recursive
learning strategy, F6U4R2 can achieve state-of-the-art results.

3.4. Reduced-Resolution Validation

Following Wald’s protocol [41], we evaluate the methods at reduced resolution. This
means that the original MS and PAN images are filtered by a 7× 7 Gaussian blur kernel and
are further down-sampled using the nearest neighbor technique with a factor of r (r = 4).
Five widely used metrics, including Q8, sCC, SAM, ERGAS, and PSNR, are used to assess
the quantitative comparison of the proposed method.

The results of the fusion are shown in Figures 6 and 7. The first row shows the up-
sampled LR MS, PAN, original HR MS (GT), and fusion results in which all MS images
are displayed in true color (RGB). The second row comprises the corresponding error
images, which regard the original MS image as ground truth. We color-coded the error
image according to the color bar at the bottom of the figure. We performed an exponential
transformation on the error image for clear visual effects. A truncated value was used to
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prevent small errors from being missed. From left to right, the colors represent the values
from minimum to maximum.
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Figure 6. Qualitative comparison of the data from Moscow using the reduced-resolution test. The
first row displays the fusion results in true color (RGB), and the second row shows the corresponding
error images, which regard the original HRMS as the ground truth. We apply an exponential
transformation to the error image to enhance visual clarity. The red boxes mark the regions of interest
and the corresponding zoomed-in images.

In Figures 6 and 7, the geometric details are effectively preserved in the reduced-
resolution domain but have drawbacks, such as spectral distortion. Overall, the error plots
show significant spectral distortions in BDSD and AWLP. Three conventional methods are
too simple and brutal for the injection of high-frequency information, and the generated
results perform poorly in terms of spectral consistency. PNN, PSGAN, LPPN, and our
GSA-SiamNet have lower errors than the traditional methods. Learning-based injection
functions have an advantage over manually designed injection functions in terms of spectral
preservation. In Figure 7, the colored ground objects suffer from varying degrees of spectral
information loss in all pan-sharpened images. Among these methods, our method has the
smallest mean error. Our GSA-SiamNet maintains a smaller distortion of the spectrum in
the low-frequency regions and selectively injects high-frequency information.

Quantitatively, Table 2 lists the results of the two sub-datasets. In the table, the best re-
sult is represented in bold. It can be observed that learning-based pan-sharpening methods
outperform traditional approaches. Among the learning-based approaches, our GSA-
SiamNet can yield a better performance than all the other competitors in all metrics. This is
consistent with the conclusions obtained in the qualitative comparison. Consequently, our
GSA-SiamNet can generate the closest fusion result to the reference MS (the ground truth),
both spectrally and spatially. Regardless of qualitative or quantitative comparisons, our
proposed method always yields a satisfactory performance.
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Figure 7. Qualitative comparison of the data from San Juan using the reduced-resolution test. The
first row displays the fusion results in true color (RGB), and the second row shows the corresponding
error images, which regard the original HRMS as the ground truth. We apply an exponential
transformation to the error image to enhance visual clarity. The red boxes mark the regions of interest
and the corresponding zoomed-in images.

Table 2. Quality metrics at the reduced-resolution of different methods on two sub-datasets.

Dataset Method Q8↑ sCC↑ SAM↓ ERGAS↓ PSNR↑

Moscow
(181)

EXP 0.8581 ± 0.0041 0.6296 ± 0.0041 4.0204 ± 0.1057 6.5638 ± 0.1953 25.5051 ± 0.2087
BDSD 0.9471 ± 0.0021 0.9005 ± 0.0028 4.9756 ± 0.1706 4.2704 ± 0.1290 29.2314 ± 0.2340
AWLP 0.9486 ± 0.0044 0.8915 ± 0.0041 3.9510 ± 0.1121 3.4929 ± 0.1119 31.9436 ± 0.4559
MTF-GLP 0.9495 ± 0.0060 0.8999 ± 0.0026 4.1316 ± 0.1166 3.6427 ± 0.1077 30.5449 ± 0.1989
PCNN 0.9857 ± 0.0012 0.9720 ± 0.0010 3.7670 ± 0.1139 1.9706 ± 0.0619 36.0159 ± 0.1948
PSGAN 0.9812 ± 0.0060 0.9831 ± 0.0005 3.1964 ± 0.0940 1.6077 ± 0.0474 37.7872 ± 0.1631
LPPN 0.9924 ± 0.0007 0.9882 ± 0.0004 2.7941 ± 0.0829 1.3873 ± 0.0418 39.0824 ± 0.1648
Ours 0.9930 ± 0.0007 0.9896 ± 0.0004 2.6954 ± 0.0813 1.3100 ± 0.0445 39.6060 ± 0.1615

San Juan
(218)

EXP 0.6931 ± 0.0171 0.5584 ± 0.0057 5.7894 ± 0.2103 9.4188 ± 0.3554 30.3132 ± 0.5461
BDSD 0.8534 ± 0.0113 0.8544 ± 0.0072 6.5376 ± 0.2043 6.2084 ± 0.2537 33.5240 ± 0.4941
AWLP 0.8584 ± 0.0125 0.8333 ± 0.0079 5.6271 ± 0.2315 5.7950 ± 0.2438 35.2614 ± 0.6591
MTF-GLP 0.8467 ± 0.0115 0.8461 ± 0.0072 6.1185 ± 0.1997 6.0982 ± 0.2334 33.5742 ± 0.4447
PCNN 0.8501 ± 0.0129 0.8340 ± 0.0089 6.0182 ± 0.2271 6.3827 ± 0.2264 33.7065 ± 0.4643
PSGAN 0.8503 ± 0.0166 0.8808 ± 0.0074 5.2186 ± 0.1865 5.5586 ± 0.2010 34.8287 ± 0.4773
LPPN 0.8941 ± 0.0120 0.9166 ± 0.0074 4.7992 ± 0.1929 4.7698 ± 0.1767 36.1439 ± 0.4406
Ours 0.9071 ± 0.0110 0.9289 ± 0.0062 4.5962 ± 0.1885 4.4155 ± 0.1681 36.9097 ± 0.4374

The best result is represented in bold. ↑ denotes that the larger the value, the better the model performance. ↓ has
the opposite meaning.
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3.5. Full-Resolution Validation

We also evaluate the algorithms at the full resolution of the images. In this case, three
no-reference metrics (QNR, DS, and Dλ) are calculated on full-resolution images.

The quantitative values in Table 3 indicating the best performance are marked in
bold. It is worth mentioning that the GSA-SiamNet does not achieve the best performance
in every metric. The validation at full resolution allows for the avoidance of unknown
ground truth, but the values of the indexes are less reliable because they heavily rely on the
up-sampled MS image. In other words, visual evaluation is more reliable than quantitative
evaluation in the full-resolution experiment.

Table 3. Quality metrics at the full-resolution of different methods on two test datasets.

Dataset Method QNR↑ Dλ↓ DS

Moscow
(181)

EXP 0.8581 ± 0.0041 0.6296 ± 0.0041 4.0204 ± 0.1057
BDSD 0.9471 ± 0.0021 0.9005 ± 0.0028 4.9756 ± 0.1706
AWLP 0.9486 ± 0.0044 0.8915 ± 0.0041 3.9510 ± 0.1121
MTF-GLP 0.9495 ± 0.0060 0.8999 ± 0.0026 4.1316 ± 0.1166
PCNN 0.9857 ± 0.0012 0.9720 ± 0.0010 3.7670 ± 0.1139
PSGAN 0.9812 ± 0.0060 0.9831 ± 0.0005 3.1964 ± 0.0940
LPPN 0.9924 ± 0.0007 0.9882 ± 0.0004 2.7941 ± 0.0829
Ours 0.9930 ± 0.0007 0.9896 ± 0.0004 2.6954 ± 0.0813

San Juan
(218)

EXP 0.6931 ± 0.0171 0.5584 ± 0.0057 5.7894 ± 0.2103
BDSD 0.8534 ± 0.0113 0.8544 ± 0.0072 6.5376 ± 0.2043
AWLP 0.8584 ± 0.0125 0.8333 ± 0.0079 5.6271 ± 0.2315
MTF-GLP 0.8467 ± 0.0115 0.8461 ± 0.0072 6.1185 ± 0.1997
PCNN 0.8501 ± 0.0129 0.8340 ± 0.0089 6.0182 ± 0.2271
PSGAN 0.8503 ± 0.0166 0.8808 ± 0.0074 5.2186 ± 0.1865
LPPN 0.8941 ± 0.0120 0.9166 ± 0.0074 4.7992 ± 0.1929
Ours 0.9071 ± 0.0110 0.9289 ± 0.0062 4.5962 ± 0.1885

The best result is represented in bold. ↑ denotes that the larger the value, the better the model performance. ↓ has
the opposite meaning.

Furthermore, we exhibit the average inference time for each fusion method, denoted
as A.T., in seconds, in Table 4. Traditional methods run on CPUs, while deep-learning based
methods perform inferences on GPUs. Since the two run in different environments, we
only compare the computation cost of the deep-learning based methods. For the average
inference time of test datasets, the PCNN has the shortest inference times, while LPPN and
our GSA-SiamNet have slightly higher computational costs. The recursive structure makes
the network deeper so that it achieves better performance but increases inference time. In
the future, we will study the optimization algorithm to improve computational efficiency.

Table 4. The average inference time for test datasets.

Image Size Method A.T. (s)

1280 × 1280
(399)

PCNN 0.0584
PSGAN 0.1616
LPPN 0.2104
Ours 0.2695

As shown in Figures 8 and 9, we select a typical example of the results from each
dataset. Discrepancies between the quantitative metrics and the visual appearance of
the results can be observed. In Figure 8, BDSD has the worst results, with the complete
distortion of details. The localized, zoomed-in views show that PSGAN and LPPN failed to
recover the spatial characteristics, and the image appears distorted at the edges. AWLP,
MTP-GLP, PNN, and our method can maintain the details, which are as clear as those in the
PAN image, well. Overall, only BDSD, PNN, and our method retain the spectral features



Remote Sens. 2024, 16, 616 13 of 16

of the original image on the snow surface. Figure 9 is a sample collected from San Juan,
and its distribution is significantly different from that of the training set. In the localized,
zoomed-in views, the original LRMS yield jagged edges, which leads to severe artifacts in
BDSD and AWLP. PSGAN and LPPN yield spatial distortions, while MTF-GLP and our
GSA-SiamNet perform well from an anti-aliasing perspective. When the distribution of
the test data differs from the distribution of the training data, PNN, PSGAN, and LPPN
lose the advantage of spectral preservation and introduce some blurred information into
the result. MTF-GLP suffers from color distortion. In this full-resolution validation, the
pan-sharpened HR MS generated by GSA-SiamNet is visually superior.
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Figure 8. Qualitative comparison using the full-resolution test on the data from Moscow. The red
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In this section, we show the superiority of our GSA-SiamNet at full resolution. Thanks
to our GSA-SiamNet’s focus on high-frequency content, it is more robust compared to other
networks. As a result, the network can effectively translate a superb training performance
to an excellent testing performance on new images with different distributions.
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images as inputs. To address the issue of model performance degradation caused by the 
scale-shift assumption, a multi-resolution loss function is designed to guide the training 
process in both the reduced- and full-resolution domains. Down-sampled inputs focus on 
spectral consistency, while another one is used for generating spatial consistency. In 
ablation analysis, we validate the effectiveness and efficiency of GSA modules. This 
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show that our GSA-SiamNet effectively preserves the underlying spectral information 
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Figure 9. Qualitative comparison using the full-resolution test on the data from San Juan. The red
boxes mark the regions of interest and the corresponding zoomed-in images.

4. Conclusions

In this article, we regard pan-sharpening as a multi-task problem and propose a GSA-
SiamNet that takes both the original MS/PAN images and down-sampled MS/PAN images
as inputs. To address the issue of model performance degradation caused by the scale-shift
assumption, a multi-resolution loss function is designed to guide the training process in
both the reduced- and full-resolution domains. Down-sampled inputs focus on spectral
consistency, while another one is used for generating spatial consistency. In ablation
analysis, we validate the effectiveness and efficiency of GSA modules. This spatial attention
effectively improves the network’s performance in the feature fusion, up-sampling, and
image reconstruction stages. Experimental testing of two sub-datasets show that our
GSA-SiamNet effectively preserves the underlying spectral information distribution while
minimizing the loss of spatial information, outperforming current state-of-the-art methods.
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