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Abstract: Full tensor of gravity gradients contains extremely large amounts of information, which
is one of the most important sources for research on recovery seafloor topography and underwater
matching navigation. The calculation and accuracy of the full tensor of gravity gradients are worth
studying. The Ka-band interferometric radar altimeter (KaRIn) of surface water and ocean topography
(SWOT) mission enables high spatial resolution of sea surface height (SSH), which would be beneficial
for the calculation of gravity gradients. However, there are no clear accuracy results for the gravity
gradients (the gravity gradient tensor represents the second-order derivative of the gravity potential)
recovered based on SWOT data. This study evaluated the possible precision of gravity gradients
using the discretization method based on simulated SWOT wide-swath data and investigated the
impact of instrument errors. The data are simulated based on the sea level anomaly data provided
by the European Space Agency. The instrument errors are simulated based on the power spectrum
data provided in the SWOT error budget document. Firstly, the full tensor of gravity gradients
(SWOT_GGT) is calculated based on deflections of the vertical and gravity anomaly. The distinctions
of instrument errors on the ascending and descending orbits are also taken into account in the
calculation. The precision of the Tzz component is evaluated by the vertical gravity gradient model
provided by the Scripps Institution of Oceanography. All components of SWOT_GGT are validated
by the gravity gradients model, which is calculated by the open-source software GrafLab based on
spherical harmonic. The Tzz component has the poorest precision among all the components. The
reason for the worst accuracy of the Tzz component may be that it is derived by Txx and Tyy, Tzz

would have a larger error than Txx and Tyy. The precision of all components is better than 6 E. Among
the various errors, the effect of phase error and KaRIn error (random error caused by interferometric
radar) on the results is greater than 2 E. The effect of the other four errors on the results is about 0.5 E.
Utilizing multi-cycle data for the full tensor of gravity gradients recovery can suppress the effect
of errors.

Keywords: surface water and ocean topography (SWOT) mission; full tensor of gravity gradients;
radar interferometry; satellite altimetry; marine gravity field

1. Introduction

With years of development of altimetry technology [1–3], satellite altimetry data have
become the primary source for inverting ocean gravity fields due to their advantages, such
as shorter data acquisition cycles and wider measuring ranges compared to shipborne
gravity [4–7]. It is feasible to obtain high-precision and high-resolution models of deflections
of the vertical (DOV) and gravity anomalies (GA) based on altimetry data [8–11]. These
models provide vital information for the study of gravity gradients. However, there is
little research on gravity gradients; even the Scripps Institution of Oceanography (SIO)
is only calculating the vertical gravity gradients (VGG) model. Gravity gradients reflect
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the dynamic variations in GA, which is a powerful tool for detecting irregular density
distributions in plates, revealing tectonic activity in the field [12]. Therefore, not only the
VGG deserves attention, but also full tensor of gravity gradients with more information.
The availability of gravity gradients in marine regions constitutes a foundational resource
for numerous applications, such as the inversion of bathymetry, underwater matching
navigation, and geological exploration, attracting increased attention [13–16].

The surface water and ocean topography (SWOT) satellite was developed jointly by
National Aeronautics and Space Administration (NASA) and Centre National D’Etudes
Spatiales (CNES), with contributions from many other agencies. SWOT was success-
fully launched on 16 December 2022. The mission aims to precisely measure global
terrestrial water height and sea surface height (SSH). The development, launch, and
operation of the SWOT satellite have obtained more attention from many international
oceanographers [17–19], making it an important development in oceanographic research.
The SWOT satellite measures the ocean surface topography with great accuracy, us-
ing interferometry to achieve two-dimensional mapping [10,20,21]. The look angles at
the altitude of SWOT entail swath coverage of about 120 km (from 10 to 70 km in the
cross-track distance on both sides of the nadir track). SWOT has a large potential in
deriving gravity gradients due to its high spatial resolution and accuracy; the low-rate
measurement model of Ka-band radar interferometer (KaRIn) has a spatial resolution of
about 2 km, and spatial averaging of 1 km2 improves the altimetry accuracy to less than
2 cm (https://www.aviso.altimetry.fr/en/missions/current-missions/swot/instruments/
karin-wide-swath-altimeter-in-ka-band.html, accessed on 15 November 2023).

Jin et al. [10] simulated various instrument errors using power spectral density (PSD)
data provided by Esteban-Fernandez et al. [22]. In the South China Sea and part of the
Indian Ocean, significant improvements are observed in the accuracy of the east–west
component of the DOV determined by one-cycle SWOT data. Yu et al. [20] proved that
the inverse Vening Meinesz (IVM) exhibits more robustness in handling both random
and systematic errors within the SWOT dataset compared to the inverse Stokes’ integral
(ISM). Additionally, multi-cycle data of SWOT can provide higher-quality GA. Ma et al. [23]
performed crossover calibration between descending orbits and ascending orbits within
one cycle followed by collinear adjustment across multiple cycles. This strategy resulted
in an approximately 45% improvement in the accuracy of GA compared to one cycle.
Liu et al. [24] systematically investigated the impact of various grid spacing and multiple
directions of geoid gradients on the estimation of residual DOV (rDOV) based on simulated
data. They found that instrument errors have a significant effect on rDOV. The IceSat-2 has
similar characteristics to SWOT; that is they can provide SSH across-track. Liu et al. [25]
derived 2′ grid DOV and GA from cross-beam synchronous observations in the South
China Sea based on SSH of IceSat-2, which supports the application of SWOT data.

Yu and Hwang [26] derived the VGG based on altimetry data from the Cryosat-2 and
Jason-1/2. Zhou et al. [27] developed a vertical gravity anomaly gradient model with a
resolution of 1′ × 1′ for the Arabian Sea and its surrounding regions from the altimetry
data of Cryosat-2. The root mean square (RMS) compared to the VGG model provided by
SIO is 7.69 E (1E = 1× 10−9/s2). Wan et al. [28] investigated the impact of environment
errors based on Tian’s method [29] on the recovery of DOV and GA from wide-swath
altimetry data.

Despite rapid advancements in gravity gradiometer technology [30], the measurement
of marine gravity gradients using gravity gradiometers is constrained due to the limitations
of space, vehicles, and cost [31]. The computation of gravity gradients remains a challenging
geodetic task, particularly in marine regions.

Many studies have shown that the use of gravity gradients enhances the reliability of
inversion of bathymetry and underwater gravity matching navigation [32–35]. However,
most researchers primarily focus on computing VGG [26] using the derivation formula
provided by Heiskanen and Moritz [36,37]. Wan et al. [15] found that few methods have
been proposed to invert full tensor of gravity gradients from altimetry data. Therefore,
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they proposed a fast Fourier transform (FFT) algorithm to derive the full tensor of gravity
gradients using satellite altimetry data [15]. Tian [29] proposed a discretization method to
compute the full tensor of gravity gradients. This method is suitable for two-dimensional
altimetry data and effectively utilizes data from neighboring grid points, avoiding extensive
integration calculations.

The expected precision of the derived full tensor of gravity gradients based on SWOT
data (SWOT_GGT) is not clear. In this study, the method of Tian [29] is used to derive the
SWOT_GGT and give the expected precision of the results. According to the latest updates,
the SWOT team is calibrating the data with the latest technology and we are looking
forward to the release of “Pre-Validated” science data. Before the release of “Pre-Validated”
data, we still need to perform some experiments based on the simulated data, because the
simulated data can control variables in studying the impact of the instrument errors on
SWOT_GGT. In Section 2, the research area and data are introduced. Section 3 presents the
discretization method to compute SWOT_GGT. In Section 4, the SWOT_GGT is established,
and the accuracy of SWOT_GGT is evaluated. In addition, the impact of instrument errors
on the calculation of full tensor of gravity gradients is also analyzed. Section 5 discusses the
effect of instrument errors when calculating SWOT_GGT using multi-cycle data. Finally,
Section 6 provides the conclusion.

2. Study Area and Data
2.1. Study Area

The study is conducted over the Bay of Bengal and its surrounding areas (BOB),
located in the northern Indian Ocean (80◦E–100◦E, 0◦N–23◦N). The area encompasses
the global largest turbidite alluvial fan system and basins, resulting in complex seafloor
topography [38]. The location of the area and its seafloor topography is shown in Figure 1.
The seafloor topography of the study area (as shown in Figure 1) corresponds to the DTU21
bathymetric model, which is one of the most accurate models for seafloor topography [35].
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As a result of the movements of the Indian Plate and the Burma Plate, the area
has undergone significant sedimentation, leading to a remarkably diverse topography.
Notable features include the 90◦E Ridge, the Andaman–Nicobar Ridge, and the Bay of
Bengal Basin [39]. Consequently, this region provides favorable conditions for conducting
scientific research aimed at obtaining high-precision marine gravity field products.

2.2. Data

The datasets adopted in this study are listed in Table 1.

Table 1. The information on the datasets used in this paper.

Datasets Resolution Provider

Sea level anomaly (SLA) 15′ European Space Agency (ESA)

Mean sea surface (MSS)
MSS_CNES_CLS2015 1′ CNES

Mean dynamic topography (MDT)
MDT_CNES_CLS18 7.5′ CNES

DTU21 bathymetric model 1′ Technical University of Denmark (DTU)

XGM2019e 1′ Technical University of Munich (TUM)

EGM2008 1′ National Geospatial-Intelligence Agency
(NGA)

SIO V32.1 datasets 1′ SIO

Shipborne gravity data Distributed along the survey trajectory National Centers for Environmental
Information (NCEI)

GrafLab_GGT 1′
Calculated by GrafLab-1.1.2 utilizes spherical

harmonics based on the EGM2008 gravity
field model

Since the experiments are conducted based on simulated science orbit (21-day) data, it
is necessary to simulate SSH data. The tool used for simulating is the swot_simulator-1.2.4
provided by JPL (https://github.com/CNES/swot_simulator, accessed on 15 November 2023).
Utilizing input SLA data provided by ESA [40], the format of data is transformed to
wide-swath. Instrument errors are introduced into the wide-swath data. The instru-
ment errors are simulated based on PSD data provided by JPL [22]. After this step,
we obtain SLA data with all simulated instrument errors. Then, by adding the mean
sea surface height (MSS_CNES_CLS2015) [41], we obtain the SSH data used for the
experiments, i.e., SSH = SLA + MSS. By subtracting the mean dynamic topography
(MDT_CNES_CLS18) [42], the topography of the sea surface is removed, allowing for
the determination of geoid heights at the grid points, i.e., Geoid = SSH −MDT. Geoid
data can be used to calculate rDOV; the formulas are shown in Appendix A.

The SSH data are filtered by the one-dimensional Gauss filter to deal with the influence
of sea level variations and noise. The STD of the width of the filter is set to 10 km. This
filtering process may result in the loss of a part of short-wavelength data [20], but the
limitations caused by the absence of the shortest wavelengths are relatively minimal.

In addition to the data used for simulating SWOT data mentioned above, other datasets
are employed for experiments and validating the results. Among them, the XGM2019e
model [43] is used as the reference gravity field model in the remove–restore procedure. The
SIO V32.1 datasets include east_32.1, north_32.1, grav_32.1, and curv_32.1. These models
are considered to be some of the most accurate global high-resolution and high-precision
gridded models for ocean gravity [44].

The shipborne gravity dataset comprises a collection of measured marine gravity
data from various departments using different instruments [45]. Before using the ship-
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borne gravity data, they needs to be adjusted by removing gross errors using a quadratic
polynomial in time [46].

GrafLab_GGT is utilized to validate all components of SWOT_GGT. GrafLab_GGT
is generated by GrafLab based on the EGM2008 model expanded to degree and order
2159 [47] (since XGM2019e is used as the reference gravity field when calculating DOV and
GA, the EGM2008 is used to calculate the GrafLab_GGT during the validation to avoid
correlation). The GrafLab-1.1.2 is an open-source software, which can compute various
functionals of the geopotential up to ultra-high degrees using spherical harmonic expansion
based on the gravity field model [48].

2.3. SWOT Wide-Swath Data and Simulated Errors

Six types of errors are simulated according to the PSDs defined in SWOT error budget
file, including random error caused by KaRIn (KaRIn error), roll error (caused by the
gyro error and roll control error), phase error (caused by the interferometer technology),
baseline dilation error (caused by the baseline of KaRIn), timing error (errors in the time-
tagging accuracy of the payload data), and wet troposphere error (caused by the humid
atmosphere) [22,49]; all these errors directly affect the SSH data. Figure 2 shows the spatial
distribution of individual errors and the total error in one cycle.
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(c) phase error, (d) baseline dilation error, (e) timing error, (f) wet troposphere error, (g) original SLA
data, (h) all errors, (i) SLA data with all errors.
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The distribution of KaRIn error displays noticeable randomness. The roll error in-
creases in the across-track direction as the distance to the nadir altimeter increases. The
value of the roll error on both sides of the swath is opposite. The value of phase error is
randomly distributed in the across-track direction and slowly changes in the along-track
direction. The value of baseline dilation error is square distributed in the across-track
direction [23,50]. The value of timing error is constant in the across-track direction and
slowly changes in the along-track direction [22]. The value of wet troposphere error is
affected by its spatial and temporal distribution, and the regularity of distribution in the
along-track and across-track direction is not obvious. Table 2 provides statistical values of
simulated errors in one cycle.

Table 2. The statistical values of simulated errors and total error in one cycle (Units: cm).

Error Min Max Mean STD

KaRIn −9.3 9.8 1.1 × 10−5 1.2
Roll −16.5 15.1 −1.0 × 10−2 3.4

Phase −91.9 92.3 −0.6 22.2
Baseline dilation −3.0 3.3 3.0 × 10−2 0.6

Timing −5.4 6.9 0.3 2.2
Wet troposphere −6.6 6.9 0.7 2.4

All −94.3 98.9 0.4 23.0

As shown in Table 2, phase error has the largest standard deviation (STD), and baseline
dilation error has the smallest STD. The STD of KaRIn error is similar to that of timing error
and wet troposphere error.

When a satellite flies from south to north, it is called an ascending orbit. When it
flies from north to south, it is called a descending orbit. We need to analyze whether the
distribution of errors on the ascending and descending orbits is the same. The errors on
the ascending and descending orbits within one cycle are plotted separately (as shown in
Figure 3) to study their differences.
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It is clear from Figure 3 that the error fields have some distinction between ascending
and descending orbits. Therefore, when processing data, it is necessary to calculate DOV
and GA using the SSH data from ascending and descending orbits, respectively, then
calculate the averaged DOV and GA, and finally calculate the SWOT_GGT by the averaged
value (results are shown in Section 4).
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3. Methodology

Based on the data processing experience from many scholars, the wide-swath data
can be split into along-track and across-track directions [20,23,24]. The geoid gradients are
calculated by utilizing information from adjacent points in multiple directions (as shown
in Figure 4).
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Figure 4. Split wide-swath data into along-track and across-track directions.

In Figure 4, the blue dots (the shape of the blue circle and the blue square has no
special meaning, just to distinguish between the adjacent two columns of SSH grid data)
represent SSH grid data, and the interval is 2 km. The red dots represent the geoid gradient
calculated from the blue dots. We split the blue dots along-track and across-track to obtain
one-dimensional observations separately, and then integrate these data across both the
along-track and across-track directions to obtain one-dimensional cross-combined data.
Around the blue dot, red dots can be calculated from the cross-combined data in multiple
directions, then they can be used for the calculation of DOV. The two components, ξ and η,
are used here only to indicate directions of partial derivatives of the geoid height, do not
define a coordinate system.

In this study, the least-squares collocation (LSC) method is employed to compute
DOV [51–53]. The obtained DOV is used in conjunction with the IVM formula to calcu-
late GA [54,55]. The results are then utilized in the discretization method to calculate
SWOT_GGT. This paper pays more attention to the impact of instrument errors on grav-
ity gradients, so the introduction of LSC and IVM are placed in Appendix A; the results
of the calculated DOV and GA are placed in Appendix B. The error propagation law of
SWOT_GGT calculated by the DOV and GA is shown in Appendix C.
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The relationship between the full tensor of gravity gradients, geoid heights, and DOV
can be expressed in the local NEU frame:

Txx = ∂2T
∂x2 = γ ∂2 N

∂x2 = γ ∂ξ
∂x

Tyy = ∂2T
∂y2 = γ ∂2 N

∂y2 = γ
∂η
∂y

Tzz = − ∂2T
∂x2 − ∂2T

∂y2 = −γ ∂ξ
∂x − γ

∂η
∂y

Txy = ∂2T
∂x∂y = γ ∂2 N

∂x∂y = γ ∂ξ
∂y = γ

∂η
∂x

Txz =
∂2T
∂x∂z = ∂δg

∂x

Tyz =
∂2T
∂y∂z = ∂δg

∂y

(1)

where γ represents the mean of the Earth’s normal gravity. The two components, ξ and η,
are the partial derivatives of the geoid height N in the north–south and east–west directions,
respectively. The formula is as follows:{

ξ = ∂N
∂x = 1

R
∂N
ϕ

η = ∂N
∂y = 1

R cos ϕ
∂N
∂λ

(2)

where R is the average radius of the Earth, R = 6, 371, 009 m. If we express the full tensor
of gravity gradients using the two components of DOV, it can be expressed as follows:

Txx = γ
R2

∂2 N
ϕ2 + 1

R
∂T
∂r = γ

R
∂ξ
ϕ + δg

R

Tyy = γ
R2 cos2 ϕ

∂2 N
∂λ2 −

γ tan ϕ

R2
∂N
ϕ + γ

R
∂N
∂R

= γ
R cos ϕ

∂η
∂λ −

γ tan ϕ
R ξ + δg

R

Tzz = −Txx− Tyy

Txy = γ
R

1
R cos ϕ

∂2 N
∂λϕ + sin ϕ

R2 cos2 ϕ
δg

= γ
R

∂η
ϕ + sin ϕ

R2 cos2 ϕ
δg = γ

R cos ϕ
∂ξ
∂λ + sin ϕ

R2 cos2 ϕ
δg

Txz = 1
R

∂δg
ϕ −

γ
R2

∂N
ϕ = 1

R
∂δg
ϕ −

γ
R ξ

Tyz = 1
R cos ϕ

∂δg
∂λ −

1
R2 cos ϕ

δg

(3)

It is important to note that the calculated ∆g needs to be converted to gravity dis-
turbance data, δg. This conversion requires subtracting the correction terms, and the
relationship between them is described as follows [56,57]:

∆g(x, y) = δg(x, y)− 2
γ

R
N(x, y) (4)

where N denotes the height of the geoid, and the correction term can be approximated as
−0.3076N mGal.

Transforming Equation (3) into a discretization equation yields [29]:

Txx (i,j) =
γ
R

ξ(i+1,j)−ξ(i−1,j)
ϕ(i+1,j)−ϕ(i−1,j)

+
δg(i,j)

R

Tyy (i,j) =
γ

R cos ϕ(i,j)

η(i,j+1)−η(i,j−1)
λ(i,j+1)−λ(i,j−1)

− γ tan ϕ(i,j)
R ξ(i,j) +

δg(i,j)
R

Tzz (i,j) = −Txx(i,j) − Tyy(i,j)

Txy (i,j) =
γ

R cos ϕ(i,j)

ξ(i,j+1)−ξ(i,j−1)
λ(i,j+1)−λ(i,j−1)

+
sin ϕ(i,j)

R2 cos2 ϕ(i,j)
δg(i,j)

Txz (i,j) =
1
R

δg(i+1,j)−δg(i−1,j)
ϕ(i+1,j)−ϕ(i−1,j)

− γ
R ξ(i,j)

Tyz (i,j) =
1

R cos ϕ(i,j)

δg(i,j+1)−δg(i,j−1)
λ(i,j+1)−λ(i,j−1)

− 1
R2 cos ϕ(i,j)

δg(i,j)

(5)
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Based on simulated SSH data, DOV and GA can be calculated using Equations (A1)~(A5)
in Appendix A. Finally, the SWOT_GGT can be computed using Equation (5).

4. Results and Analysis
4.1. Validation of the Inversion Method of Full Tensor of Gravity Gradients

Before calculating SWOT_GGT, it is essential to check the reliability of the discretiza-
tion method presented in Equation (5). For this purpose, we simulate gravity field data
for part of the research region (10◦–13◦N, 80◦–83◦E) using EGM2008 [47] and XGM2019e
models [43] based on the spherical harmonic expanded to degree and order 2190. In this
validation, from the XGM2019e model, we can obtain the disturbance potential, DOV,
and full tensor of gravity disturbance gradients (used as the truth value). The EGM2008
model is used as the reference gravity field model in the validation procedure. The differ-
ences between the true value and calculated value are shown in Table 3, where the “Ratio”
represents the ratio between the STD of validation residuals and the STD of true values.

Table 3. The statistics of validation.

Component Min (E) Max (E) Mean (E) STD (E) Ratio (%)

Txx −0.16 0.16 0.05 0.03 0.84
Tyy −4.19 3.40 0.12 0.13 1.90
Tzz −3.46 4.20 0.15 0.24 2.74
Txy −2.68 1.59 0.17 0.14 4.88
Txz −1.76 0.72 0.10 0.11 2.45
Tyz −4.15 2.47 0.03 0.18 2.30

According to Table 3, all components exhibit a high level of accuracy, except for the
Tzz component indicating relatively poorer performance with the STD of residuals reaching
0.24 E. The ratio indicates that the recovery error of each component is lower than 4.9%.
The results demonstrate that the discretization method is reliable for inverting the full
tensor of gravity gradients.

4.2. Full Tensor of Gravity Gradients Recovery from Simulated SWOT KaRIn Data

Using swot_simulator-1.2.4, we simulated one-cycle SSH data from 1–21 January 2021.
The simulated data incorporate instruments and wet troposphere errors.

4.2.1. Results of SWOT_GGT

SWOT_GGT is calculated using the discretization method based on DOV and GA. The
results of the SWOT_GGT by distinguishing SSH data in the ascending and descending
orbits (proposed in Section 2) are shown in Table 4. The SWOT_GGT is plotted as shown
in Figure 5.

In Table 4, Tzz exhibits the largest STD value, and Txy shows the smallest STD value.
The accuracy of the SWOT_GGT can be derived from the error propagation law shown in
Appendix C. The error propagation law shows that the results in Table 4 are reliable. The
data processing strategy proposed in Section 2 is also used in Section 5 to suppress errors
more effectively.

Table 4. The statistics of SWOT_GGT (Unit: E).

Component Mean STD RMS

Txx −0.06 10.97 10.97
Tyy −0.13 15.92 15.92
Tzz −0.14 22.04 22.04
Txy 0.14 7.52 7.52
Txz −0.04 11.66 11.66
Tyz −0.15 15.69 15.69
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Combined with the seafloor topography (as shown in Figure 1), it can be found that the
changes in Figure 5 are more obvious in the regions with drastic topographic changes, such
as the near-shore region, the Burma Plate, the Sunda Plate, and around the 90◦E ridge. The
Tzz component in the above regions is the most obvious. The differences between the flat
seafloor region and the drastic changes region are the largest. The Txy component is the least
sensitive to the gravity changes caused by topography. The remaining four components
have no significant obvious changes except in the Burma Plate and its surrounding areas.

4.2.2. Precision of Tzz Component of the SWOT_GGT Evaluated by SIO

Currently, there are no available measurements of full tensor of gravity gradients in
the BOB. The curv_32.1 provided by SIO [44] is used to validate the precision of the Tzz
component of the SWOT_GGT. In addition, GrafLab_GGT can help us to validate the all
components of SWOT_GGT. The results of verifying the Tzz component are shown in this
subsection. The results of evaluating all components of the SWOT_GGT are shown in the
next subsection.

Except for validating the accuracy of the Tzz component of SWOT_GGT using the
curv_32.1 model, one can also assess the accuracy of the Tzz component of GrafLab_GGT
using the same model. This approach provides an alternative means to evaluate the
precision of GrafLab_GGT by focusing on the accuracy of Tzz component. By subtracting
the Tzz component of SWOT_GGT from the curv_32.1 model, the differences are obtained.
Similarly, the Tzz component of GrafLab_GGT can be subtracted from the curv_32.1 model
to obtain differences. The results are shown in Figure 6. The statistical results are shown
in Table 5.

It can be noted that the differences between the Tzz component of the SWOT_GGT and
curv_32.1 are concentrated in the Sunda Plate, the junction of the Indian and Burma Plates,
and the junction of the Burma and Sunda Plates. In addition, large differences are also
found in the northern part of the Bay of Bengal Basin, and the eastern and northern parts
of the Sunda Plate. The positions are bordered by land. It is difficult to find differences
between the two figures from Figure 6, which proves that the Tzz components of the
SWOT_GGT and the GrafLab_GGT basically have the same accuracy.
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Figure 6. The results of validation: (a) validation of Tzz component of the SWOT_GGT by curv_32.1,
(b) validation of Tzz component of the GrafLab_GGT by curv_32.1.

Table 5. The statistics of validation of Tzz component (Unit: E).

Component Min Max Mean STD RMS

curv_32.1-SWOT_GGT Tzz −335.51 209.32 0.17 8.67 8.68

curv_32.1-GrafLab_GGT Tzz −335.09 209.25 0.31 8.96 8.96

As shown in Table 5, the RMS of the differences between the Tzz component of
SWOT_GGT and curv_32.1 is 8.68 E. The RMS of the differences between the Tzz component
of GrafLab_GGT and curv_32.1 is 8.96 E.

4.2.3. Precision of Full Components of SWOT_GGT Evaluated by GrafLab-Derived Results

The GrafLab_GGT is presented in Figure 7, and the statistics of each component of the
GrafLab_GGT are presented in Table 6.
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Table 6. The statistics of GrafLab _GGT (Unit: E).

Component Min Max Mean STD RMS

Txx −222.30 189.63 0.09 11.06 11.06
Tyy −248.27 216.47 −0.16 15.89 15.89
Tzz −288.24 400.85 −0.25 22.08 22.08
Txy −128.24 147.97 0.13 7.46 7.46
Txz −214.46 220.44 −0.05 13.35 13.35
Tyz −224.30 267.16 −0.28 17.56 17.56

Juxtaposing Figure 7 with Table 6, it can be found that the RMS of Tzz is the largest,
about 22 E. The RMS of Txx, Txz, Tyy, and Tyz are similar. The RMS of Txy is the smallest,
about 7 E. Using GrafLab_GGT to validate SWOT_GGT, the results are presented in Table 7.

Table 7. The statistics of validation of SWOT_GGT by GrafLab _GGT (Unit: E).

Component Min Max Mean STD RMS

Txx −39.44 53.96 0.01 3.17 3.17
Tyy −53.42 62.55 0.01 4.21 4.21
Tzz −78.55 116.48 0.12 5.99 5.99
Txy −34.00 28.53 0.01 2.01 2.01
Txz −85.94 85.92 0.01 5.61 5.61
Tyz −53.55 53.83 0.03 5.78 5.78

In Table 7, it can be seen that the Tzz of the SWOT_GGT has the lowest precision, the
RMS of the differences is 5.99 E. Txy has the highest precision, the RMS of the differences
is 2.01 E.

4.3. Impact of Instrument Errors on the Calculation of Full Tensor of Gravity Gradients

The schemes of experiments are shown in Table 8. To analyze the impact of instrument
errors on the recovery of SWOT_GGT. Set the results of Scheme 1 as the true values, and
the results of other schemes are compared with Scheme 1.

Table 8. Schemes of the effects of errors on SWOT_GGT computation.

Scheme Content

1 SSH + no error
2 SSH + KaRIn error
3 SSH + roll error
4 SSH + phase error
5 SSH + baseline dilation error
6 SSH + timing error
7 SSH + wet troposphere error
8 SSH + all error

Calculating SWOT_GGT according to various schemes presented in Table 8; indeed,
the results of Scheme 8 are presented in Section 4. The results of Scheme 1 are shown in
Figure 8. The statistical results are presented in Table 9. The comparison results between
Schemes 2~8 and Scheme 1 are presented in Figure 9.

Table 9. The statistics of SWOT _GGT calculated by Scheme 1 (Unit: E).

Component Min Max Mean STD RMS

Txx −188.05 222.59 −0.17 10.38 10.38
Tyy −215.61 245.18 −0.66 15.27 15.29
Tzz −285.11 395.59 −0.98 21.19 21.21
Txy −128.88 147.41 0.15 6.86 6.86
Txz −184.25 154.22 −0.27 11.26 11.26
Tyz −209.61 199.88 −0.91 15.08 15.11
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In Figure 9, as the mean of the verification residuals for each component is around
10−4 E, so the mean is not plotted. Only the STD is shown. For ease of comparison, the
maximum value of the Y-axis in each subplot is set to 5 E. As shown in Figure 9, the
poorest and best performances are observed in Tzz and Txy components, respectively. This
indicates that the various errors have the greatest impact on the Tzz component and the
least impact on the Txy component of the SWOT_GGT. Comparing the results of different
schemes, it is evident that the inclusion of KaRIn error and phase error significantly affect
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the computation of the SWOT_GGT. These two errors dominate the statistics of the total
error impact in Scheme 8.

The remaining four errors have relatively minor effects on the computation of the
SWOT_GGT. Taking the results of Scheme 2 and Scheme 7 as examples, the inclusion of
the KaRIn error results in an impact of 4.32 E on the Tzz component, while the inclusion
of wet troposphere error only causes a minor impact of 0.66 E on the same component
(Figure 9c). Similarly, the inclusion of the KaRIn error leads to an impact of 1.39 E on the
Txy component, whereas the inclusion of the wet troposphere error results in a smaller
impact of 0.19 E on the same component (Figure 9d).

In Figure 9, it can be seen that the results of Scheme 8 are not a simple mathematical
accumulation of the results from Scheme 2 to Scheme 7. The phenomenon is evident
because the STD of residuals is not zero in other schemes. This may be attributed to the
presence of correlations among the various errors introduced in these experiments.

5. Discussion

Yu et al. [20] and Ma et al. [23] have shown that the GA calculated using multi-cycle
SSH data is better than that calculated using only one cycle. To analyze the effect of multi-
cycle on the calculation of SWOT_GGT, 19 cycles of SSH data are prepared. The errors of
the ascending and descending orbits within 19 cycles are plotted separately in Figure 10.
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Figure 10. The distribution of 19-cycle errors in ascending and descending passes. (a) Errors in
descending passes. (b) errors in ascending passes.

From Figure 10, we can see that 19-cycle errors are significantly smaller compared
with Figure 3. This indicates that it is necessary to process SSH data for ascending and
descending orbits separately mentioned in Section 2.

We calculate the STD of the differences between errors simulated for 19 cycles and
1 cycle. The results are plotted in Figure 11, where the “Ratio” indicates the ratio of the
error weakened by 19 cycles of data relative to 1 cycle of data.

The comparison shows that multi-cycle data can effectively eliminate errors. The
suppression of the KaRIn, roll, phase, baseline dilation, and timing errors is obvious. The
reduction in timing error is greater than 69%. In contrast, the wet troposphere error has not
changed significantly, and multiple cycles only reduce the error by 2.92%, which may be
related to its characteristics of uneven temporal and spatial distribution [58].

To compare the effects of multi-cycle data on the recovery of SWOT_GGT, another
experiment is conducted. The result obtained from one -cycle data is abbreviated as Plan A.
The result obtained from 19-cycle data is referred to as Plan B. The results of both plans are
calculated based on data that distinguish between ascending and descending orbits. The
validation results of the two plans are presented in Figure 12. The “Ratio” indicates the
ratio of precision improved by Plan B relative to Plan A.
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By comparing the statistics, it is found that the precision of the results recovered from
19 cycles of data is better than that from 1 cycle of data. The SWOT_GGT obtained from the
two plans has the same feature, i.e., the Tzz component has the lowest precision. This may
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be due to the fact that the Tzz component is derived by Txx and Tyy; according to the error
propagation law shown in Appendix C, Tzz would have a larger error than Txx and Tyy.

As shown in Figure 12, compared with the SWOT_GGT recovered by Plan A, the
precision of the Tyy, Tzz, Txz, and Txy components of Plan B is improved significantly,
by more than 11%. Experiments show that multi-cycle data can significantly reduce the
influence of instrument errors on the full tensor of gravity gradients calculated by the
discretization method.

The current experiments are based on simulated data, where we simulated instrument
errors and investigated the impact of multi-cycle data on suppressing these errors when
inverting gravity gradients tensor. From Figures 11 and 12, it is evident that multi-cycle data
effectively mitigate instrument errors. However, numerical simulations cannot substitute
real measured data. SWOT is influenced by various factors during actual operation, such
as ocean tides, which were not considered in our experiments. Therefore, with the release
of “Pre-Validated” data in the future, our experiments will be based on real measurements
to obtain gravity gradients and assess their accuracy.

6. Conclusions

To evaluate the possible precision of gravity gradient recovery from SWOT data, this
study used the discretization method to compute SWOT_GGT. The Tzz component of the
SWOT_GGT is validated by curv_32.1. The RMS of the differences is about 8.68 E. The full
components of the SWOT_GGT are validated by GrafLab_GGT. The results show that the
precision of the Tzz component is the lowest. The RMS of differences is 5.99 E. The precision
of the Txy component is the highest. The RMS of differences is 2.01 E. The results reveal
that the KaRIn error and phase error have a significant impact on the SWOT_GGT. The
Tzz component of the SWOT_GGT is the most sensitive to the effects of errors, while the
Txy component is the least sensitive one. A comparison between SWOT_GGT calculated
using 1 cycle of data and 19 cycles of data indicates that the SWOT_GGT recovered from
multi-cycle data is less affected by instrument errors. These results demonstrate that SWOT
can help us obtain full tensor of gravity gradients with precision better than 10 E at least.

The SWOT mission provides a possible means to enhance the accuracy of ocean
gravity field products via two-dimensional SSH observations. However, according to the
results of this study, instrument errors can largely influence the precision of the recovered
gravity gradients. Therefore, with the release of SWOT’s “Pre-Validated” science data in
the near future, it is key to investigate ways, such as the crossover calibration method,
discretization method, filtering method, etc., for processing the various errors caused by
the interferometric radar altimeter.
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Appendix A

The geoid gradient, e, and the residual DOV, ε, are computed based on the geoid
heights between adjacent points and the spherical distance, ψ, between the two points:

e = −ε =
∂N
∂ψ

(A1)

The residual geoid gradient and residual DOV are calculated by subtracting the geoid
gradients of the along-track and cross-track from the reference field.

The residual DOV is calculated by the LSC method [59,60]. The LSC combines the
calculation and the grid transformation of DOV into one step:(

ξres
ηres

)
=

(
Cξe
Cηe

)
(Cee + Cn)

−1eres (A2)

where ξres and ηres are the north component and the east component of residual gridded
DOV, respectively; Cξe is the covariance matrix for the north component of gridded DOV
and the residual geoid gradient, Cηe is the covariance matrix for the prime vertical com-
ponent of grid DOV and the residual geoid gradient; Cee is the variance matrix for the
gradient, Cn works as a filter and is a diagonal matrix containing the noise variances of
geoid gradient, and eres is the residual geoid gradient calculated by Equation (A1).

Using the IVM formula, select the appropriate kernel function, and solve for the GA
based on the grid DOV [60,61]. The one-dimensional (1-D) FFT method and IVM formula
are used to derive the GA from the DOV [60]. Since the difference in latitude is taken into
account in the calculation of spherical latitude by the 1-D FFT method, the algorithm is
more rigorous in theory [6]:

∆g(p) =
γ0

4π

x

σ

H′(ψ)
(
ξq cos αqp + ηq sin αqp

)
dσq (A3)

H′(ψ) is the derivative of the kernel function:

H(ψ) =
1

sin Ψ
2
+ log

(
sin3 Ψ

2

1 + sin Ψ
2

)
(A4)

where ψ is the spherical distance between point q and point p.
The ψ cannot be zero in the derivative of the kernel function, so it is necessary to

consider the influence of the inner zone effect on GA derivation [36,60]:

∆g =
s0γ0

2
(
ξx + ηy

)
(A5)

where ξx and ηy are the change rates of the meridian and prime vertical component of the
DOV, respectively; s0 is the size of the inner zone. ∆x and ∆y are the distance of the grid,
respectively. Finally, DOV and GA are restored using the XGM2019e.

Appendix B

Employing the LSC method, we restored DOV at a resolution of 1′ × 1′ (as shown in
Figure A1). Subsequently, utilizing the IVM formula, we computed GA at a resolution of
1′ × 1′ (as shown in Figure A1).

The statistics of SWOT_DOV and SWOT_GA are presented in Table A1. The predicted
precision of SWOT_DOV is validated by east_32.1 and north_32.1, and the SWOT_GA is
validated by grav_32.1 and the NCEI shipborne gravity anomalies, respectively. The results
are presented in Table A2.
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Table A1. The statistics of SWOT_DOV and SWOT_GA.

Component Min Max Mean STD

SWOT_DOV_N (µrad) −176.96 186.44 −3.24 22.92
SWOT_DOV_E (µrad) −243.95 187.27 −28.74 30.41

SWOT_GA (mGal) −198.02 246.95 −16.88 35.32

Table A2. Validation of SWOT_DOV and SWOT_GA.

Component Min Max Mean STD

SWOT_DOV_N by north_32.1 (µrad) −44.17 36.29 0.01 3.05
SWOT_DOV_Eby east_32.1 (µrad) −49.28 52.67 0.08 4.22

By grav_32.1 (mGal) −93.41 55.91 0.12 5.05
By NCEI (mGal) −29.95 30.08 0.12 5.09

The accuracy of SWOT_DOV derived from simulated wide-swath data is a little
higher in the north–south direction than in the east–west direction. The STD of differ-
ences is 5.05 mGal compared to the grav_32.1 of SIO. The STD of differences between the
SWOT_GA and NCEI shipborne gravity, particularly at the shipborne measurement points,
is 5.09 mGal.

Appendix C

According to the error propagation law, the relationship between the full tensor of
gravity gradients and DOV and GA can be determined:

δTxx
2 = ∂Txx

∂ζ∂g = γ2

R2
δζ2

∆ϕ2 +
δg2

R2

δTyy
2 = ∂Tyy

∂η∂ζ∂g = γ2

R2 cos2 ϕ

δη2

∆λ2 +
γ2 tan2 ϕ

R2 δζ2 + δg2

R2

δTyy
2 = δTxx

2 + δTyy
2

δTxy
2 = ∂Txy

∂η∂g = γ2

R2 cos2 ϕ
δζ2

∆λ2 +
sin2 ϕ

R4 cos4 ϕ
δg2

δTxz
2 = ∂Txz

∂ξ∂g == 1
R2

δg2

∆ϕ2 − γ2

R2 δζ2

δTyz
2 = ∂Tyz

∂g = 1
R2 cos2 ϕ

δg2

∆λ2 − 1
R4 cos2 ϕ

δg2

(A6)

where ∆ϕ represents the grid distance in the north–south direction, ∆λ represents the grid
distance in the east–west direction, ϕ represents latitude, and γ represents the normal gravity.
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