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Abstract: Grasslands cover approximately one-fourth of the land in the world and play a crucial role in
the carbon cycle. Therefore, quantifying the gross primary productivity (GPP) of grasslands is crucial
to assess the sustainable development of terrestrial ecosystems. Drought is a widespread and dam-
aging natural disaster worldwide, which introduces uncertainties in estimating GPP. Solar-induced
chlorophyll fluorescence (SIF) is considered as an effective indicator of vegetation photosynthesis
and provides new opportunities for monitoring vegetation growth under drought conditions. In this
study, using downscaled GOME-2 SIF satellite products and focusing on the drought event in the
Xilingol grasslands in 2009, the ability of SIF to evaluate the variations in GPP due to drought was
explored. The results showed that the anomalies of SIF in July–August exhibited spatiotemporal
characteristics similar to drought indicators, indicating the capability of SIF in monitoring drought.
Moreover, the determination coefficient (R2) between SIF and GPP reached 0.95, indicating that SIF is
a good indicator for estimating GPP. Particularly under drought conditions, the relationship between
SIF and GPP (R2 = 0.90) was significantly higher than NDVI and GPP (R2 = 0.62), demonstrating
the superior capability of SIF in tracking changes in grassland photosynthesis caused by drought
compared to NDVI. Drought reduces the ability of NDVI to monitor GPP but does not affect that
of SIF to monitor GPP. Our study provides a new approach for accurately estimating changes in
GPP under drought conditions and is of significant importance for assessing the carbon dynamics
of ecosystems.

Keywords: solar-induced chlorophyll fluorescence; vegetation indices; gross primary production;
drought; grasslands

1. Introduction

Grassland covers approximately one-fourth of the world’s total land area, making it
one of the most widely distributed ecosystems on earth [1]. The grassland ecosystem serves
as a habitat for numerous species, and preserving grasslands contributes to maintaining
biodiversity and ecological balance [2]. Grassland plants absorb a significant amount
of carbon dioxide through photosynthesis and store it in their bodies and the soil [3].
Grassland ecosystems are important carbon sinks, accounting for approximately 20% of
global carbon storage [4]. Grasslands help reduce greenhouse gas levels in the atmosphere
and mitigate global climate change [5]. Protecting and restoring grasslands contributes
to increased carbon storage and reduced carbon emissions. In conclusion, grassland
ecosystems play a crucial role in regulating carbon cycling, preserving biodiversity, and
promoting socioeconomic development.

Grassland is one of the most fragile ecosystems, highly susceptible to climate change
and human disturbances [6]. Climate change, including temperature and precipitation
variations, significantly affects grass growth and the development of livestock farming [7].
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In the last few decades, changes in the water cycle caused by global warming have led to
increasing water scarcity pressures worldwide [8]. Water scarcity results in more drought,
and more severe droughts may occur in the future. As we all know, drought is a relatively
common disaster that causes large economic losses every year. Drought has a significant
impact on grassland ecosystems, causing changes in vegetation structure and function [9].
When soil moisture deficit leads to drought, it affects plant growth in the water and
vapor transport processes between the soil, plants, and atmosphere [10,11]. Soil moisture
deficit reduces the water potential difference between the soil and plant roots, leading
to a decrease in plant water uptake [12]. At the plant level, drought reduces plant water
content, inhibits plant translocation from the root zone to the atmosphere, induces stomatal
closure, alters assimilation rates, and reduces photosynthesis [10,13]. Therefore, monitoring
meteorological, hydrological, and agricultural drought and their impacts on grassland
ecosystems is essential. The relationship between drought and grassland ecosystems has
gained strong interest among scientists and managers and has gradually become a research
hotspot. Among them, grassland gross primary production (GPP) has received extensive
attention in recent decades due to its importance in understanding ecosystem carbon
cycling and the simplicity of satellite-based GPP models.

GPP of terrestrial ecosystems is the carbon fixed by plants and is important for the
global carbon cycle [14,15]. The traditional method for monitoring ecosystem GPP is the
eddy covariance (EC) flux technique [16]. However, the small number of EC flux sites
makes it challenging to monitor GPP at the regional scale. Remote sensing (RS) techniques
are uniquely positioned to monitor GPP at a wide spatial scale [17]. Many studies have
shown that vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI)
can accurately estimate terrestrial ecosystem GPP [18–20]. However, during drought events,
vegetation photosynthesis or productivity typically declines [21]. VIs often represent the
greenness of vegetation, which cannot promptly capture the changes in photosynthesis
caused by drought, resulting in a lag effect and affecting the accuracy of GPP estimation
using VIs [22]. Therefore, accurately monitoring changes in vegetation GPP under drought
conditions remains a challenge.

Solar-induced fluorescence (SIF) is a new indicator for monitoring vegetation growth
and environmental changes [23]. Unlike traditional reflectance-based VIs, SIF is the optical
signal emitted by chlorophyll-a after absorbing sunlight, lasting for a few nanoseconds [24].
Light absorbed by vegetation has three pathways of consumption: SIF, photochemical
reactions, and thermal dissipation [25]. The direct connection between SIF and photosyn-
thesis has been validated at different spatial scales. SIF products from various sensors
(GOME-2, GOSAT, and OCO-2) have shown strong correlations with GPP [26,27]. Some
researchers have found that GOSAT SIF and GPP were strongly correlated [26,28]. Other
studies utilizing SIF have discovered a consistently significant relationship of GPP with SIF
in terrestrial ecosystems across different temporal scales [29,30]. SIF has also demonstrated
good performance in estimating GPP under drought conditions. Chen et al. (2019) investi-
gated the potential of SIF in monitoring summer maize GPP under drought conditions and
found that SIF was able to track spatiotemporal variations in GPP due to drought more
effectively than NDVI [31]. Shen et al. (2022) explored the capability of SIF in estimating
the impact of drought on winter wheat GPP, demonstrating that SIF can accurately quantify
GPP losses caused by drought [32]. However, research on the potential of SIF monitoring
for grassland ecosystem GPP changes induced by drought is still relatively scarce.

Numerous studies have demonstrated a strong correlation of SIF retrieved from vari-
ous satellites with EC flux towers or GPP satellite products [33,34]. However, uncertainties
in SIF and GPP may blur the relationship of SIF with GPP. Variations in SIF caused by
different sensors, retrieval algorithms, and other factors can change the SIF–GPP relation-
ship [35]. Existing SIF products suffer from low spatial resolutions and limited coverage,
which hinder the true SIF–GPP relationship [36]. In fact, due to the large footprint and
spatial discontinuity of measurements from most satellite platforms, the spatial resolution
of current satellite SIF datasets is relatively coarse, typically ranging from 0.5◦ to 2◦ [37].
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Although the spatial resolution has improved, the data have only become available since
2017, limiting the analysis of drought impacts on grassland ecosystem productivity [38].
Few SIF products are applicable for drought monitoring and productivity assessment
in grasslands. In recent years, several spatial downscaling SIF products have emerged,
offering more fine-grained SIF data with longer time series, providing new data for accu-
rately estimating GPP. There is currently no research available on spatial downscaling SIF
products to monitor the impact of drought on grassland GPP.

Therefore, this study considers the drought in the Xilingol grassland in 2009 as an ex-
ample and explores the potential of downscaled satellite GOME-2 SIF (0.05◦) to investigate
the spatiotemporal variations in SIF in monitoring GPP due to drought. Specifically, our
objectives are as follows: (1) to analyze the response mechanisms of SIF to drought stress;
(2) to investigate the potential of SIF in estimating GPP; (3) to investigate the ability of SIF
to estimate GPP changes under drought conditions.

2. Materials and Methods
2.1. Study Area

The Xilingol grassland is located in the Xilingol League of Inner Mongolia Autonomous
Region, China, spanning from approximately 41◦34′ to 46◦47′N and 111◦09′ to 119◦54′E
(Figure 1a), which covers over 200,000 km2 [39]. The annual precipitation ranges from 200
to 400 mm, gradually decreasing from southeast to northwest. Overall, the region has low
precipitation and frequent occurrences of drought, making drought the main hazard in the
area. The topography consists mainly of high plateaus, with elevations ranging from 800 to
1800 m. The terrain slopes from south to north, with low mountains and hills in the east
and south, which are extensions of the Greater Khingan Mountains to the west and Yin
Mountains to the east (Figure 1c). The western and northern parts of the region are flat,
forming high-altitude grasslands. The growing season for perennial plants in the Xilingol
grassland extends from early April to the end of September, while annual plants typically
germinate in early July with increased precipitation [40].
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Figure 1. Overview of the study area: (a) location and vegetation cover levels of the Xilingol grassland;
(b) land-use types in Inner Mongolia at a 1 km resolution in 2020; (c) 10 m resolution digital elevation
model (DEM) of the Xilingol grassland in 2020.
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2.2. Data Availability
2.2.1. Downscaled GOME-2 SIF

Duveiller et al. (2020) employed a semi-empirical approach based on GOME-2 to
generate a new SIF product whose resolution is 0.05◦ and 8 days [41]. The explanatory
variables for SIF were divided into three categories: vegetation parameters (including
NDVI and EVI), moisture parameters (evapotranspiration and NDWI), and temperature
parameters. Two sets of datasets (JJ and PK) were produced using the SIF inversions [42,43].
Both sets of data were calibrated using daily correction factors to account for diurnal
variations in GOME-2 instantaneous SIF. This study utilized the PK dataset.

To eliminate the effect of APAR on SIF, the SIFyield was further calculated on the
basis of fPAR and PAR data. The GLASS PAR product was obtained from the global
shortwave radiation product produced by the GLASS albedo product and the conversion
factor production. Eight days of the MOD15A2H product with a 500 m resolution were
used for fPAR. SIFyield was calculated as follows [44]:

SIFyield = SIF/(fPAR × PAR), (1)

where PAR is photosynthetically active radiation and fPAR is a fraction of PAR.

2.2.2. Fluxcom GPP

The FLUXCOM GPP product is derived by training three machine learning algorithms
using meteorological observations and satellite data as inputs, with daily carbon flux
measurements from ground flux tower sites [45]. This product transforms the flux tower
observations into a globally explicit distribution. It has been widely applied in various
studies [46,47]. In this research, the FLUXCOM GPP data for the period 2007–2015 with
a resolution of 0.05◦ and an interval of months were utilized. The data download link is
http://fluxcom.org/EF-Download/ (accessed on 18 May 2022).

2.2.3. Meteorological Data, Soil Moisture, and SPEI

The MOD11C3 dataset provides monthly land surface temperature (LST) data at
a resolution of 0.05◦ (http://ladsweb.nascom.nasa.gov/, accessed on 25 January 2021).
Rainfall is sourced from the CHIRPS satellite precipitation (PPT) product. CHIRPS is a
precipitation climate database limited to land areas, which combines satellite precipitation
with ground-based meteorological station data to provide daily and monthly precipitation
products with a resolution of 0.05◦ (https://data.chc.ucsb.edu/products/CHIRPS-2.0/,
accessed on 5 July 2020). Soil moisture (SM) data are obtained from the GLDAS product
whose resolution is 0.25◦ and provided on a daily basis (https://disc.sci.gsfc.nasa.gov,
accessed on 16 October 2021). This study utilizes mean synthesis to accumulate daily
meteorological and hydrological data into monthly scales.

SPEI is a multiscalar drought index used to explain the influence of temperature on
drought and has been utilized in many studies [48,49]. The SPEI data were obtained from
the SPEI Global Drought Monitor (http://spei.csic.es/, accessed on 22 May 2022) with a
spatial and temporal resolution of 0.05◦ and monthly. SPEI has various time scales (1, 3, 6,
12 months, etc.), and different scales of SPEI can realize the monitoring and assessment of
different types of droughts. In this research, the SPEI dataset at a 3-month scale was used
to identify typical drought events. For simplicity, SPEI, SM, PPT, and LST are collectively
referred to as drought indicators.

To directly analyze the relationship of SIF, SIFyield, and NDVI with GPP under drought
conditions, we divided the period from 2007 to 2015 into drought and no-drought months
based on the magnitude of SPEI. As shown in Table 1, SPEI > −0.5 indicates no-drought
conditions, while SPEI ≤ −0.5 defines drought conditions [50].

http://fluxcom.org/EF-Download/
http://ladsweb.nascom.nasa.gov/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://disc.sci.gsfc.nasa.gov
http://spei.csic.es/
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Table 1. Classification of SPEI.

Value SPEI ≤ −0.5 SPEI > −0.5

Classification Drought No_drought

2.2.4. MODIS NDVI

NDVI is a commonly used vegetation index for assessing vegetation growth status.
It is significantly linearly correlated with vegetation density and serves as an important
parameter for studying vegetation coverage. NDVI is also the most widely applied quan-
titative monitoring indicator for vegetation. MOD13C2 products were used for NDVI in
the study with a spatial and temporal resolution of 0.05◦ and 8 days (Table 2). The data
product can be downloaded at https://lpdaac.usgs.gov/products/mod13c2v006 (accessed
on 7 April 2021). An overview of the data used in this paper can be seen in (Table 2).

Table 2. Data source.

Type Data Name Spatial
Resolution

Temporal
Resolution Time Acquired Source

Downscaled
SIF GOME-2 0.05◦ 8 Days 2007–2015

https://doi.org/10.2905/21935FFC-B797-4
BEE-94DA-8FEC85B3F9E1 (accessed on

7 April 2021)

GPP Fluxcom 0.05◦ Monthly 2007–2015 http://fluxcom.org/EF-Download/
(accessed on 7 April 2021)

LST MOD11C3 0.05◦ Monthly 2007–2015 http://ladsweb.nascom.nasa.gov/ (accessed
on 7 April 2021)

PPT CHIRPS 0.05◦ Monthly 2007–2015 https://data.chc.ucsb.edu/products/
CHIRPS-2.0/ (accessed on 7 April 2021)

SPEI SPEI-3 0.05◦ Monthly 2007–2015 http://spei.csic.es/ (accessed on
7 April 2021)

SM GLDAS 0.25◦ Daily 2007–2015 https://disc.sci.gsfc.nasa.gov (accessed on
7 April 2021)

NDVI MOD13C2 0.05◦ 16 Days 2007–2015
https:

//lpdaac.usgs.gov/products/mod13c2v006
(accessed on 7 April 2021)

PAR CERES 10 km Daily 2007–2015 https://data.tpdc.ac.cn/ (accessed on
7 April 2021)

fPAR MOD15A2H 500 m 8 Days 2007–2015
https://ladsweb.modaps.eosdis.nasa.gov/

missions-and-measurements/products/
MOD15A2H (accessed on 7 April 2021)

2.3. Calculation of Anomalies

To avoid the influence of seasonal cycles, Equation (2) was used to calculate the
anomalies of SPEI, SM, PPT, LST, GPP, SIF, SIFyield, and NDVI. The anomalies for all
parameters were computed pixel-by-pixel from 2007 to 2015 for all datasets.

Y(i, j, t)′ = Y(i, j, t) − Y(i, j), (2)

where Y(i,j,t)′ represents the anomalies of the SPEI, SM, PPT, LST, GPP, SIF, SIFyield, and
NDVI of pixel (i,j) and time t, denoted as SPEI_anm, SM_anm, PPT_anm, LST_anm,
GPP_anm, SIF_anm, SIFyield_anm, and NDVI_anm, respectively; Y(i,j,t) is the original
value of the pixel (i,j) at time t; Y(i,j) is the average value of the pixel (i,j) over the period
2007–2015.

https://lpdaac.usgs.gov/products/mod13c2v006
https://doi.org/10.2905/21935FFC-B797-4BEE-94DA-8FEC85B3F9E1
https://doi.org/10.2905/21935FFC-B797-4BEE-94DA-8FEC85B3F9E1
http://fluxcom.org/EF-Download/
http://ladsweb.nascom.nasa.gov/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
http://spei.csic.es/
https://disc.sci.gsfc.nasa.gov
https://lpdaac.usgs.gov/products/mod13c2v006
https://lpdaac.usgs.gov/products/mod13c2v006
https://data.tpdc.ac.cn/
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD15A2H
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD15A2H
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD15A2H
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2.4. Analysis

Since the spatial and temporal resolutions of NDVI, SM, PAR, and fPAR are not 0.05◦

and monthly. Firstly, the spatial resolution of these parameters was resampled to 0.05◦

using nearest neighbor interpolation, and the temporal resolution was integrated monthly.
Subsequently, SPEI was utilized to identify drought events in the Xilingol grasslands. The
monthly anomalies of SPEI, SM, PPT, LST, GPP, SIF, SIFyield, and NDVI were calculated
pixel-by-pixel for the 2007–2015 period. The relationships between SIF, SIFyield, NDVI, and
GPP under drought and no_drought conditions were analyzed using Pearson’s correlation
method, and it was assessed whether SIF has the ability to capture the variations in GPP
due to drought.

3. Results
3.1. The Anomalies of Meteorological Indicators during Grassland Growth Period

Firstly, we need to use SPEI, PPT, SM, and LST data to determine drought events
in the Xilingol Great Grassland. The drought conditions in the Xilingol grasslands were
analyzed based on the annual anomalies of SPEI, PPT, SM, and LST from 2007 to 2015 using
the averages of all pixels of the study area. From the results, it can be observed that the
SPEI values in 2007, 2009, 2011, and 2014 were all below the annual average (Figure 2).
The annual anomalies of PPT and SM showed similar trends, being below the annual
average in 2007, 2009, 2010, and 2011. However, the annual anomalies of LST did not
show significant changes compared to the average in 2008, 2009, and 2010. Due to the
small annual anomaly of SM in 2007 (−0.008 m3/m3) and to eliminate the influence of LST
anomalies, we ultimately selected 2009 as the drought year.

Subsequently, we analyzed the monthly anomalies of drought indicators in 2009 by
subtracting the monthly value of indicators from the average of each particular month
through the 2007–2015 period. As shown in Figure 3, the SPEI anomalies were consis-
tently below the monthly average throughout the year, especially in May, June, and July.
Significant decreases in PPT were observed in May, July, and September, resulting in SM
anomalies below the monthly average after May. The LST anomalies were only below the
monthly average in June, September, and November, while in other months, they were
higher than the monthly average.
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Figure 3. Monthly anomalies of (a) SPEI, (b) SM, (c) PPT, and (d) LST in the Xilingol grassland for
January to December in 2009.

Next, we further investigated the spatial distribution of anomalies of drought indi-
cators in 2009 (Figure 4). The SPEI anomalies revealed that the entire Xilingol grassland
experienced drought in May, June, and July, with the northeastern part being particularly
severe. Drought conditions in the northern region eased after August, and by October,
only the southern part of the Xilingol grassland remained affected by drought. In May, the
entire grassland experienced scarce precipitation, especially in the eastern region. In June,
positive PPT anomalies were observed in the western and northern regions, alleviating the
drought conditions in those areas. In July, precipitation further decreased in the northeast-
ern part of the Xilingol grassland, intensifying the drought. The occurrence of precipitation
in August improved the drought situation. From May to October, most of the Xilingol
grassland experienced insufficient soil moisture, particularly in July and August, with
severe soil moisture deficits in the northeastern and southern parts. Drought sometimes
coincided with high temperatures. As shown in Figure 4, in May, the positive anomalies in
LST spatial distribution in most areas of the Xilingol grassland were consistent with the
negative anomalies in the other three drought indicators. In August, the positive anomalies
in LST spatial distribution in the northeast and southeast of the Xilingol grassland were
consistent with the negative anomalies in SPEI and SM.
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subtracting the pixel’s monthly value from the pixel’s average monthly value for 2007–2015.

3.2. Temporal and Spatial Characteristics of GPP, SIF, and VIs

We analyzed the spatial patterns of GPP, SIF, SIFyield, and NDVI anomalies during
the drought period in 2009 (Figure 5). From Figure 5, it can be observed that GPP and SIF
anomalies exhibit similar spatial patterns, indicating that SIF captures the variations in
GPP. Negative anomalies in GPP and SIF are mainly distributed in the central and eastern
parts of the Xilingol grassland in July and August, while most areas of the grassland show
positive anomalies in September. Negative anomalies in SIFyield are mainly observed in the
northeast and western regions of the grassland from April to August. Negative anomalies
in NDVI are mainly observed in the northeast, central, and southern parts of the Xilingol
grassland in June, July, and August, with a larger extent and severity compared to GPP
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and SIF. However, the anomalies of SIFyield show inconsistency towards SIF and GPP at
most of the times and regions.
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To explain the inconsistency of SIF and SIFyield, the monthly anomalies of SIF, SIFyield,
fPAR, PAR, and APAR were calculated by subtracting the monthly value of indicators
from the average of each particular month through the 2007–2015 period. According to
Equation (1), we know that SIF and SIFyield are directly proportional to each other but are
affected by APAR. When SIF increases, SIFyield and SIF have the same trend only when
APAR remains the same or increases less than the increase in SIF. As can be seen from
Figure 6, SIF decreased by 126.04% in May compared to April, while APAR increased by
1427.75%, which leads to different trends in SIF and SIFyield. Also, in June, July, and August,
the trend of APAR is either different from SIF or higher than that of SIF. This phenomenon
causes the inconsistency between SIF and SIFyield.
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Overall, GPP, SIF, and NDVI exhibit similar spatiotemporal patterns during the
drought (Figure 5), with GPP and SIF showing closer spatiotemporal variations. These
results suggest that satellite-based SIF can effectively monitor the dynamic progression of
drought and accurately track the spatiotemporal changes in GPP under drought conditions.

To further evaluate whether SIF can serve as an effective indicator for monitoring
GPP, we conducted a statistical analysis by comparing the downscaled GOME-2 SIF values
with the FLUXCOM GPP product. From Figure 7, it can be observed that SIF and GPP
showed a significant correlation with R2 of 0.95 (p < 0.001). However, the correlations
between NDVI, SIFyield, and GPP were significantly lower, with R2 values of 0.78 and 0.66,
respectively. The decrease in the correlation between NDVI and GPP might be due to
NDVI saturation when grass growth rate and coverage are high. The relationship between
SIFyield and GPP was reduced because of the lack of information on vegetation canopy
structure as SIFyield removed the information on fPAR, which represents the vegetation
canopy structure information.

Furthermore, the relationship of the anomalies of SIF, SIFyield, and NDVI with GPP ex-
hibited a similar pattern to the relationship between the measured values of these variables.
From Figure 7, it can be seen that there was a substantial linear association between the
anomalies of SIF and GPP, with an R2 value of 0.78 (p < 0.001), while the R2 value between
the anomalies of NDVI and GPP is only 0.64 (p < 0.001), and there was no significant
correlation between the anomalies of SIFyield and GPP. These results further confirmed that
SIF can serve as an effective indicator of plant photosynthesis, accurately capturing the spa-
tiotemporal changes in GPP, which was consistent with previous studies [51,52]. However,
whether SIF can quantify the spatiotemporal variations in GPP induced by drought still
requires further evaluation.
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Figure 7. (a–c) The relationships between the measured values of monthly solar-induced fluorescence
(SIF), SIFyield, NDVI, and the measured values of gross primary productivity (GPP) in the Xilingol
grassland. (d–f) The relationships between the monthly anomalies of SIF, SIFyield, and NDVI and
the monthly anomalies of GPP. Each point represents a monthly average value for the entire study
area. There are 12 (months/year) ×9 (years) = 108 points from 2007 to 2015.

3.3. The Impact of Drought on GPP, SIF, and VIs

To assess the impact of drought indicators (SPEI, SM, PPT, and LST) on VIs (GPP,
SIF, SIFyield, and NDVI), we employed Pearson to examine the relationships of VIs with
drought indicators. As shown in Table 3, GPP, SIF, SIFyield, and NDVI exhibited the
highest correlations with PPT, with correlation coefficients (r) of 0.91, 0.91, 0.82, and
0.85, respectively. There were significant correlations between GPP, SIF, SIFyield, NDVI,
and PPT. Except for SIFyield, GPP, SIF, and NDVI also demonstrated strong correlations
with SM, with r of 0.46, 0.41, and 0.53, respectively. However, apart from GPP, there
was no significant correlation between SIF, SIFyield, NDVI, and SPEI. These findings are
generally consistent with our expectations. The significant correlations between VIs (GPP,
SIF, SIFyield, and NDVI) and PPT, LST, and SM can be attributed to the fact that during
drought periods, reduced precipitation leads to soil moisture deficit. SM directly supports
water consumption in the plant growth process, and drought events are often accompanied
by increased temperatures. On the other hand, the relatively low correlation between VIs
(GPP, SIF, SIFyield, and NDVI) and SPEI is because meteorological drought indices do not
have a direct relationship with vegetation physiology.



Remote Sens. 2024, 16, 555 13 of 22

Table 3. Correlation coefficients (r) between drought indices (SPEI, SM, PPT, and LST) and vegetation
indices (GPP, SIF, SIFyield, and NDVI).

Vegetation Indicators
Drought Indicators

SPEI SM PPT LST

GPP 0.42 ** 0.46 ** 0.91 *** 0.73 ***
SIF 0.36 0.41 ** 0.91 *** 0.71 ***

SIFyield 0.36 0.28 0.82 *** 0.66 ***
NDVI 0.32 0.53 ** 0.85 *** 0.64 ***

*** Significance at the 0.001; ** Significance at the 0.01. Linear relationships between drought indices (SPEI, SM,
PPT, and LST) and vegetation indices (GPP, SIF, SIFyield, and NDVI) with the monthly average value for the entire
study area. Each point represents a monthly average value for the entire study area. There are 12 (months/year)
×9 (years) = 108 points from 2007 to 2015.

3.4. Performances of SIF in Grassland GPP Monitoring under Drought Conditions

To visually demonstrate the ability of SIF to monitor GPP under drought conditions,
we compared and analyzed the characteristics of GPP, SIF, SIFyield, and NDVI during the
2009 drought. Figure 8 shows the seasonal variations in GPP, SIF, SIFyield, and NDVI in
2009 compared to the multi-year averages. The multi-year averages and the values for
2009 exhibited similar changing patterns, with an initial increase followed by a decrease.
In July 2009, compared to the multi-year averages, GPP, SIF, and NDVI declined 26.18%,
12.43%, and 16.26%, respectively. In August, GPP, SIF, and NDVI declined 30.33%, 19.89%,
and 19.65% compared to the multi-year averages, respectively (Figure 8). However, the
difference between SIFyield in 2009 and the multi-year average was relatively small.
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Figure 8. Seasonal variations of (a) GPP, (b) SIF, (c) SIF yield, and (d) NDVI in the Xilingol grassland
from April to October. The red point represents the average monthly values for all pixels of the study
area in 2009, while the black point indicates the monthly average for all pixels of the study area from
2007 to 2015. The red curve represents the variations in each parameter from April to October 2009,
while the black curve indicates the monthly average from 2007 to 2015. The gray shading represents
the standard deviation of the monthly average values from 2007 to 2015.

During a drought event, reduced rainfall leads to soil moisture deficit, ultimately
affecting vegetation growth. In 2009, GPP reached its peak in June and then started to
decline, while SIF, SIFyield, and NDVI continued to increase until July before decreasing.
This indicated a lag in the response of SIF and NDVI to vegetation growth changes. All
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indices declined not only during 2009 but in the multi-year data after July. However, after
July, both GPP and SIF rapidly decreased due to worsening drought conditions, while
NDVI exhibited a slower decline. As can be seen from Figure 8, GPP decreased by 19.57%
and 24.33% in August and September 2009, respectively. Similarly, SIF decreased by 27.87%
and 54.03% in August and September, respectively. However, NDVI decreased by only
4.05% and 7.92% in August and September, respectively. SIF, although it did not capture the
downward trend of GPP in July, decreased by a similar amount in August and September.
This also indirectly proves that SIF is better than NDVI in monitoring the changes of GPP.
In order to reveal the relationship between SIF, SIFyield, NDVI, and GPP more intuitively, it
is necessary to carry out a correlation analysis of SIF, SIFyield, NDVI, and GPP.

Subsequently, we analyzed the correlations between SIF, SIFyield, NDVI, and GPP
separately for all drought and non-drought months. Figure 9 revealed that drought reduced
the ability of NDVI to monitor GPP, with R2 values of 0.86 (no_drought) and 0.62 (drought),
but drought did not affect that of SIF to monitor GPP. Under drought, the R2 between SIF
and GPP reached 0.90, representing a 47.54% increase compared to SIFyield and a 45.16%
increase compared to NDVI. This further confirmed the strong capability of SIF to track
and monitor GPP variations under drought conditions.
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Figure 9. Relationships of (a) SIF, (b) SIF yield, and (c) NDVI with GPP under drought and no-drought
scenarios in the Xilingol grassland. Each point represents a monthly average value for the entire
study area. There are 12 (months/year) × 9 (years) = 108 points from 2007 to 2015. The red dots
represent the monthly values under drought conditions, while the green dots represent the monthly
values under non-drought conditions.
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4. Discussion

With the influence of global climate change, droughts are gradually increasing. There-
fore, real-time and accurate monitoring of vegetation drought using satellite-based SIF
at a regional scale is of great significance. Firstly, large-scale monitoring of vegetation
drought using SIF can provide help for forestry, grassland, and agricultural management.
Early detection of drought using SIF can help stakeholders such as herders and farmers in
implementing measures to mitigate the impacts appropriately. Moreover, SIF can quantify
GPP losses caused by drought and assess the effects of drought on forestry, grassland, and
agriculture, which is crucial for food security.

4.1. The Ability of SIF to Monitor Drought

Our research has demonstrated that SIF can capture the spatiotemporal variations of
drought (Figure 5). It was discovered that SIF is susceptible to variations in water avail-
ability and strongly correlated with precipitation (Table 3). SIF can track the physiological
and structural changes in vegetation caused by drought [53–55]. During mild or short-term
drought events, the chlorophyll content of vegetation does not significantly decrease, and
the vegetation canopy does not exhibit noticeable changes. VIs based on greenness remain
relatively stable, but fluorescence emissions may decrease immediately. This is because
changes in VIs based on greenness lag behind and cannot promptly detect changes in
vegetation physiological status. They can only capture long-term droughts, which lead
to wilting of plant leaves. Chen et al. (2019) found that VIs lag behind changes in mois-
ture conditions, while the relationship of precipitation with VIs is more significant [31].
Liu et al. (2018) found that the seasonal mean of SIF significantly decreases under severe
drought and extreme drought conditions, while NDVI only significantly decreases under
extreme drought conditions [56]. Moreover, SIF is more sensitive to the occurrence of
drought, while NDVI is suitable for monitoring drought on longer time scales. Therefore,
NDVI cannot timely monitor early-stage drought, while SIF possesses the ability to monitor
drought in real time, making it an effective indicator for agricultural disaster monitoring.

4.2. Capacity of SIF in Monitoring GPP under Drought Conditions

Because of the lack of direct large-scale GPP observation data, it is challenging to accu-
rately monitor the spatiotemporal variations of GPP caused by drought. FLUXCOM-GPP,
which is based on process-based modeling, can successfully represent the spatiotemporal
variations of GPP [57]. GPP is dependent on the input of historical data. However, these
data are difficult to access resulting in GPP data not being available in a timely manner.
So, there is an urgent need for a simple, direct, and accurate method to estimate GPP.
SIF is considered as a good indicator for estimating GPP due to its close correlation with
vegetation photosynthesis. Therefore, it offers a new opportunity for assessing GPP losses
caused by drought. Our research demonstrates that SIF can accurately track the temporal
and spatial variations in GPP due to drought (Figure 5). Furthermore, the strong linear
relationship of SIF with GPP enables SIF to be an applicable new indicator for evaluating
drought-induced GPP losses (Figure 7a,d).

Previous studies have shown strong correlations of SIF with GPP in different ecosys-
tems. Damm et al. (2015) comprehensively evaluated the relationship of SIF with GPP in
different ecologically distinct systems (cropland and temperate mixed forest) using SIF and
EC flux data [14]. The results revealed a strong correlation between SIF and GPP across
different ecosystems. The high correlation of SIF with GPP makes SIF a promising indicator
for assessing GPP losses due to drought (Figure 9). Traditional drought indices are calcu-
lated using meteorological data or coupled remote sensing data and primarily evaluate the
effect of drought on vegetation by analyzing the statistical relationship between drought
indices and GPP. Compared to traditional drought indices, there are notable benefits for SIF
to assess drought losses because it can be directly used for evaluating GPP losses without
the need for additional auxiliary data.
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Our results also revealed that the relationship of SIF with GPP (R2 = 0.95) is more
significant than the relationship of NDVI with GPP (R2 = 0.78) (Figure 9). The traditional,
green-based vegetation index NDVI has limitations in drought monitoring because it
only interprets potential photosynthesis and lacks a direct connection to the actual pho-
tosynthetic process. Additionally, NDVI is significantly influenced by factors such as soil
background and shadows. In contrast, the positive relationship of SIF with GPP indicates
that SIF is more sensitive to photosynthesis and does not exhibit saturation effects. This
advantage of using SIF to estimate vegetation GPP demonstrates that SIF serves as a reliable
indicator of vegetation productivity, consistent with previous research [46].

4.3. Reasons for the Different Performances of SIF and VIs in GPP Monitoring under
Drought Conditions

Although SIF and NDVI generally show consistent responses to drought, there are
also some differences between them (Figure 5). Compared to NDVI, SIF exhibits better
correlations with temperature and precipitation, which means that SIF is more sensitive
to the variation in temperature and precipitation. In other words, SIF contains more
environmental information than NDVI. This is because environmental factors, such as
temperature and vapor pressure deficit (VPD), are closely related to light use efficiency
(LUE) and ecosystem productivity, resulting in a stronger relationship between GPP and
SIF than that between GPP and NDVI [58]. Studies have shown that both SIF and NDVI
can effectively track changes in SM, and this high sensitivity is due to the higher biomass
turnover rate in drier grassland. Long-term or severe drought not only inhibits grassland
photosynthesis but also affects stomatal conductance, photosynthetic enzyme activity, and
so on. During drought, physiological and canopy structure parameters such as chlorophyll
content, leaf area index, and fPAR show significant changes. SIF exhibits a stronger response
to water stress compared to NDVI, which is consistent with previous research. Yoshida et al.
(2015) found that in agricultural or predominantly grassland areas, SIF is more sensitive to
drought than NDVI [59].

This study elucidates the differences in the potential of SIF and NDVI in grassland
ecosystems to capture GPP loss under drought conditions. By exploring the relationship
of SIF and NDVI with GPP, we found that SIF captures GPP variations better than NDVI
(Figure 7). At a reduced scale, SIF outperforms traditional VIs in monitoring grassland
productivity in response to drought, primarily because SIF also contains information about
VPD or soil moisture effectiveness [60]. Due to its close association with vegetation pho-
tosynthesis, SIF is capable of revealing the impact of environmental stress on vegetation
photosynthesis. As an indicator of vegetation photosynthesis, SIF provides a more intuitive
and accurate reflection of vegetation growth status compared to reflectance-based tradi-
tional VIs, while NDVI primarily indicates vegetation coverage and chlorophyll content,
without a direct relationship to vegetation photosynthesis [61]. Since SIF incorporates
environmental information, it can help monitor variations in photosynthesis under extreme
climatic conditions. We attribute the superior capability of SIF in monitoring ecosystem
productivity compared to NDVI to its stronger sensitivity to environmental factors. Future
research should reconsider the limitations of GPP estimation based solely on VIs.

Furthermore, downscaled SIF with finer spatial resolution than GOME-2 SIF can reveal
detailed variations in photosynthesis. The low resolutions of GOME-2 SIF limit the accuracy
of estimating vegetation productivity under drought conditions. In contrast, downscaled
SIF products have a better spatial resolution (0.05◦), allowing for better differentiation
between grassland and other land use types. Downscaled SIF also has a shorter temporal
resolution (8 days), capturing the changes in vegetation due to drought better than other
SIF data [32]. Our study area is mainly grassland in the Xilingol League, which is relatively
homogeneous and meets the research requirements. Exciting, FLEX (300 m) SIF will play
an even more important role in monitoring vegetation photosynthesis under the backdrop
of climate change.
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4.4. Uncertainties of SIF and GPP Relationship under Stressful Conditions

The relationship between SIF and photosynthesis is complex, especially when vegeta-
tion is under stress, making it challenging to estimate GPP using SIF. Therefore, a better
understanding of the relationships between vegetation photosynthesis, fluorescence, and
non-photochemical quenching (NPQ) under stress conditions is necessary for a more accu-
rate estimation of GPP using SIF. In this study, using the 2009 drought event in the Xilingol
grasslands as an example, the ability of SIF to monitor GPP changes caused by drought
was investigated.

According to the light use efficiency (LUE) model, GPP can be expressed as follows:

GPP = fPAR × PAR× LUEp = APAR× LUEp, (3)

where LUEp is photosynthetic light use efficiency.
Similarly, SIF can be expressed as follows:

SIF = fPAR × PAR × LUEf × fesc = APAR × LUEf × fesc, (4)

where LUEf denotes the light use efficiency of SIF, and fesc is the fraction of SIF photons
escaping the canopy.

Using Equations (3) and (4), the SIF and GPP relationship can be shown as follows:

GPP = LUEp/(LUEf × fesc) × SIF, (5)

The relationship between SIF and GPP depends on factors such as the LUEf (light
use efficiency of SIF), LUEp (the efficiency of light utilization for photosynthesis), and the
fraction of SIF photons escaping the canopy. Major factors influencing LUE and fluorescence
quantum yield include canopy structure, leaf morphology, photosynthetic pathway (C3 or
C4), and environmental conditions, while the escape coefficient is sensitive to changes in
canopy structure and Leaf Area Index (LAI) [51]. These factors collectively influence the SIF
and GPP relationship. However, relationships observed at the leaf, canopy, and short-time
scales may not necessarily apply at larger scales or over longer time scales. Interactions
among these factors during the upscaling process introduce uncertainties in the impact of
these factors on the SIF and GPP relationship.

Considerable research has been conducted on the ability of SIF to estimate GPP under
different stress conditions. Results indicate that under non-stress conditions, SIF and GPP
exhibit a strong linear correlation, while under stress conditions (drought, heat, herbicide
application, etc.) [62–64], the ability of SIF to track GPP changes varies. Our results show a
significant linear correlation between SIF and GPP under non-drought stress conditions
(R2 = 0.95), with a slight decrease in correlation under drought conditions (R2 = 0.90). In
summary, both under non-drought and drought conditions, a strong correlation exists
between SIF and GPP, consistent with many large-scale studies. However, our study differs
from some experimental sites. For instance, the relationship between SIF and GPP at
different stages after herbicide treatment differs. In the early stages following herbicide
treatment, SIF is negatively correlated with GPP, while with time, a significant positive
correlation between SIF and GPP emerges. Under drought conditions, the correlation
between SIF and GPP significantly decreases. Under heat stress, the linear relationship
between SIF and GPP breaks down, exhibiting a non-linear relationship. This is because
drought, heat, or herbicide stress can slowly impact vegetation photosynthesis by inducing
stomatal closure and reducing carbon assimilation rates. Therefore, drought, heat, or
herbicide stress does not necessarily cause a significant or abrupt decrease in SIF. However,
drought, heat, or herbicide stress often leads to a reduction in vegetation photosynthesis,
resulting in an increase in NPQ [65]. This suggests that when environmental factors have
different impacts on vegetation SIF and photosynthesis, the magnitudes of the decrease in
SIF and GPP may differ, and SIF may not effectively capture the influence of environmental
factors on GPP.
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In conclusion, the response of SIF to different stress factors is not uniform, and the
mechanisms are complex due to the coexistence of photochemical quenching (PQ) and NPQ.
Therefore, the relationship between SIF and photosynthesis under different stress conditions
is varied. Hence, when studying the relationship between SIF and photosynthesis, it is
essential to consider whether vegetation is under stress and the type of stress. Generally,
at smaller spatial (leaf or canopy) and shorter-time (instantaneous) scales, the decoupling
phenomenon between SIF and vegetation photosynthesis is more apparent. As spatial and
temporal scales increase, the different responses of SIF and photosynthesis to environmental
factors may be masked or weakened. Therefore, in stress conditions, careful consideration
is necessary when using SIF to estimate GPP at different spatial and temporal scales and
for different plant types.

4.5. Limitations of This Study

Most downscaled SIF products rely on various explanatory variables from high spatial
resolution remote sensing, such as meteorological information. Because these explanatory
variables cannot reflect changes in vegetation, downscaled SIF inevitably loses the phys-
iological information contained in the original SIF data. Therefore, what is provided is
an estimation of SIF rather than observed SIF values. There are several uncertainties in
downscaled SIF. One significant factor is the uncertainty introduced by meteorological
reanalysis data (i.e., PAR, temperature, VPD (vapor pressure deficit)). Another influencing
factor is that modeling methods may not be entirely suitable (i.e., data-driven or machine
learning approaches). While downscaled SIF may lose some information present in real SIF
data, it extends the application of SIF in monitoring GPP. Furthermore, the GOME-2 sensor
has experienced noticeable degradation during its operational lifespan, which could lead
to potential errors. In this study, spatially downscaled SIF products have been calibrated
with parameter adjustments to preserve the original information of the SIF signal as much
as possible. Therefore, before using downscaled SIF products for long-term trend analysis,
it is essential to consider the impact of instrument degradation on the original SIF values.

Although SIF has significant advantages over traditional VIs in areas such as drought
monitoring and productivity assessment, existing SIF products generally suffer from coarse
spatiotemporal resolution issues. Despite the higher spatial resolution of downscaled SIF
data, it remains coarse for regions with different vegetation types. Therefore, there is an
urgent need for SIF data with higher spatial resolution for scientific research. In recent
years, satellites such as OCO-2, OCO-3, and TanSat have provided finer spatial resolution
for SIF, but their application is limited due to poor spatiotemporal continuity. Fortunately,
new satellites including the Sentinel series, FLEX, and GeoCARB have been launched or
planned for launch in the coming years. It is believed that in the near future, we will
obtain SIF data with high spatiotemporal resolution. This will play a significant role in
early drought detection, accurate monitoring of vegetation productivity, and global carbon
cycle monitoring.

Another limitation of our research results is the lack of differentiation between dif-
ferent vegetation types and different climatic environments. However, drought stress can
have different effects on various ecosystem communities and plants in different climatic
environments. Therefore, the SIF of vegetation in different ecosystem communities may
respond differently to drought. Additionally, although SIF can track changes in GPP under
drought conditions, how to use SIF to accurately estimate GPP remains unclear. This often
requires the establishment of empirical models relating SIF to flux station GPP. However,
the empirical models for SIF and GPP lack universality under different environmental
conditions and vegetation types. Our study only used simple correlation analysis to study
the relationship between SIF and GPP. To more accurately estimate GPP at different spatial
and temporal scales, in different environmental conditions and vegetation types, a compre-
hensive understanding of the mechanisms of SIF estimating GPP is needed, along with the
development of mechanistic models for estimating GPP based on SIF.
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5. Conclusions

This study took the 2009 drought event in the Xilingol grassland as an example and
utilized downscaled GOME-2 SIF satellite products to analyze the potential of SIF in
assessing the changes in grassland GPP caused by drought. Negative anomalies of SPEI,
SM, and PPT indicated severe drought occurrence in the Xilingol grassland in 2009, and
SIF was responsive to the spatiotemporal variations of drought indicators. These results
demonstrated that downscaled SIF has the capability to track the temporal dynamics of
drought, depict its spatial distribution, and monitor its occurrence. There was a significant
correlation between SIF and GPP, with an R2 of 0.95, while the correlation between NDVI
and GPP was significantly lower, with an R2 of 0.78, confirming that SIF can serve as an
effective indicator of plant photosynthesis and accurately track the spatiotemporal changes
in GPP. Under drought conditions, the relationship between SIF and GPP (R2 = 0.90) was
significantly higher than NDVI and GPP (R2 = 0.62), demonstrating the superior ability
of SIF to track and monitor GPP changes under drought conditions compared to NDVI.
Drought reduces the ability of NDVI to monitor GPP but does not affect that of SIF to
monitor GPP.

This study highlights the strong capability of downscaled satellite SIF products in
estimating grassland GPP changes caused by drought, providing a theoretical basis for
quantifying GPP losses in grasslands due to drought in the future.
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