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Abstract: Joint super-resolution and pansharpening (JSP) brings new insight into the spatial improve-
ment of multispectral images. How to efficiently balance the spatial and spectral qualities in JSP
is important for deep learning-based approaches. To address this problem, we propose a unified
interpretable deep network for JSP, named UIJSP-Net. First, we formulate the JSP problem as an
optimization problem in a specially designed physical model based on the relationship among the
JSP result, the multispectral image, and the panchromatic image. In particular, two deep priors are
utilized to describe latent distributions of different variables, which can improve the accuracy of
the physical model. Furthermore, we adopt the alternating direction method of multipliers to solve
the above optimization problem, where a series of iterative steps are generated. Finally, we design
UIJSP-Net by unfolding these iterative steps into multiple corresponding stages in a unified network.
Because UIJSP-Net has clear physical meanings, the spatial resolution of multispectral images can
be efficiently improved while the spectral information can be kept as well. Extensive experimental
results are carried out on both simulated and real datasets to demonstrate the superiority of UIJSP-Net
over other state-of-the-art methods from qualitative and quantitative aspects.

Keywords: pansharpening; super-resolution; interpretable network; deep prior

1. Introduction

Tremendous remote sensing images of high spatial and spectral resolution are highly
demanded for many applications such as object detection, environmental protection, and
land monitoring. Typically, most satellites with optical payloads capture multispectral (MS)
and panchromatic (PAN) images simultaneously. Due to the difficulty in the hardware
design, MS images always have multiple spectral bands but low spatial resolution. Different
from MS images, PAN images have only one spectral band but high spatial resolution.
Therefore, a fusion method in which a low-resolution MS image and its corresponding
PAN image are employed to generate a high-resolution MS image, named pansharpening,
has become a popular research topic in remote sensing [1].

Generally speaking, traditional pansharpening methods are divided into three tracks:
component substitution (CS)-based, multiresolution analysis (MRA)-based, and model-
based approaches [2]. The basic idea of CS based approaches is the substitution of the
intensity of an MS image by a corresponding PAN image. Although CS-based approaches
can generate clear fused MS images, they always suffer serious spectral distortion. To alle-
viate spectral distortion in CS-based approaches, MRA-based approaches attempt to solve
this problem in a transformed domain of multiple resolutions. But MRA-based approaches
always fail to preserve spatial resolution of MS images. By formulating models based on
physical relationships between MS and PAN images, model-based approaches can pro-
vide good balances between spatial and spectral qualities [3]. Because the pansharpening
problem is ill-posed, seeking appropriate priors is important in model-based approaches.

Benefiting from sophisticated non-linear feature extraction ability, deep learning (DL)-
based pansharpening methods have been research hotspots in recent years [4]. In 2016,
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a convolutional neural network (CNN) was applied to pansharpening (PNN), achieving
superior results over traditional pansharpening methods [5]. To further improve its fusion
performance, Fu et al. [6] utilized a residual CNN in the high-frequency domain. Similarly,
a multiscale and multidepth CNN was adopted by Yuan et al. [7] to fuse images with
multiscale features. To fully exploit spatial details at multiple spatial scales, Jin et al. [8]
designed a Laplacian pyramid pansharpening network architecture based on a multi-scale
loss function. Ke et al. [9] proposed a high-frequency transformer network for pansharp-
ening based on window cross-attention, which can capture long-distance dependencies
in the vision transformer. Besides the above CNN-based methods, pansharpening based
on a generative adversarial network (GAN) [10] was implemented by establishing an
adversarial game between the generator and the discriminator.

Although remarkable results have been achieved in DL-based pansharpening methods,
the spatial resolution of the fused MS image is still limited to that of the PAN image. Thus,
to obtain fusion images with better spatial resolution, combining super-resolution (SR)
and pansharpening is necessary. In 2022, Chouteau et al. [11] presented a DL-based
attempt to join SR and pansharpening (JSP) on Airbus’s Pleiades Neo images, bringing new
insight into the further spatial resolution improvement of the fused MS image, as shown
in Figure 1c. However, SR and pansharpening are treated as two different steps in this
attempt. Thus, the spatial improvement carried out by SR and the spectral preservation
depending on pansharpening are separately controlled. As a result, such a method cannot
ensure that the spatial resolution is as good as the spectral quality for the JSP results.
For example, a small spatial or spectral distortion in the SR result may lead to a large error
in the following pansharpening step. Therefore, it is valuable to construct a unified JSP
deep network that can be trained in an end-to-end framework. However, this problem has
been seldom investigated.

(a) (b) (c) (d)

Figure 1. An example of JSP. (a) Interpolated MS image. (b) Pansharpening result. (c) JSP result.
(d) Groundtruth.

In order to resolve such problems, we propose a unified interpretable deep network
for JSP in this study, named UIJSP-Net. To unify the SR and pansharpening in a whole
framework, we start the design from the physical observations among different variables.
To this end, we first construct a novel physical model based on the relationships among the
JSP result, the MS image, and the PAN image. To improve the accuracy of this model, we
especially utilize two deep priors to describe the distributions of the latent high-resolution
MS image (JSP result). To solve the optimization problem in this model, we adopt the
alternating direction method of multipliers (ADMM) to transform the solution of the
optimization problem into a series of iterative steps. To construct the desired UIJSP-Net, we
unfold these iterative steps into multiple corresponding stages of a unified network with
the two deep priors implemented by the USRNet and DRUNet, respectively. In summary,
compared with traditional deep learning-based methods, which are always trained as
a black box, we first propose our JSP model with clear physical meanings. Then, we
design UIJSP-Net by unfolding iterative steps of the solution to this model into multiple
corresponding modules. Because each network module in UIJSP-Net relates to an iterative
step with clear physical meaning, UIJSP-Net is interpretable.

The main contributions of our work are listed as follows:
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- To the best of our knowledge, we are the first to build a new model to formulate the SR
and pansharpening objective in a unified optimization problem, which is convenient
for effectively preserving spatial as well as spectral resolution. In addition, two deep
priors about the latent distributions of the latent high-resolution multispectral images
are adopted to improve the accuracy of the model.

- To solve this model efficiently, we construct UIJSP-Net by utilizing the unfolding
technology based on some iterative steps derived from the ADMM.

- Then we validate this method in both simulated and real datasets, proving its advan-
tage over other state-of-the-art methods.

The rest of the study is organized as follows. The related works are summarized in
Section 2. And the UIJSP-Net is introduced in Section 3. Then, experimental results are
presented in Section 4, and the conclusion is made in Section 5.

2. Related Work

Considering that there are few studies focusing on JSP, we mainly introduce related
work of SR and pansharpening, respectively.

2.1. SR

In this study, SR mainly refers to generating a high-resolution image out of a single
low-resolution one. Typical SR methods include interpolation-based, example-based,
and DL-based methods. Interpolation-based methods estimate the unknown pixels of a
high-resolution image by utilizing the linear or nonlinear interpolation on their known
neighbors, such as the most commonly used bi-linear and bi-cubic interpolation methods.
For example, Zhu et al. [12] reconstructed a high-resolution image by interpolating pixels
based on the nonlocal geometric similarities. However, these methods tend to produce
visual artifacts such as aliasing and blurring. The example-based methods are reconstructed
by the hypothesis that patches from low-resolution and high-resolution images have a
latent relationship. Specifically, patches of low-resolution images are assumed to have a
sparse representation with respect to a dictionary generated by a large exemplary dataset
of high-resolution images [13,14]. Therefore, the performance of example-based methods
highly correlates with the choice of the exemplary dataset. To address this problem, a self-
example-based method was proposed in [15] which forms the dataset by resizing the
original image into different scales, resulting in high computational complexity. With the
development of DL, DL-based methods have attracted a large amount of research interest.
Dong et al. [16] first establish an end-to-end mapping role between low- and high-resolution
images by CNN, exhibiting superior SR performance. To explore the feature correlations
of intermediate layers that can improve the ability of CNN, Dai et al. [17] proposed a
second-order attention network for feature expression and correlated learning process.
By integrating the advantages of exampled-based and DL-based methods, Zhang et al. [18]
designed an end-to-end trainable deep network based on the unfolding optimization.
Furthermore, Zhang et al. [19] adaptively modulated the convolution kernel for image
SR based on the global context. Recently, Gao et al. [20] proposed a Bayesian image SR
framework by modeling natural image statistics with a combination of smoothness and
sparsity priors.

2.2. Pansharpening

Pansharpening is a method that fuses a low-resolution MS image and a high-resolution
PAN image to generate a high-resolution MS image. Representative pansharpening meth-
ods include CS-based, MRA-based, model-based, and DL-based methods. Principal compo-
nent analysis (PCA) [21], Gram–Schmidt adaptive (GSA) [22], and intensity–hue–saturation
(IHS) [23] are some typical CS-based methods. They are simple in terms of implementation,
but sometimes suffer serious spectral distortions. The MRA-based methods inject the
spatial details of PAN images into MS images according to multiresolution decomposi-
tion, such as smoothing filter-based intensity modulation (SFIM) [24], modulation transfer
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function (MTF) [25], and improved generalized Laplacian pyramid [26], thus reducing the
spectral distortions of CS-based methods to a certain degree. However, the spatial qualities
of MRA-based methods are always unsatisfactory. Some hybrid methods [27,28] in which
CS and MRA methods are combined are also studied.

To generate images with balanced spatial and spectral quality, the model-based meth-
ods construct fusion models by making use of the relations among the fused MS, low-
resolution MS, and PAN images. Considering that this fusion problem is ill-posed, seeking
suitable priors is important in the model-based methods. Considering the upsampled
MS image to be a blurred version of the fused MS image, Ballester et al. [29] suggested a
variational model-based method, and Palsson et al. [30] further utilized the total variation
regularization as a prior in the construction of the fusion model. Fu et al. [31] further
constructed a local gradient prior in pansharpening for different local patches and bands
of MS and PAN images. Tian et al. [32] explored priors for pansharpening from the
similarities of cartoon and texture components of PAN and MS images. The difficulty in
seeking accurate priors and selecting optimal model parameters is still challenging for the
model-based methods.

DL-based method is a new track for pansharpening. It demonstrates powerful fusion
capability because of its ability to describe data in a nonlinear way [33]. Besides PNN,
DRPNN was proposed by Wei et al. [34], where the residual network is adopted to over-
come the problem of the shallow network. To extract both deep and shallow features for
pansharpening, Yuan et al. [7] utilized multiscale feature extraction with changeable recep-
tive fields. Inspired by the injection process of the MRA-based methods, Zhang et al. [35]
designed a bidirectional pyramid network to fuse PAN and MS images level by level.
FusionNet proposed by Deng et al. [36] was designed based on a detailed injection net-
work. Considering the necessity of constructing DL methods that have clear physical
meanings in pansharpening, Tian et al. [37] designed an interpretable deep network.
Similarly, Wen et al. [38] built an implicit prior for the fusion model based on the deep
operators to achieve good nonlinear description ability. By constructing an adversarial
game, Ma et al. [10] designed PanGan by substituting the groundtruth with the original
image for unsupervised pansharpening. To effectively capture the global relationship
between the MS and PAN images, Transformer was applied to pansharpening [39].

3. Proposed Method

We introduce the formulation of the proposed JSP model in this section. Then, we
demonstrate an efficient solution to the optimization problem of the proposed JSP model.
Lastly, we exhibit how the network is designed.

3.1. Formulation of the Proposed JSP Model

To simplify the description in this study, we adopt the following notations and def-
initions. Scalars and matrices are denoted as lowercase letters and bold capital letters,
respectively. For example, F ∈ RM×N×b represents the high-resolution MS image of b bands,
generated by JSP. [M, N] is the spatial resolution of F. M ∈ RM

sr ×
N
sr×b and P ∈ RM

s ×
N
s are

the low-resolution MS image and PAN image, respectively. r is the ratio of spatial resolution
between the PAN image P and the MS image M. s is the scale of SR for the PAN or MS
image. We list the major notations of this study in Table 1.
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Table 1. Major notations of this study.

Notations Definitions

F, M, P JSP result, low-resolution MS image, and low-resolution PAN image.

Ψ1, Ψ2 Spatial blurring and down-sampling operations for SR and pansharpening, respectively.

Γ(·), Θ(·) Deep operators for different modules.

Z, W Auxiliary variables.

[M, N] Spatial resolution of JSP result.

r Ratio of spatial resolution between the PAN image P and the MS image M.

s Scale of SR for the PAN or MS image.

Considering that the MS image M can be regarded as a spatial degradation of the high-
resolution MS image F, we can utilize the following data fidelity term D(F) to formulate
their relationship as

D(F) =
1
2
‖Ψ2Ψ1F−M‖2

F, (1)

where Ψ1 and Ψ2 denote the spatial blurring and down-sampling operations for SR and
pansharpening, respectively. ‖ · ‖2

F represents the Frobenius norm. Because M � m (or
N � n), Equation (1) is always ill-posed. It is necessary to seek additional priors of F for
an accurate reconstruction.

Naturally, an image always has a sparse (smooth between pixels) property. Consider-
ing the good nonlinear feature extraction ability in DL, it is helpful to construct a latent
prior J(F) by utilizing the deep operator Θ(·) to describe the inherent relationship of pixels
such as the smooth characteristic in an image as

J(F) = Θ(F). (2)

Furthermore, the PAN image P can be treated as the average of b bands in the spatial
degraded result Ψ1F. Consequently, the errors between P and each band of Ψ1F should
also be sparse. Based on this hypotheses, we construct a deep module Γ(·) to formulate the
relationship of the sparse property of the errors between P and Ψ1F as

K(F) = Γ(Ψ1F− P), (3)

where P̄ denotes the duplication of P into b bands.
Based on the above analysis, we can formulate the desired JSP model by integrating

Equations (1)–(3) as

arg min
F

1
2
‖Ψ2Ψ1F−M‖2

F + λΓ(Ψ1F− P̄) + αΘ(F). (4)

λ and α are parameters to balance different terms.

3.2. Solution to the Proposed JSP Model

To solve Equation (4), we adopt the ADMM. Let Z = Ψ1F; then, the augmented
Lagrange function of Equation (4) can be described as

1
2
‖Ψ2Z−M‖2

F + λΓ(Z− P̄) + αΘ(F) +
µ

2
‖Z−Ψ1F− W

µ
‖2

F, (5)

where W is an introduced auxiliary variable. µ is a parameter. Afterward, variables Z, F,
and W can be solved alternatively based on the following sub-problems:
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(1) Z sub-problem: We solve Zt+1 from

arg min
Z

1
2
‖Ψ2Z−M‖2

F + λΓ(Z− P̄) +
µ

2
‖Z−Ψ1Ft − Wt

µ
‖2

F. (6)

We utilize the fast iterative shrinkage-thresholding algorithm [40] to solve Equation (6).
Then, the solution to Zt+1 can be separated into the following two steps:

At = Zt −
Ψ−1

2 (Ψ2Zt −M) + µ(Zt −Ψ1Ft − Wt

µ )

L
, (7)

Zt+1 = arg min
Z

1
2
‖Z−At‖2

F + λΓ(Z− P̄). (8)

L is the Lipschitz constant and we set L = 1 in the following. Let G = Z − P̄; then,
Equation (8) can be transformed into the following form as

Gt+1 = arg min
G

1
2
‖G− (At − P̄)‖2

F + λΓ(G). (9)

The form of Equation (9) is similar to the image denoising problem with deep denoiser
prior. Then, we can utilize the DRUNet [41] to solve it as

Gt+1 = DRUNet(At − P̄,
√

λ). (10)

At this time, we have
Zt+1 = Gt+1 + P̄. (11)

(2) F sub-problem: We solve Ft+1 from

arg min
F

µ

2
‖Zt+1 −Ψ1F− Wt

µ
‖2

F + αΘ(F). (12)

The form of Equation (12) is similar to the image SR problem with deep prior. Therefore,
we adopt the USRNet [18] to solve it as

Ft+1 = USRNet(Zt+1 − Wt

µ
,
√

α

µ
). (13)

(3) W sub-problem: We derive Wt+1 directly from

Wt+1 = Wt − µ(Zt+1 −Ψ1Ft+1). (14)

Therefore, the proposed JSP algorithm is summarized in Algorithm 1.

Algorithm 1: Proposed JSP algorithm.

Input Ψ1, Ψ2, M, P, λ, α, µ, Tmax (maximum number of iterations), Γ(·), Θ(·), F1,
W1, Z1

For t = 1 to Tmax do
Update Zt+1 in the closed-form from Equations (7), (10), and (11).
Update Ft+1 in the closed-form from Equation (13).
Update Wt+1 in the closed-form from Equation (14).

End
Output F.
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3.3. Network Design

The unfolding technology [42] is utilized to construct the desired UIJSP-NET, as its
efficiency is widely proven. In particular, we unfold each iteration of Algorithm 1 as
one stage of UIJSP-Net. The diagram of the t-th stage of UIJSP-Net is shown in Figure 2.
The inputs are Ft, Zt, and Wt, and the outputs are Ft+1, Zt+1, and Wt+1, respectively. Then,
these outputs are further fed into the next stage. Other parameters are learned in the
training process.

Input Output

Figure 2. The t-th stage of the proposed network architecture.

The diagram of DRUNet is shown in Figure 3. It combines residual blocks into a U-Net
architecture, which includes 4 scales. In each scale, 2× 2 strided convolution (SConv) scalings
and 2× 2 transposed convolution (TConv) scalings linked by identity skip connections are
utilized to implement features’ downsampling and upsampling, respectively, where four
successive residual blocks (ResBlocks) are included. The channel amount is 64, 128, 256,
and 512 for the 4 consecutive scales, respectively. No activation functions are added to the first
and the last convolution (Conv), SConv, and TConv layers. Only one ReLU activation function
is provided to each residual block. The diagram of USRNet is shown in Figure 4. It includes
three main modules, namely the data module D(·, ·, ·, ·, ·), the prior module P(·, ·), and the
hyper-parameter moduleH(·, ·). The data module is mainly implemented by FFT and inverse
FFT operators. The backbone of the prior module is also a U-Net architecture, where identity
skip connection, SConv, and TConv layers are included. The hyper-parameter module is
implemented by three fully connected layers. The first and second activation functions are the
ReLU layers and the last is the Softplus layer. More details about DRUNet and USRNet can
be found in [18,41], respectively.

To drive the proposed UIJSP-Net, we utilize an L2 loss function LJSP as

LJSP =
b

∑
i=1
‖Fi − F̄i‖2

F. (15)

We divide images into small blocks for training. Fi and F̄i represent the i-th training blocks
of JSP results and reference high-resolution MS images, respectively. b is the number of
training blocks. To better achieve balance between the computational efficiency and JSP
results, we select 8 stages in our network architecture.
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SConv ResBlocks TConvConv skip connection

Figure 3. The diagram of DRUNet [41].

The i-th iteration

…
…

Figure 4. The diagram of USRNet [18].

4. Experimental Results
4.1. Experimental Setting

To demonstrate the efficiency of the proposed UIJSP-Net, we select three satellite
datasets (GaoFen-2, QuickBird, and WorldView-3) in our experiments. GaoFen-2 is a high-
resolution optical Earth observation satellite developed by China. The spatial resolution
of GaoFen-2 PAN and MS images is 0.8 m and 3.2 m, respectively. QuickBird is a high-
resolution commercial satellite owned by DigitalGlobe, which captures PAN and MS
images with spatial resolutions of 0.61 m and 2.44 m, respectively. Similar to QuickBird,
WorldView-3 is also a commercial satellite owned by DigitalGlobe. It generates PAN images
with a spatial resolution of 0.31 m and MS images with eight bands and a spatial resolution
of 1.24 m. We utilize blue, green, red, and near-IR bands of WorldView-3 MS images in
our experiments.

Because there are no existing JSP methods, we compare traditional methods in the
following ways. We first SR the input low-resolution MS and PAN images, and further
fuse the SR results to generate the final results. For the convenience of a fair compari-
son, USRNet is adopted as the SR method in traditional methods. The pansharpening
methods include two traditional pansharpening methods, SFIM and HPF, and five DL
methods, PNN [5], MSDCNN [7], Hyper_DSNet [43], FusionNet [36], and DRPNN [34].
In addition, the benchmark consists of images being interpolated by polynomial kernel
with 23 coefficients (EXP). For the convenience of description in the following, we denote
SR (USRNet) +DL as pansharpening methods and UIJSP-Net as DL-based methods. We
implement our model on PyTorch, and train all DL methods on the same dataset and on
an NVIDIA GeForce RTX 3090 Ti GPU (24GB) for a fair comparison. SFIM and HPF are
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implemented in Matlab. We train our model with a batch size of 40. The initialized learning
rate is set to 0.0001. Finally, the model achieves stable performance in approximately 6 h.

The experiments are carried out from the following five aspects. (i) Simulation experi-
ments. Both visual comparison and quantitative analysis are included. The diagram of the
simulation process is shown in Figure 5. Because traditional methods can be regarded as a
combination of SR and pansharpening, i.e., training datasets for SR and pansharpening are
both required, we separate the simulation process into the following two steps. We first
generate intermediate MS and PAN (IMP) blocks from input high-resolution MS and PAN
(HMP) blocks by spatial blurring and downsampling. Then, IMP blocks and HMP blocks
can be used to train the SR network. For simplicity, we set the resolution ratio between
IMP blocks and HMP blocks as 2. Furthermore, we degrade IMP blocks by spatial blurring
and downsampling based on Wald’s protocol, to obtain low-resolution MS and PAN (LMP)
blocks. Then, IMP blocks and LMP blocks are used for training the pansharpening network
in the compared methods. For UIJSP-Net, all network modules are directly trained from
HMP and LMP blocks. The quantitative metrics include the peak-signal-to-noise (PSNR),
the structural similarity (SSIM), the correlation coefficient (CC), the universal image quality
index (UIQI, Q), the erreur relative global adimensionnelle de synthese (ERGAS), and the
spectral angle mapping (SAM). (ii) Real experiments. Considering there are no existing
quantitative metrics for JSP in real experiments, we mainly utilize real satellite data for
visual comparison. (iii) Computational efficiency. The computational speeds of different
methods are compared. (iv) Ablation study. We utilize ablation studies to analyze the
influence of different parts of UIJSP-Net on its performance. (v) NDVI experiments. We
compare different methods on their applications in NDVI calculations, where the simula-
tion dataset is utilized. The quantitative metrics include root mean squared error (RMSE),
SSIM, and CC.

Spatial blurring and 
downsampling

High-resolution MS 
and PAN blocks

MS and PAN blocks 
for training and testing 

Intermediate MS 
and PAN blocks

Super-resolution 
and pansharpening

Spatial blurring and 
downsampling

Figure 5. The diagram of the simulation process.
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4.2. Simulation Experiments

For simulation (as shown in Figure 5), the spatial resolutions of MS and PAN images in
LMP blocks are 64× 64× 4 and 256× 256, respectively. In addition, the spatial resolution of
MS and PAN images in IMP blocks are 128× 128× 4 and 512× 512, respectively. Therefore,
the spatial resolution of groundtruth is 512× 512× 4.

4.2.1. GaoFen-2 Dataset

On the GaoFen-2 dataset, we utilize 3213 pairs of LMP blocks, IMP blocks, and
groundtruth patches for training and another 235 pairs for testing. We first adopt a pair
of images from the GaoFen-2 dataset to compare the performance of different methods
from the aspect of visual quality (only three bands for display), as shown in Figure 6.
Compared with other images in Figure 6b–i, the interpolation method EXP in Figure 6a
is blurrier, indicating the necessity of JSP. Generally speaking, benefiting from the good
ability of non-linear feature extraction, the clarity of DL-based methods is higher than SR
+traditional pansharpening methods, such as SR+SFIM and SR+HPF. Although SR+PNN
and SR+MSDCNN have clear fusion results, obvious spatial artifacts exist, degrading their
fusion performance. Enlargements in Figure 6d,e show an example of such a phenomenon,
where the stripes are not straight. By constructing a JSP network, UIJSP-Net in Figure 6i
generates the best results, which is the closest to the groundtruth in Figure 6j. The superior-
ity of UIJSP-Net can also be found in Figure 7, where the residual images (generated by the
mean absolute errors between the fusion results and the groundtruth) are demonstrated.
Due to the advantage of DL, SR+PNN generates smaller errors than SR+SFIM and SR+HPF.
It is clear that UIJSP-Net produces the smallest errors among all methods. The quantitative
comparison is listed in Table 2. The average values in addition to the standard deviations
of all tested images are calculated. Generally speaking, UIJSP-Net and SR+DRPNN exhibit
the first and second best JSP performance. For example, UIJSP-Net generates the five best
metrics among all methods.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Visual comparison on the simulated GaoFen-2 dataset. (a) EXP. (b) SR+SFIM. (c) SR+HPF.
(d) SR+PNN. (e) SR+MSDCNN. (f) SR+Hyper_DSNet. (g) SR+FusionNet. (h) SR+DRPNN. (i)
UIJSP-Net. (j) Groundtruth. (Large boxes are enlargements of the small boxes).

Table 2. Quantitative comparison on the 235 test images of the simulated GaoFen-2 dataset. BLUE:
the best, RED: the second-best.

Method PSNR SSIM CC Q ERGAS SAM

EXP 25.343± 1.342 0.688± 0.050 0.797± 0.038 0.773± 0.047 7.263± 0.953 4.049± 0.482
SR+SFIM 27.791± 1.425 0.847± 0.023 0.893± 0.019 0.884± 0.023 5.456± 0.625 4.253± 0.434
SR+HPF 27.769± 1.442 0.844± 0.023 0.892± 0.018 0.883± 0.022 5.469± 0.642 4.252± 0.468
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Table 2. Cont.

Method PSNR SSIM CC Q ERGAS SAM

SR+PNN 31.004± 1.287 0.811± 0.024 0.886± 0.019 0.878± 0.020 5.847± 0.563 5.093± 0.788
SR+MSDCNN 31.238± 1.260 0.822± 0.023 0.890± 0.017 0.880± 0.021 5.683± 0.585 4.637± 0.592

SR+Hyper_DSNet 31.312± 1.352 0.830± 0.022 0.891± 0.018 0.886± 0.019 5.609± 0.594 4.991± 0.634
SR+FusionNet 29.340± 1.266 0.733± 0.037 0.857± 0.026 0.815± 0.028 7.117± 0.870 5.132± 0.774
SR+DRPNN 31.738± 1.395 0.851± 0.020 0.890± 0.017 0.894± 0.018 5.375± 0.562 5.238± 0.720
UIJSP-Net 32.954± 0.904 0.880± 0.019 0.901± 0.018 0.929± 0.022 4.829± 0.667 6.949± 1.387

Ideal value +∞ 1 1 1 0 0

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 7. Residual images of the simulated GaoFen-2 dataset. (a) EXP. (b) SR+SFIM. (c) SR+HPF.
(d) SR+PNN. (e) SR+MSDCNN. (f) SR+Hyper_DSNet. (g) SR+FusionNet. (h) SR+DRPNN. (i) UIJSP-Net.

4.2.2. QuickBird Dataset

On the QuickBird dataset, we adopt 955 pairs of LMP blocks, IMP blocks, and
groundtruth patches for training and another 224 pairs for testing. One typical pair of
images from the QuickBird dataset is used for visual comparison and the result is shown in
Figure 8. Although SR+SFIM and SR+HPF in Figure 8b,c can provide clearer JSP results,
there are some distorted edges in the buildings. For example, the shape of the building in
Figure 8c (labeled by a red ellipse) has a large deviation from that of the groundtruth in
Figure 8j. Among all DL methods, UIJSP-Net generates the best JSP result. This conclusion
can be verified by the comparison of enlargements in Figure 8d–i, where the building with
an arrow shape in Figure 8i is closest to the groundtruth. To further verify the superiority
of UIJSP-Net, we compare the residual images in Figure 9. On this dataset, SR+SFIM and
SR+HPF have low JSP performance, resulting in large differences. The error of UIJSP-Net is
the smallest of all methods. We list the quantitative comparison in Table 3. The DL methods
generate better quantitative results than SR+SFIM and SR+HPF, especially in PSNR. UIJSP-
Net has the best performance evaluated by PSNR, SSIM, CC, Q, and ERGAS, demonstrating
its effectiveness in the quantitative comparison of the simulated QuickBird dataset.

Table 3. Quantitative comparison on the 224 test images of the simulated QuickBird dataset. BLUE:
the best, RED: the second-best.

Method PSNR SSIM CC Q ERGAS SAM

EXP 27.461± 3.348 0.749± 0.137 0.828± 0.102 0.887± 0.048 8.309± 1.997 5.261± 0.978
SR+SFIM 27.379± 6.229 0.824± 0.094 0.842± 0.109 0.880± 0.154 17.119± 7.509 5.598± 0.709
SR+HPF 28.846± 3.313 0.823± 0.095 0.867± 0.097 0.922± 0.032 7.122± 1.681 5.482± 0.876
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Table 3. Cont.

Method PSNR SSIM CC Q ERGAS SAM

SR+PNN 35.362± 4.855 0.914± 0.042 0.940± 0.062 0.924± 0.100 4.857± 1.176 5.463± 1.018
SR+MSDCNN 35.080± 4.872 0.910± 0.044 0.943± 0.056 0.921± 0.098 5.103± 1.224 5.460± 1.011

SR+Hyper_DSNet 35.478± 4.975 0.916± 0.042 0.946± 0.054 0.926± 0.096 4.794± 1.170 5.199± 0.958
SR+FusionNet 34.275± 5.158 0.898± 0.050 0.934± 0.057 0.911± 0.097 5.594± 1.330 5.373± 1.003
SR+DRPNN 34.372± 5.091 0.898± 0.051 0.932± 0.061 0.912± 0.101 5.434± 1.264 5.836± 1.081
UIJSP-Net 36.332± 4.011 0.926± 0.031 0.952± 0.068 0.929± 0.119 4.424± 1.181 5.683± 1.219

Ideal value +∞ 1 1 1 0 0

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Visual comparison on the simulated QuickBird dataset. (a) EXP. (b) SR+SFIM. (c) SR+HPF.
(d) SR+PNN. (e) SR+MSDCNN. (f) SR+Hyper_DSNet. (g) SR+FusionNet. (h) SR+DRPNN. (i) UIJSP-
Net. (j) Groundtruth.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 9. Residual images of the simulated QuickBird dataset. (a) EXP. (b) SR+SFIM. (c) SR+HPF.
(d) SR+PNN. (e) SR+MSDCNN. (f) SR+Hyper_DSNet. (g) SR+FusionNet. (h) SR+DRPNN.
(i) UIJSP-Net.

4.2.3. WorldView-3 Dataset

On the WorldView-3 dataset [44], we select 1027 pairs of LMP blocks, IMP blocks,
and groundtruth patches for training and 26 pairs for testing. The visual comparison is
shown in Figure 10. Considering that a lot of water regions (always useless for training
and testing in DL due to low texture) are contained in this dataset, the performance gap
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among different methods becomes small. However, the superiority of UIJSP-Net over
other methods can be still clearly observed. We select the enlargements in Figure 10 as
examples. The clarity of the plane in Figure 10i is higher than other methods in Figure 10b–h.
The residual images of the simulated WorldView-3 dataset are shown in Figure 11. From the
labeled region (by a red ellipse) in Figure 11i, it can be found that UIJSP-Net has the smallest
errors. Furthermore, we compare the quantitative results in Table 4. The advantages of
UIJSP-Net can be found in the four best metrics, including PSNR, CC, Q, and ERGAS,
and one second best metric SAM.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Visual comparison on the simulated WorldView-3 dataset. (a) EXP. (b) SR+SFIM.
(c) SR+HPF. (d) SR+PNN. (e) SR+MSDCNN. (f) SR+Hyper_DSNet. (g) SR+FusionNet. (h) SR+DRPNN.
(i) UIJSP-Net. (j) Groundtruth.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 11. Residual images of the simulated WorldView-3 dataset. (a) EXP. (b) SR+SFIM. (c) SR+HPF.
(d) SR+PNN. (e) SR+MSDCNN. (f) SR+Hyper_DSNet. (g) SR+FusionNet. (h) SR+DRPNN.
(i) UIJSP-Net.

Table 4. Quantitative comparison on the 26 test images of the simulated WorldView-3 dataset. BLUE:
the best, RED: the second-best.

Method PSNR SSIM CC Q ERGAS SAM

EXP 28.626± 2.326 0.880± 0.063 0.802± 0.033 0.881± 0.032 9.469± 1.184 3.969± 1.627
SR+SFIM 29.470± 2.339 0.925± 0.042 0.843± 0.029 0.904± 0.026 8.551± 1.004 3.754± 1.556
SR+HPF 29.167± 2.262 0.918± 0.043 0.841± 0.030 0.899± 0.026 8.845± 1.060 4.093± 1.060
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Table 4. Cont.

Method PSNR SSIM CC Q ERGAS SAM

SR+PNN 30.454± 2.430 0.881± 0.061 0.957± 0.008 0.889± 0.024 7.742± 0.914 4.136± 1.616
SR+MSDCNN 31.061± 2.447 0.900± 0.051 0.965± 0.006 0.903± 0.019 7.201± 0.829 3.667± 1.313

SR+Hyper_DSNet 31.164± 2.468 0.903± 0.050 0.903± 0.050 0.906± 0.018 7.134± 0.814 3.511± 1.300
SR+FusionNet 31.154± 2.445 0.904± 0.050 0.970± 0.006 0.908± 0.019 7.070± 0.832 3.412± 1.284
SR+DRPNN 30.871± 2.395 0.893± 0.054 0.956± 0.008 0.896± 0.021 7.333± 0.830 3.890± 1.430
UIJSP-Net 31.386± 2.317 0.908± 0.045 0.974± 0.005 0.913± 0.018 6.961± 0.844 3.430± 1.187

Ideal value +∞ 1 1 1 0 0

4.3. Real Experiment

In this experiment, the real images from the WorldView-3 dataset are used for com-
parison. The spatial resolutions of MS and PAN images are 256× 256× 4 and 1024× 1024,
respectively. In addition, the resolution of the JSP result is 2048× 2048× 4. We mainly
compare the DL-based methods because of their superior performance in the above experi-
ment. The visual comparison is shown in Figure 12. In a real experiment, the generalization
problem in the DL-based method, such as SR+PNN, SR+MSDCNN, SR+Hyper_DSNet,
SR+FusionNet, and SR+DRPNN, is more challenging than the proposed UIJSP-Net due to
the following reason. Two separated DL-based processes are included in these methods
and each DL-based process has its generalization problem caused by the difference between
the training data and real testing data. Consequently, small artifacts in the SR process may
lead to large artifacts in the following pansharpening process. Benefiting from the efficient
unified network trained in one process, UIJSP-Net successfully mitigates the generalization
problem. As a result, UIJSP-Net in Figure 12g demonstrates the best visual effects among
all methods.

(a) (b) (c) (d)

(e) (f) (g)

Figure 12. Visual comparison on the real WorldView-3 dataset. (a) EXP. (b) SR+PNN.
(c) SR+MSDCNN. (d) SR+Hyper_DSNet. (e) SR+FusionNet. (f) SR+DRPNN. (g) UIJSP-Net.

4.4. Analysis of Computational Efficiency

To analyze the computational efficiency, we calculate the computational time of differ-
ent methods tested on a pair of the simulated GaoFen-2 dataset. The experimental results
are shown in Table 5. In particular, we mainly consider the DL-based methods, such as
SR+PNN, SR+MSDCNN, SR+Hyper_DSNet, SR+FusionNet, SR+DRPNN, and UIJSP-Net,
because they are all tested on the same platform (PyTorch). Generally speaking, the compu-
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tational time of SR+PNN, SR+MSDCNN, and UIJSP-Net is comparable and smaller than
other methods, exhibiting their computational efficiency.

Table 5. Comparison of the computational time (s) on the simulated GaoFen-2 dataset.

SR+PNN SR+MSDCNN SR+Hyper_DSNet SR+FusionNet SR+DRPNN UIJSP-Net

0.1149 0.5295 0.5442 0.1147 0.1801 0.1190

4.5. Ablation Study

To further verify the efficiency of different modules in UIJSP-Net, we first conduct the
following ablation experiment. Two models without the deep module Γ(·) and without
the latent prior Θ(·) trained on the simulated GaoFen-2 dataset are compared. The deep
module Γ(·) that correlates to DRUNet indicates the fusion process of MS and PAN im-
ages. The latent prior Θ(·) that relates to USRNet represents the SR process. The visual
comparison and residual images are shown in Figure 13. The necessity of both modules
in UIJSP-Net can be easily found from both the visual effect and the residuals. For ex-
ample, if the SR process is not considered, then UIJSP-Net w/o Θ(·) can be regarded as
a DL-based pansharpening method. As a result, its clarity in Figure 13b is lower than
that of UIJSP-Net in Figure 13c, thus leading to larger residuals. A similar conclusion can
be observed from UIJSP-Net w/o Γ(·), which can be treated as a DL-based SR method.
We list the quantitative comparison in Table 6. The module without Γ(·) has the worst
performance due to lack of fusion. Compared with the module without Θ(·), UIJSP-Net
has a large improvement evaluated by the spatial metrics, such as PSNR, SSIM, CC, and Q,
demonstrating the effectiveness of the SR process integrating with UIJSP-Net. Finally,
UIJSP-Net provides the best balance between spatial and spectral qualities, having five of
the best metrics, indicating the importance of both modules in UIJSP-Net.

(a) (b) (c) (d)

(e) (f) (g)

Figure 13. Visual results of ablation experiments on the simulated GaoFen-2 dataset. (a) w/o Γ(·).
(b) w/o Θ(·). (c) UIJSP-Net. (d) Groundtruth. (e) Residual of (a). (f) Residual of (b). (g) Residual of (c).

Table 6. Quantitative results of ablation experiments for different modules on the simulated GaoFen-
2 dataset. Bold: the best.

Models Γ(·) Θ(·) PSNR SSIM CC Q ERGAS SAM

w/o Γ(·) ×
√

28.862± 1.384 0.680± 0.045 0.834± 0.031 0.766± 0.047 7.689± 0.973 6.432± 1.099
w/o Θ(·)

√
× 31.254± 1.270 0.824± 0.024 0.889± 0.023 0.895± 0.017 5.620± 0.672 5.594± 1.024

UIJSP-Net
√ √

32.954± 0.904 0.880± 0.019 0.901± 0.018 0.929± 0.022 4.829± 0.667 6.949± 1.387
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Furthermore, to demonstrate the effectiveness of the proposed interpretable deep
network, we also compare its performance with another unified JSP deep network USR-
Net+Hyper_DSNet (U-USRNet+Hyper_DSNet) due to the good performance of SR+Hyper_
DSNet in the simulated experiments. At this time, U-USRNet+Hyper_DSNet is directly
trained from HMP and LMP blocks. In this experiment, we select the simulated GaoFen-2
dataset for verification. We show the visual comparison in Figure 14. Due to the special
design of the interpretable deep network from a new physical model, UIJSP-Net generates
clearer results and smaller errors than U-USRNet+Hyper_DSNet. The quantitative compar-
ison is shown in Table 7, where UIJSP-Net outperforms U-USRNet+Hyper_DSNet when
evaluated by five metrics, that is, PSNR, SSIM, CC, Q, and ERGAS.

(a) (b) (c) (d) (e)

Figure 14. Visual results of ablation experiments on the simulated GaoFen-2 dataset. (a) U-
USRNet+Hyper_DSNet. (b) UIJSP-Net. (c) Groundtruth. (d) Residual of (a). (e) Residual of (b).

Table 7. Quantitative results of ablation experiments about U-USRNet+Hyper_DSNet and UIJSP-Net
on the simulated GaoFen-2 dataset. Bold: the best.

Method PSNR SSIM CC Q ERGAS SAM

U-USRNet+Hyper_DSNet 31.734± 1.110 0.837± 0.026 0.878± 0.023 0.897± 0.021 5.509± 0.666 6.702± 0.968
UIJSP-Net 32.954± 0.904 0.880± 0.019 0.901± 0.018 0.929± 0.022 4.829± 0.667 6.949± 1.387

4.6. NDVI Experiment

To further analyze the application of UIJSP-Net, we utilize an experiment based on
normalized difference vegetation index (NDVI), which can be calculated as

INDVI =
INIR − IR
INIR + IR

.

INIR and IR are the near-infrared and red bands of an MS image, respectively. Therefore,
we can use the JSP result to analyze their performance on the NDVI application. In this
experiment, we select the simulated WorldView-3 dataset as an example. The visual
comparison is shown in Figure 15. The NDVI of EXP shown in Figure 15a is blurry
according to the low spatial resolution of the MS image. By introducing JSP, the spatial
clarity of NDVI can be improved. However, there are some large errors in SR+HPF,
SR+PNN, SR+MSDCNN, and SR+DRPNN due to large spectral distortion in the JSP
results. UIJSP-Net produces the best result over others, being closest to the groundtruth.
Furthermore, the residual images of NDVI are calculated in Figure 16. Red and blue
indicate large and small residuals, respectively. The quantitative comparison on NDVI
is listed in Table 8, where UIJSP-Net achieves the best results evaluated by all metrics,
demonstrating its prospect in the NDVI application.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 15. Visual comparison on NDVI. (a) EXP. (b) SR+SFIM. (c) SR+HPF. (d) SR+PNN.
(e) SR+MSDCNN. (f) SR+Hyper_DSNet. (g) SR+FusionNet. (h) SR+DRPNN. (i) UIJSP-Net.
(j) Groundtruth.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 16. Residual images of NDVI. (a) EXP. (b) SR+SFIM. (c) SR+HPF. (d) SR+PNN.
(e) SR+MSDCNN. (f) SR+Hyper_DSNet. (g) SR+FusionNet. (h) SR+DRPNN. (i) UIJSP-Net.

Table 8. Quantitative comparison on NDVI. BLUE: the best, RED: the second-best.

Method RMSE SSIM CC

EXP 11.702 0.945 0.828
SR+SFIM 11.476 0.946 0.832
SR+HPF 14.626 0.914 0.795
SR+PNN 12.991 0.933 0.784

SR+MSDCNN 12.545 0.937 0.804
SR+Hyper_DSNet 11.818 0.945 0.813

SR+FusionNet 11.529 0.946 0.837
SR+DRPNN 13.496 0.927 0.770
UIJSP-Net 11.154 0.949 0.864

Ideal Value 0 1 1

5. Conclusions

In this paper, we propose a novel unified interpretable deep network for JSP, named
UIJSP-Net. To this end, we first formulate the desired problem as a unified optimization
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model with two deep priors. This strategy is helpful to balance the spatial and spectral qual-
ities well. Furthermore, we utilize the unfolding technology to form UIJSP-Net by mapping
a series of iterative steps derived from the alternating direction method of multipliers into
several network stages. Finally, we carry out extensive experiments based on datasets from
GaoFen-2, QuickBird, and WorldView-3 satellites to exhibit the advantage of UIJSP-Net
compared with other state-of-the-art methods evaluated by both visual comparison and
quantitative analysis. An experiment based on NDVI is further utilized to indicate the
application aspect of UIJSP-Net in remote sensing. An ablation study is also provided to
analyze the importance of different modules in UIJSP-Net. For simplicity, we only employ
the SR network implemented by USRNet in our deep prior. More efficient SR networks
that can achieve SR in arbitrary resolution will be considered to handle higher-resolution
images in the future.
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