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Abstract: Several deep learning and transformer models have been recommended in previous
research to deal with the classification of hyperspectral images (HSIs). Among them, one of the
most innovative is the bidirectional encoder representation from transformers (BERT), which applies
a distance-independent approach to capture the global dependency among all pixels in a selected
region. However, this model does not consider the local spatial-spectral and spectral sequential
relations. In this paper, a dual-dimensional (i.e., spatial and spectral) BERT (the so-called D2BERT) is
proposed, which improves the existing BERT model by capturing more global and local dependencies
between sequential spectral bands regardless of distance. In the proposed model, two BERT branches
work in parallel to investigate relations among pixels and spectral bands, respectively. In addition,
the layer intermediate information is used for supervision during the training phase to enhance the
performance. We used two widely employed datasets for our experimental analysis. The proposed
D2BERT shows superior classification accuracy and computational efficiency with respect to some
state-of-the-art neural networks and the previously developed BERT model for this task.

Keywords: BERT; multi-head self-attention; spatial-spectral features; convolutional neural network;
hyperspectral imaging; classification; deep learning; remote sensing

1. Introduction

Since hyperspectral imagery can capture hundreds of spectral bands, it can provide
richer spectral information to address the classification task. Moreover, these data have
great potential for other Earth observation applications, including, but not limited to, the
monitoring of the environment and the change detection in urban areas [1,2]. HSI clas-
sification (HSIC) methods exploit different spatial and spectral information to identify
pixels’ labels, which play a vital role in lots of applications, such as mineral exploration [3],
environmental monitoring [4], and precision agriculture [5]. To achieve accurate hyper-
spectral image classification (HSIC), many different methods, such as classical methods [6],
convolutional neural networks CNNs [7], and transformers [8,9], have been studied to
identify each pixel’s label in the past and current decades. State-of-the-art techniques utilize
feature extraction to obtain state-of-the-art outcomes [10,11].

Classical methods usually combine typical classifiers and manual feature extractors for
HSIC. This category includes approaches such as support vector machines (SVM) [12,13]
regression [14], and k-nearest neighbors (KNN) [15–17], incorporating feature extraction
techniques, such as kernel methods [10] and Markov random field [18]. They assume a
linear relationship between the input variables and the output. In the context of hyper-
spectral data, linear models, such as Multiple Linear Regression (MLR) [19] and Principal
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Component Analysis (PCA), have been widely used due to their computational efficiency
and ease of implementation [20]. Despite their simplicity and efficiency, these classical
HSIC methods have some limitations, e.g., the curse of dimensionality, the design of fea-
tures in a manual way, the difficulty in managing high nonlinearity, and the sensitivity
to noise/outliers.

Thanks to the overcoming of many drawbacks of classical methods, convolutional
neural network (CNN)-based methods have become increasingly popular for HSIC. For
example, Chen et al. [21] introduced a CNN to extract the deep hierarchical spatial-spectral
features for HSIC. To extract the context-based local spatial-spectral information, Lee
and Known introduced 3DCNN [22] for HSIC. CNN-based methods could improve the
performance but could not extract the spatial-spectral features from the HSIs deeply; hence,
a dual tunnel method was proposed by Xue et al. in [23]; 1DCNN was used for the spectral
features, and 2DCNN was introduced for the spatial features to explore the deep features
from spatial and spectral domains. Cao et al. [24] introduced a method using active deep
learning to boost classification performance and decrease labeling costs. Although several
CNNs have been proposed for HSIC, they still encounter the limitation of a local receptive
field, which cannot fully use the spectral and spatial information of HSIs to classify a given
pixel. Moreover, they cannot model sequential data (that is a relevant issue considering
that the spectrum of targets acquired by HSIs can be viewed as a sequence of data along the
wavelength). Different materials have their own spectral characteristics, such as absorption
or reflectance peaks. Therefore, CNNs cannot fully use this information to identify the
targets. Hence, recurrent neural networks (RNNs) have been proposed to effectively
analyze hyperspectral pixels as sequential data [25] for HSIC. However, RNN is a simple
sequential model that hardly has long-term memory and cannot run in parallel, resulting
in a time-consuming framework for HSIs. CNN-based techniques belonging to non-linear
models offer a more complex but often more accurate representation of relationships in
data. Techniques like kernel-based methods and neural networks fall into this category.
Their ability to model complex, nonlinear interactions makes them particularly effective for
hyperspectral data, which often contains intricate spectral signatures. Comparing these
two types of models, linear approaches are generally faster and require less computational
resources, making them suitable for large datasets or real-time applications. However,
non-linear models, despite their higher computational cost, can significantly outperform
linear models in capturing the complex spectral variability inherent in hyperspectral data,
thus potentially leading to more accurate classifications and predictions.

Recently, transformers have been proposed for HSIC to overcome the issue of the local
receptive field of CNNs and to make full use of long-range dependence. SpectralFormer is
a novel backbone network that improves hyperspectral image classification by utilizing
transformers to capture spectrally local sequence information from neighboring bands, re-
sulting in group-wise spectral embedding. BERT for HSIC, i.e., HSI-BERT [26], is one of the
classical transformer-based solutions for HSIC. The method provides a robust framework
for learning long-range dependencies and capturing the contextual information among
pixels. However, it neglects the information of spectral dependency and spectral order.
As mentioned above, different materials show absorption or reflectance peaks at different
wavelengths. Thus, the spectral order is an essential cue for HSIC.

To address the above-mentioned limitations, this paper proposes a dual-dimensional
BERT (the so-called D2BERT). The goal is to improve HSI-BERT by capturing the global
and local dependencies among pixels and spectral bands independently from their spatial
distance and spectral orders. In D2BERT, we use two BERT modules to learn the relations
between the neighboring pixels and the spectral bands, respectively. To do it, the proposed
model has two separate (and parallel) branches: one to explore the relations among neigh-
boring pixels in the spatial domain and another to explore the relations among spectral
bands in the spectral domain. The extracted features from both the spatial and spectral
domains are then combined before classification. Specifically, a BERT module is applied
in each dimension to explore the relations among the corresponding dimensions. For the
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spatial branch, we select a square region around the target pixels to classify a pixel, while
for the spectral branch, spatial features extracted from the CNN-based model for each
spectral band of the selected region are fed into the spectral BERT module to explore the
relations among the spectral bands. Since the input order of spectral features are important
cues for classifying the target material, we also adopt position embedding in the spectral
BERT module, thus enabling D2BERT to distinguish the material according to the spectral
features, such as absorption or reflectance peaks. In conclusion, the main contributions of
this paper are as follows:

1. To make full use of spatial dependencies among neighboring pixels and spectral
dependencies among spectral bands, a dual-dimension (i.e., spatial-spectral) BERT
is proposed for HSIC, overcoming the limitations of merely considering the spatial
dependency as in HSI-BERT.

2. To exploit long-range spectral dependence among spectral bands for HSIC, a spectral
BERT branch is introduced, where a band position embedding is integrated to build a
band-order-aware network.

3. To improve the learning efficiency of the proposed BERT model, a multi-supervision
strategy is presented for training, which allows features from each layer to be directly
supervised through the proposed loss function.

An overview of the main parts of the D2BERT model is discussed in Section 2. The
results of our experiments are presented in Section 3, and the conclusions are presented
in Section 4.

2. Proposed D2BERT Model

As shown in Figure 1, the D2BERT model has two branches to extract the optimal
distinctive features for HSIC. In the upper branch, the spatial BERT is used to explore
the spatial dependency for the given HSI, while in the bottom branch, a spectral BERT is
introduced to explore the spectral dependency. D2BERT combines these spatial-spectral
features from the two branches and this model is learned by multiple supervision of features
from each intermediate BERT layer.
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Figure 1. (a) The proposed D2BERT model. (b) Encoder (En) layer.

2.1. Deep Spatial Feature Learning in Spatial BERT

The upper branch, i.e., the spatial branch, aims to determine long-range relationships
among pixels in a selected region. In this branch, a square region (patch) containing a
target pixel is first selected for label prediction. This area is initially flattened to form a
sequential representation that passes through position embedding and stacked spatial
encoders. Features extracted by these encoders are given in input to classification layers for
multi-layer supervision. More in detail, each patch is flattened to create a pixel sequence
( fspectral1, . . . , fspectral10, . . . , fspectraln). The positional embedding (PE) module is fed by
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the flattened patch. The PE learns positional embeddings and works independently and
identically for each pixel [27]. The PE encodes the positional information. Thus, we have:

f̃spectral = fspectral + p, (1)

where f̃spectral is the learned positional embedding and p is the learned positional element.
The BERT module receives these features that are enhanced by the stacked spatial BERT

encoders, see Figure 1. A BERT encoder consists of a multi-head self-attention (MHSA),
a feedforward network, layer norms, and dropouts. MHSA captures different aspects,
by different heads, of the relationships among pixels in the patch [28]. Each attention
function can be defined as a mathematical operation that takes a query vector and a set of
key-value pairs as inputs and produces an output vector. In this context, vectors represent
the query, the keys, the values, and the output. Different heads are related to distinct
attentions. All heads operate independently and concurrently. There is a global receptive
field for each head in the patch. The scaled dot-product attention is used to calculate all the
attention distributions. The final result is calculated by adding all the weighted values. The
importance of each value is computed using a compatibility function that compares the
query to each key:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V, (2)

where Q, K, V, and dk denote the query, the key, the value, and the dimension of the
data in the input. The feedforward process affects all heads by utilizing interconnected
layers to enhance and refine the learned characteristics. A ReLU activation separates
two linear layers in the feedforward. All encoders share the same feedforward network.
Thus, we ensure that the parameters of the feedforward layer are the same in all encoders.
During the model training, layer normalization decreases the internal covariate shift. The
layer normalization provides several advantages (e.g., the training becomes more efficient
allowing for higher learning rates). The extracted features from the spatial BERT branch
( ˜̃fspectral1 , . . . , ˜̃fspectral10

, . . . , ˜̃fspectraln) are then injected into the classification layer.

2.2. Deep Spectral Feature Learning in Spectral BERT

The spectral branch is similar to the spatial branch. The goal of this branch is
to determine long-range relationships among spectral bands in a selected region. Ini-
tially, in the patch, all HSI bands are separated. Suppose that there are m spectral bands
(Band1, . . . , Band10, . . . , Bandm). The information of each band is represented by a vector of
spatial features. A deep 2-D CNN model is used to extract spatial features for each band.
In this study, we used the VGG-like architecture, in which several convolutional layers are
ignored to reduce overfitting [29]. The extracted features ( fspatial1, . . . , fspatial10, . . . , fspatialm)
are then processed by the position embedding stage, in which the position information of
the different bands is added ( f̃spatial1 , . . . , f̃spatial10 , . . . , f̃spatialm ). Afterwards, the output of
the position embedding stage is the input of the BERT module, see Figure 1. This latter
module aims to learn long-range dependencies among spectral bands in the spectral do-
main. As in the spatial domain, the BERT module can check different relationships among
its inputs. The final features of the BERT module are injected into the classification layer.

2.3. D2BERT Model Training

Most of deep-learning hyperspectral image classification models, such as HSI-BERT,
are trained based on the one-hot label [26]. However, in the proposed D2BERT model,
the hidden information coming from the intermediate layers of the BERT modules is also
exploited, thus improving the accuracy of the trained model. Accordingly, D2BERT is
trained based on the one-hot label and the multi-layer supervision exploiting intermediate
features. Moreover, the extracted features from spatial and spectral branches are combined
and then given in input to a classification layer to predict the label of the target pixel.
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Suppose that the number of training samples is N and C represents the number of
classes. If the i-th (target) pixel, xi, belongs to class j then Yij = 1, otherwise Yij = 0.
The BERT modules consist of L layers. The output features of each layer are transferred
to an independent classification layer to predict the label. The input features for each
classification layer are obtained by the concatenation of the features, obtained from the
two BERT modules on the two (spatio-spectral) branches. We calculate the cross-entropy
between the output of each classifier and the one-hot label. Therefore, the loss function
given xi, Li, is defined as follows:

Li = (1− α)
[
φ(CL(xi ;θ)

D2BERT , Yij)
]
+ α

[
L−1

∑
l=1

φ(CL(xi ;θl), Yij)

]
(3)

where φ(·) indicates the cross-entropy, CL(·) is the output of the classifier of the l-th
layer, θl indicates the network parameters of the l-th BERT block, CLD2BERT(·) denotes the
classification output, θ shows the overall network parameters of the model, and the weight
α balances the contribution of the information coming from the intermediate layers with
respect to the one from the output layer.

3. Experimental Analysis

Two datasets have been considered for performance assessment. The first dataset is
the Pavia University (PU) dataset containing 610× 340 pixels with 103 spectral bands. Nine
classes are represented in this image with 42,776 labeled pixels. The second dataset is the
Indian Pines (IP). The Indian Pines dataset contains 200 bands and 16 land-cover types.
This dataset has a spatial dimension of 145× 145.

3.1. Experimental Setting

D2BERT is implemented using PyTorch and run on a V100 GPU. For training and
testing, we randomly selected 50, 100, 150, or 200 labeled pixels, dividing the data into ten
sets. The learning rate was set to 3 × 10−4 with 200 training epochs and a dropout rate
0.2. The model uses three encoder layers and two attention heads to balance complexity
and efficiency. Unlike the previous approach, which allowed various region shapes, the
proposed method uses 32× 32 patches for spatial feature extraction using CNNs. The
selected metrics for comparison are the overall accuracy (OA), the average accuracy (AA),
the training/testing times, and the number of parameters.

3.2. Evaluation Metrics

In evaluating the proposed model, two critical metrics are employed: average accuracy
(AA) and overall accuracy (OA). The overall accuracy, OA, of the model is determined
through the equation:

OA =
Sum of Correct Predictions(∑i Xeval)

Total Number of Predictions
(4)

∑i Xeval represents the summation of correct predictions made by the model across all test
instances. The denominator, ‘Total Number of Predictions’, corresponds to the entire set of
predictions made by the model, encompassing both correct and incorrect predictions.

For assessing the accuracy of individual classes within the dataset, average accuracy
(AA) is utilized. This is calculated using the following formula:

AA =
1

Classes Count

n

∑
i=1

∑j=1 X j
i

Ci
(5)

where n is the total number of classes, Ci denotes the count of instances in the ith class, and
X j

i represents the jth correct prediction for the ith class.
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3.3. Ablation Study

In the proposed method, we claimed that the hidden information among spectral
bands can improve the classification performance. In this experiment, this claim is exam-
ined. We performed this experiment on both datasets using 200 training samples. The
classification accuracies from the D2BERT and D2BERT without the spectral BERT branch
are reported in Tables 1 and 2. It is obvious that D2BERT achieves much better results when
the spectral BERT branch is considered. It can be seen that D2BERT achieves the lowest
confusion between classes compared to the D2BERT without the spectral BERT branch
model. Indeed, we have improved the classification performance, as measured by the OA,
by 0.92% and 2.59% for PU and IP, respectively. Moreover, we want to analyze how the use
of the intermediate layer information in the loss function impacts the classification accuracy.
Hence, we evaluate our method without incorporating intermediate layer information in
the loss function. The classification results are reported in Tables 1 and 2. It is clear that
layer information in the loss function plays a crucial role leading to performance reduction
when it is neglected. The OA is improved by 0.72% and 1.74% for PU and IP, respectively.
The corresponding classification maps for these two ablation experiments are depicted in
Figure 2. Overall, D2BERT has shown superior performance compared to the ablated mod-
els on both datasets in terms of fewer misclassifications, especially for more challenging
classes. This demonstrates the effectiveness of capturing spatial and spectral dependencies
simultaneously using dual BERT branches, as well as utilizing intermediate layers during
optimization. Although the performance gaps differ between datasets, they consistently
suggest the significance of both proposed contributions toward achieving state-of-the-art
hyperspectral classification.

Table 1. Classification results of different D2BERT configurations for the Pavia University
(PU) dataset.

Class D2BERT w/o
Spectral Branch

D2BERT w/o
Multi-Supervision

D2BERT

1 95.83 100 100
2 95.82 98.21 99.54
3 96.21 96.07 99.60
4 97.10 99.00 100
5 97.73 95.52 98.32
6 98.94 99.69 100
7 86.96 86.96 100
8 1.00 100 100
9 1.00 82.35 100

OA (%) 98.88 ± 0.10 99.04 ± 0.11 99.79 ± 0.06
AA (%) 98.36 ± 0.18 98.42 ± 0.14 99.68 ± 0.09

Table 2. Classification results of different D2BERT configurations for the Indian Pines (IP) dataset.

Class D2BERT w/o
Spectral Branch

D2BERT w/o
Multi-Supervision D2BERT

1 98.89 98.75 99.93
2 99.78 99.85 99.98
3 96.26 97.98 98.85
4 97.44 98.01 99.41
5 100 100 100
6 99.44 99.98 100
7 98.71 96.81 99.91
8 95.74 95.66 99.02
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Table 2. Cont.

Class D2BERT w/o
Spectral Branch

D2BERT w/o
Multi-Supervision D2BERT

9 98.86 98.62 100
10 94.40 97.85 99.83
11 97.30 97.87 99.86
12 94.48 98.09 100
13 99.47 98.90 100
14 99.56 100 100
15 99.70 96.60 100
16 1.00 92.68 98.25

OA (%) 99.04 ± 0.11 98.05 ± 0.27 99.76 ± 0.03
AA (%) 97.09 ± 1.26 96.22 ± 0.70 99.71 ± 0.05

Ground Truth D2BERT w/o spectral branch w/o multi-supervision Legend classes

Indian Pines
Pavia U

niversity

Original Image

Figure 2. Classification maps achieved by D2BERT in three different configurations and the ground-
truth for IP and PU

3.4. Comparison with Benchmark

This section is devoted to the comparison of the proposed D2BERT approach with
state-of-the-art CNN-based, transformer-based, and BERT-based methods, i.e., CNN [22],
CNN-PPF [30], CDCNN [31], DRCNN [31], Spa-Spe-TR [32], SSRN [33], HybridSN [34],
SST [32], HFFSNet [35], GSPFormer [36], and HSI-BERT [26]. The first analysis is based
on the comparison of the proposed approach varying the number of samples for training
(i.e., 50, 100, 150, and 200) and using the rest of the dataset for testing. Some exemplary
methods belonging to our benchmark have been selected for the sake of clarity, including
the previously developed HSI BERT and some CNN-based methods. The classification
performance varying the number of samples is depicted in Table 3. The better performance
of the proposed method is clear, with OA always greater than one of the other techniques,
whatever the number of training samples.

The proposed model consistently outperforms all five contemporary CNN-based
methods, including HSI-BERT. Thus, D2BERT exhibits a distinct advantage over CNN-
based approaches when dealing with limited training samples.
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Table 3. Classification results (OA%) of IP with different models using different numbers of train-
ing samples. Best results are in boldface

Dataset PU IP

# Samples 50 100 150 200 50 100 150 200

CNN 86.39 88.5 90.89 91.41 80.43 84.32 85.30 86.81
CNN-PPF 88.14 93.35 95.5 96.48 88.34 91.72 93.14 93.90
CDCNN 92.19 93.55 95.5 96.73 84.43 88.27 92.25 94.24
DRCNN 96.91 98.67 99.21 99.56 88.74 94.94 97.49 98.54

HSI-BERT 97.43 98.78 99.38 99.75 91.31 96.86 98.03 99.56
D2BERT 98.58 99.35 99.73 99.79 93.09 98.26 99.14 99.76

The second analysis relies upon the calculation of the OA and AA indexes for all the
compared approaches, training them with 200 samples. The results are reported in Table 4,
the classified maps achieved from the comparing methods are presented in Figure 3 and
the OA graphs are presented in Figure 4. Among the compared methods on the Pavia
University dataset, D2BERT achieves the highest OA and AA indexes, i.e., 99.79% and
99.68%, respectively. The gap in performance is clear with respect to CNN, Spa-Spe-TR,
SSRN, HybridSN, and SST, with improvements in the range from 6.07% to 8.38%. D2BERT
achieves the same remarkable level of accuracy as DRCNN, HSI-BERT, HFFSNet, and
GSPFormer. These results point out the superiority of D2BERT in accurately classifying the
Pavia University data. Focusing on the Indian Pine dataset, D2BERT achieves very high
values of the OA and AA indexes, i.e., 99.76% and 99.68%, respectively, obtaining the top
scores among the compared approaches. The comparison of the classification maps also
shows the superiority of D2BERT. These experiments demonstrate that D2BERT achieves
state-of-the-art classification performance on two benchmark datasets compared to recent
CNN, transformer, and BERT-based methods.

Table 4. Classification accuracy (%) of the compared approaches. The best results are in boldface.

Dataset Pavia University Indian Pines

Methods OA% AA% OA% AA%

CNN 91.41 81.03 86.81 63.30
CNN-PPF 96.48 97.03 93.60 96.38
CDCNN 96.73 95.77 94.24 95.75
DRCNN 99.56 98.22 98.54 99.29

Spa-Spe-TR 93.72 91.00 89.13 75.23
SSRN 91.72 87.56 83.21 68.88

HybridSN 92.18 85.16 83.77 63.18
SST 92.50 85.16 88.51 66.64

HFFSNet 98.27 97.20 86.21 83.53
GSPFormer 99.56 99.25 96.29 92.60
HSI-BERT 99.75 99.86 99.56 99.72
D2BERT 99.79 99.68 99.76 99.71

Nonetheless, D2BERT demonstrates exceptional classification performance, indicating
its effectiveness in accurately classifying the Indian Pine dataset. D2BERT offers advantages
in hyperspectral image classification by capturing global and local dependencies, utilizing
a neural language-based model, employing BERT modules, and incorporating spectral and
spatial features. It explores relations between pixels and spectral bands, reduces complexity,
and uses intermediate information for enhanced performance.

D2BERT is a high-performing model for HSIC, exploiting global and local dependen-
cies, BERT modules, and spectral/spatial features. It efficiently explores relations among
pixels and spectral bands, reducing complexity and using intermediate layer information
to improve performance. Despite a longer training time than HSI-BERT, D2BERT excels in
understanding data dependencies and semantic relationships, achieving a higher perfor-
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mance. Results about the computational burden of the compared approaches are reported
in Table 5. D2BERT stands out as the most efficient model, on par with HSI-BERT, due
to its relatively shallow architecture and concurrent execution of individual heads in the
MHSA. Moreover, D2BERT’s parameter count is comparable to other methods, making it a
competitive choice in hyperspectral image classification tasks. However, some limitations
remain. First, D2BERT incurs higher memory and computational costs than traditional
CNN models due to the introduction of transformers. Second, the model may not fully
capture fine-grained spatial patterns at small scales due to the use of relatively large patches.
Nonetheless, D2BERT also holds promising potential. Its dual-branch architecture is easily
parallelizable, aiding runtime efficiency. Transformers allow modeling long-range depen-
dencies beyond the limitations of patch-based CNN receptive fields. The main idea for
future work is to investigate how lightweight transformer variants could improve efficiency
while maintaining accuracy

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m) (n)

Figure 3. Classification maps of IP achieved by different methods (a) classes, (b) ground truth,
(c) CNN, (d) CNN-PPF, (e) CDCNN, (f) DRCNN, (g) Spa-Spe-TR, (h) SSRN, (i) HybridSN, (j) SST,
(k) HFFSNet, (l) GSPFormer, (m) HSI-BERT, (n) D2BERT.

Figure 4. Classification accuracy varying the number of training samples: (a) PU, (b) IP.
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Table 5. Training times, testing times, and a number of parameters for the compared approaches. H,
S, and M stand for hours, seconds, and millions, respectively. The best results are in boldface.

Training Time (Hours)

Pavia University Indian Pines # Parameters

Methods Train (H) Test (S) Train (H) Test (S) in (M)

CNN 0.31 0.37 0.39 0.21 0.13
CNN-PPF 1.00 16.92 6.00 4.76 0.05
CDCNN 0.13 12.35 0.14 11.21 1.12
DRCNN 0.43 105 0.74 39 0.05

Spa-Spe-TR 0.16 49.2 0.14 19.80 27.65
SSRN 1.28 0.34 2.21 0.06 0.23

HybridSN 0.02 20.4 0.03 3.6 14.85
SST 16.69 0.78 21.43 0.19 29

HFFSNet 0.02 2.51 0.02 3.45 32.74
GSPFormer 0.47 53 0.18 12 0.68
HSI-BERT 0.07 9.28 0.12 3.52 1.21
D2BERT 0.19 16.41 0.26 9.11 2.45

4. Conclusions

In this paper, an image classification model based on BERT, the so-called D2BERT, has
been proposed. It relies upon a dual-dimensional spatial-spectral classification in which
global and local relations and dependencies among neighboring pixels are investigated,
considering both the spatial and spectral domains. D2BERT exploits two BERT modules
to explore spatial and spectral dependencies among pixels belonging to a selected region.
The intermediate information coming from different layers of the BERT modules has been
considered in the loss function, improving the performance of the model. Experimental
results demonstrated the high accuracy of the proposed model outperforming state-of-the-
art CNN, transformer, and BERT methods. Experimental results on two benchmark datasets
demonstrated the effectiveness of D2BERT. On the PU dataset with 200 training samples,
D2BERT achieved an OA of 99.79%, outperforming the second-best method (HSI-BERT) by
over 0.04%. On the more challenging IP dataset, D2BERT attained an overall accuracy of
99.76%, outperforming the second-best method (HSI-BERT) by over 0.2%. When limited
training data (50 samples) was used, D2BERT improved overall accuracy over HSI-BERT
by 1.18% on PU and 1.94% on IP, validating its advantages in low data regimes. Ablation
studies showed removing either the spectral branch or multi-supervision lowered accuracy,
demonstrating the importance of both contributions.
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