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Abstract: Prompt detection of landslides is crucial for reducing the disaster risk and preventing
landslides. However, landslide detection in practical applications still faces many challenges, such
as the complexity of environmental backgrounds, the diversity of target scales, and the enormity
of model weights. To address these issues, this paper proposes a lightweight LBE-YOLO model for
real-time landslide detection. Firstly, a lightweight model is designed by integrating the GhostConv
lightweight network with the YOLOv8n model. Inspired by GhostConv, this study innovatively
designed the GhostC2f structure, which leverages linear thinking to further reduce the model param-
eters and computational burden. Additionally, the newly designed EGC2f structure, incorporating an
attention mechanism, not only maintains the model’s lightweight characteristics but also enhances
the network’s capability to extract valid information. Subsequently, the Path Aggregation Network
(PAN) was optimized by introducing a bidirectional feature propagation mechanism to improve
the model’s feature fusion ability. Additionally, the Bijie landslide dataset was expanded through
data augmentation strategies, thereby further improving the model’s generalization capability. The
experimental results indicate that, compared to the YOLOv8n model, the proposed model increased
accuracy by 4.2%, while the model’s weight and computational load were reduced by 32.0% and
35.5%, respectively. This verifies the superiority of the LBE-YOLO model in landslide target detection,
which will help mitigate the impacts of natural disasters.

Keywords: attention mechanism; landslide detection; feature fusion; GhostConv; YOLOv8n

1. Introduction

Landslides are a widespread and highly destructive natural disaster [1,2]. They present
a significant global threat to both human society and the ecological environment [3]. These
events lead to extensive land damage, substantial financial losses, and a significant loss
of human lives [4,5]. Furthermore, several factors contribute to the increased frequency
and severity of landslides. These factors include global climate change, population growth
in mountainous regions, urbanization, and various human activities, like road construc-
tion and infrastructure development [6–8]. These elements have notably heightened the
landslide risk. Hence, early detection of landslides has become an urgent priority within
monitoring efforts. It plays a crucial role in mitigating their adverse impacts [9,10].

Previous landslide detection methods can be mainly divided into those based on
geological surveying and seismic monitoring [11–13], and those based on computer vi-
sion [14–17]. Geological surveying involves specialized geological engineers conducting
field surveys and observing topography, soil types, rock structures, and groundwater
levels, among other factors, to assess the potential risk of landslides [18]. On the other
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hand, due to the certain correlation between seismic activity and landslides, seismic moni-
toring is also used to detect potential landslide risks, especially in identifying precursors to
landslides [19]. Utilizing seismographic equipment, the magnitude, depth of focus, and
propagation of seismic waves can be measured to determine the relationship between seis-
mic activity and the landslide risk [20]. Hong et al. [21] utilized the Frequency Ratio (FR),
Certainty Factor (CF), and Index of Entropy (IOE) methods to create three groundbreaking
models for assessing landslide susceptibility. Tailored to evaluate the risk of rain-induced
landslides, these models have shown remarkable performance and reliability across train-
ing and validation datasets. Concurrently, Medina et al. [22] developed the Fast Shallow
Landslide Assessment Model (FSLAM), a physically based tool. The FSLAM’s strength
is its rapid and efficient evaluation of regional landslide susceptibility caused by rainfall,
offering essential scientific insights for effective landslide risk management. However, these
traditional methods require expensive equipment, specialized technology, and substantial
human resources, which to some extent limits their application in certain areas, especially
in some developing countries. Moreover, due to the lack of real-time capabilities of these
methods, their utility in emergency situations is constrained. Therefore, landslide real-time
detection methods based on computer vision have been widely adopted [23–25].

In the initial phases, conventional machine learning approaches predominantly hinged
on feature engineering to isolate landslide-related features, subsequently integrating them
with suitable learning models to facilitate landslide identification [26–30]. Dou et al. [31]
employed the Support Vector Machine (SVM) for predicting landslide types, demonstrating
through experimental results that the average training and testing accuracies were 89.2%
and 77.8%, respectively. Additionally, they discovered that the overall accuracy of the
SVM did not exhibit a significant decrease concomitant with a reduction in the number
of training samples. In a separate study, Chen et al. [32] utilized the Random Forest
algorithm, achieving not only an enhancement of the classification accuracy through feature
selection but also a reduction in the feature set, thereby yielding practical information
pertinent to landslide identification. In addition, Selamat et al. [33] applied machine
learning to the study of developing predictive models using an artificial neural network
(ANN) to adequately evaluate the appropriate sampling rate for the Leng Yueh River
Basin (LRB) model. However, these methods mainly depend on manual selection and
feature engineering to determine the feature set, which not only relies on expert knowledge
and has a high time cost but also may not necessarily pinpoint the optimal set of features.
Therefore, deep learning techniques, capable of automatically extracting higher-level feature
representations from raw data, have begun to be applied to handle complex landslide
data [34–36].

The persistent advancement of deep learning has rendered landslides in various re-
gions a focal point of research inquiry [37–42]. Yu et al. [43] employed Convolutional
Neural Networks (CNNs) in conjunction with an optimized Region Growing Algorithm
(RSG_R) to detect landslides. The team trained the CNN model using a dataset compris-
ing images of landslides and subsequently extracted pivotal information, including the
landslide area and boundaries, utilizing the RSG_R algorithm. This approach resulted in
elevated detection accuracy. Despite the prevalent application of Convolutional Neural
Networks (CNNs) for image classification tasks, they typically fall short of furnishing
precise bounding box information for objects. This shortfall, when amalgamated with the
considerable disparities in the dimensions and proportions of landslides, may culminate in
either the omission of certain landslides or inaccurate detections.

In two-stage object detection methodologies, the initial phase involves the generation
of candidate target regions [44]. Subsequently, a detailed detection, along with a bounding
box regression, is performed on these areas in the second stage. This two-step process is
pivotal for pinpointing targets accurately in landslide identification. To detect landslides,
Yun et al. [45] introduced an optimized version of the Mask R-CNN model, which is
predicated on the masked region. The model attains optimization through the incorporation
of attention modules, utilization of bottom-up channels, and the introduction of GA-
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RPN. Experimental outcomes demonstrate that the model achieves an accuracy rate of
92.6%. Jin et al. [46] employed Faster R-CNN for landslide identification and detection,
introducing an efficient algorithm named ERCA. The main goal of this algorithm is to
use the adaptive soft threshold in deep learning to reduce the noise interference of the
image background in complex environments, thereby enhancing the performance of the
target detection algorithm in feature learning. Nevertheless, a notable downside of these
methods is their high computational load. Both the training and inference phases exhibit
relatively slow speeds, a limitation that is particularly impactful given the critical need
for real-time performance in landslide detection. To address this, the single-stage YOLO
model has been introduced [47]. Characteristically, it employs anchor boxes to predict both
the position and the category of the target. The YOLO series models, compared to their
two-stage counterparts, enable more rapid detection [48]. They facilitate object detection
across the entire image simultaneously, obviating the need for additional steps to generate
candidate areas, and thereby find extensive application in landslide detection. Guo et al. [49]
have integrated SBAS-InSAR technology with the YOLO model to detect landslides in
mountainous regions. Their findings indicate that this amalgamated approach augments
the congruence between detection outcomes and reference imagery. However, the issue of
enhancing performance while considering lightweighting was not addressed. Ji et al. [50]
employed a strategy predicated on Convolutional Neural Networks (CNNs) for landslide
identification from high-resolution optical satellite imagery. The incorporation of the
attention mechanism enhances the CNNs’ ability to effectively distinguish unique landslide
features from the background, thereby markedly ameliorating the landslide recognition
performance. Li et al. [51] have refined the YOLOv4 model through the incorporation of
MobileNetv3, depthwise separable convolution, and attention mechanisms, consequently
improving the model’s detection efficacy and speed. Nevertheless, the integration of
multi-scale landslide targets was not contemplated in their work.

Consequently, this paper proposes a model termed LBE-YOLO, which strives to
lighten the model while preserving the detection efficacy. The initial step involves the
integration of the lightweight GhostConv network with the YOLOv8n architecture, thereby
constructing a more lightweight model. Subsequently, an innovative GhostC2f structure
is introduced, aiming to decrease the model’s computational load further and achieve
additional lightweighting. Additionally, a novel EGC2f structure is designed with the
objective of enhancing the model’s capacity for extracting pertinent information while
concurrently reducing the model parameters. The Path Aggregation Network (PAN) is
subsequently optimized to augment the model’s proficiency in capturing target information
across varying scales. Lastly, the Bijie landslide dataset is expanded through the employ-
ment of diverse data augmentation techniques—including random translation, adjustments
of the brightness and saturation, and the introduction of noise—to elevate the model’s
generalization capability.

The remaining sections are structured as follows. The framework of the LBE-YOLO
model is proposed in Section 2. Sections 3 and 4 present the experiment design and case
study. Section 5 offers some thoughts on the findings.

2. Materials and Methods
2.1. Research Area and Dataset Establishment

The research area is in northwestern Guizhou Province, China, at latitudes 26◦21′–27◦46′N
and longitudes 103◦36′–106◦43′E, covering all of Bijie City across about 26,853 square kilometers,
as illustrated in Figure 1. Situated in the transitional zone between the Tibetan Plateau and the
eastern hilly areas, the region is distinguished by its sloping terrain and unstable geological
formations. It is notably characterized by a multitude of steep slopes, contributing significantly to
the region’s geological intricacy. It is a region transitioning from the Qinghai–Tibet Plateau to the
eastern hills, featuring intricate terrain with numerous hills. The annual rainfall ranges from 849
to 1399 mm, making it one of China’s most landslide-prone areas. Additionally, it experiences
frequent new landslides, causing severe environmental damage. Given the challenges of on-site
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investigations, it is crucial to develop efficient computer vision algorithms for early landslide
warning, risk assessment, and post-disaster recovery, especially in emergencies.
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To create a real-time landslide detection method, we conducted experiments using the
Bijie landslide dataset. It includes 770 landslide samples, marked as red dots in Figure 1,
representing actual landslide locations. To enhance the model’s capacity for generalization,
we expanded the dataset to 5770 images. Our data augmentation methods involved
adjusting the brightness, adjusting saturation, adding noise, and random panning, as
shown in Figure 2.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 20 
 

 

transitioning from the Qinghai–Tibet Plateau to the eastern hills, featuring intricate terrain 
with numerous hills. The annual rainfall ranges from 849 to 1399 mm, making it one of 
China’s most landslide-prone areas. Additionally, it experiences frequent new landslides, 
causing severe environmental damage. Given the challenges of on-site investigations, it is 
crucial to develop efficient computer vision algorithms for early landslide warning, risk 
assessment, and post-disaster recovery, especially in emergencies. 

  
(a) (b) 

Figure 1. Map of the Bijie research area. The locations of identified landslides are marked by red 
points. (a) The image of research area. (b) The DEM of research area [50]. 

To create a real-time landslide detection method, we conducted experiments using 
the Bijie landslide dataset. It includes 770 landslide samples, marked as red dots in Figure 
1, representing actual landslide locations. To enhance the model’s capacity for generaliza-
tion, we expanded the dataset to 5770 images. Our data augmentation methods involved 
adjusting the brightness, adjusting saturation, adding noise, and random panning, as 
shown in Figure 2. 

 
Figure 2. Data enhancement diagram: (a) adjusting brightness, (b) adjusting saturation, (c) adding 
noise, and (d) random panning. 

To fulfill the requisites of the experiments, we randomly split the dataset into training 
and validation sets at an 8:2 ratio. We annotated the dataset using the Labeling tool, fo-
cusing on a single category, “landslide”. The training set’s label data include category in-
formation, central coordinates (x, y) of bounding boxes, width, and height measurements, 
all detailed in Figure 3. 

Figure 2. Data enhancement diagram: (a) adjusting brightness, (b) adjusting saturation, (c) adding
noise, and (d) random panning.

To fulfill the requisites of the experiments, we randomly split the dataset into training
and validation sets at an 8:2 ratio. We annotated the dataset using the Labeling tool,
focusing on a single category, “landslide”. The training set’s label data include category
information, central coordinates (x, y) of bounding boxes, width, and height measurements,
all detailed in Figure 3.
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2.2. YOLOV8n Network Structure

YOLOv8 is the latest version in the YOLO series of object detection algorithms, consist-
ing of four different network architectures: YOLOv8n, YOLOv8m, YOLOv8l, and YOLOv8x.
As the model’s depth increases, its detection performance gradually improves. Given the
real-time requirements of landslide detection, we have chosen the lightweight YOLOv8n as
the baseline model and optimized it. The YOLOv8n model is primarily divided into four
parts: the input layer, the backbone layer, the neck layer, and the output layer, as shown in
Figure 4.
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The main task of the input layer is to perform various data augmentation operations
on the input images, including scaling, adjusting hues, and applying Mosaic data augmen-
tation, to adapt to the required training size. The core idea of the Mosaic data augmentation
method is to randomly crop and scale four images, and then to concatenate them into one
image for training data.

The backbone layer is responsible for extracting target features and consists of Conv,
C2f, and SPPF modules. The Conv module performs convolution, batch normalization
(BN), and SiLU activation function operations. The C2f module enhances the gradient
propagation effectively by introducing more cross-layer branch connections, enriching the
information flow of the feature extraction network. Unlike the SPP module in previous
YOLO series, the SPPF module adopts three consecutive pooling operations, reducing
the computational complexity while ensuring the fusion of multiscale information and an
enlarged receptive field.

The neck layer’s main role is feature integration across dimensions. It accomplishes
this by effectively fusing feature maps from various levels using the FPN and PAN. This
process accurately preserves spatial information, resulting in a significant enhancement of
the network’s detection performance.

The output layer is responsible for generating the final predictions of the object
detection. It processes the refined feature maps provided by the neck structure and produces
bounding box coordinates, class probabilities, and other relevant information for each
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detected object. The output layer also applies non-maximum suppression (NMS) to filter
out redundant detections and retain the most confident and accurate predictions. The final
output is a set of bounding.

2.3. Improved YOLOV8n Network Structure
2.3.1. Lightweighting Improvement

In the process of landslide detection, enhancing the real-time accuracy of geological
disaster monitoring is crucial for issuing warnings, reducing casualties, and minimizing
property damage. However, the backbone network of the YOLOv8n model, aiming to
expand the receptive field, extensively adopts convolution operations to increase the
number of channels, thereby requiring more parameters and computational costs, adversely
affecting real-time landslide detection. Hence, this paper employs GhostConv [52] for the
lightweight processing of the YOLOv8n model’s backbone network. The core principle
of GhostConv is to generate feature maps using fewer base convolution kernels and
subsequently produce additional Ghost feature maps through some low-cost operations,
thereby improving the model’s expressive capability without significantly increasing the
computational burden, as illustrated in Figure 5.

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 20 
 

 

(BN), and SiLU activation function operations. The C2f module enhances the gradient 
propagation effectively by introducing more cross-layer branch connections, enriching the 
information flow of the feature extraction network. Unlike the SPP module in previous 
YOLO series, the SPPF module adopts three consecutive pooling operations, reducing the 
computational complexity while ensuring the fusion of multiscale information and an en-
larged receptive field. 

The neck layer’s main role is feature integration across dimensions. It accomplishes 
this by effectively fusing feature maps from various levels using the FPN and PAN. This 
process accurately preserves spatial information, resulting in a significant enhancement 
of the network’s detection performance. 

The output layer is responsible for generating the final predictions of the object de-
tection. It processes the refined feature maps provided by the neck structure and produces 
bounding box coordinates, class probabilities, and other relevant information for each de-
tected object. The output layer also applies non-maximum suppression (NMS) to filter out 
redundant detections and retain the most confident and accurate predictions. The final 
output is a set of bounding. 

2.3. Improved YOLOV8n Network Structure 
2.3.1. Lightweighting Improvement 

In the process of landslide detection, enhancing the real-time accuracy of geological 
disaster monitoring is crucial for issuing warnings, reducing casualties, and minimizing 
property damage. However, the backbone network of the YOLOv8n model, aiming to ex-
pand the receptive field, extensively adopts convolution operations to increase the num-
ber of channels, thereby requiring more parameters and computational costs, adversely 
affecting real-time landslide detection. Hence, this paper employs GhostConv [52] for the 
lightweight processing of the YOLOv8n model’s backbone network. The core principle of 
GhostConv is to generate feature maps using fewer base convolution kernels and subse-
quently produce additional Ghost feature maps through some low-cost operations, 
thereby improving the model’s expressive capability without significantly increasing the 
computational burden, as illustrated in Figure 5. 

 
Figure 5. GhostConv’s structure. 

GhostBottleneck, designed based on GhostConv, is a lightweight structure. It primar-
ily consists of two configurations, having strides of 1 and 2, respectively. The structure 
with a stride of 1 incorporates two 1 × 1 kernel GhostConvs. The initial GhostConv is 
tasked with expanding the channel number and bolstering the network’s expressive ca-
pability. In contrast, the subsequent GhostConv restores the channel count, thereby main-
taining consistency between the input and output feature maps. Residual connections in-
tegrated within this structure facilitate gradient backpropagation and sustain the net-
work’s expressive capacity, as depicted in Figure 6a. 

In the GhostBottleneck structure with a stride of 2, an additional depthwise convolu-
tion is incorporated, based on the stride of 1 structure. Following the channel number 
expansion by the first GhostConv, the depthwise convolution initiates downsampling. 
Subsequently, the second GhostConv, in tandem with a 1 × 1 convolution, restores the 
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GhostBottleneck, designed based on GhostConv, is a lightweight structure. It primarily
consists of two configurations, having strides of 1 and 2, respectively. The structure with
a stride of 1 incorporates two 1 × 1 kernel GhostConvs. The initial GhostConv is tasked
with expanding the channel number and bolstering the network’s expressive capability. In
contrast, the subsequent GhostConv restores the channel count, thereby maintaining consis-
tency between the input and output feature maps. Residual connections integrated within
this structure facilitate gradient backpropagation and sustain the network’s expressive
capacity, as depicted in Figure 6a.

In the GhostBottleneck structure with a stride of 2, an additional depthwise convo-
lution is incorporated, based on the stride of 1 structure. Following the channel number
expansion by the first GhostConv, the depthwise convolution initiates downsampling.
Subsequently, the second GhostConv, in tandem with a 1 × 1 convolution, restores the
channel number, ensuring consistency with the input. This innovative structure adeptly mit-
igates the computational demand and minimizes the gradient information loss. It achieves
this while preserving the richness of the features through a harmonious integration of
downsampling and channel number restoration, as further detailed in Figure 6b.

While the YOLOv8n model, aided by C2f, is proficient in extracting features from diverse
feature map levels, the C2f structure is laden with multiple bottleneck layers, illustrated
in Figure 3c. These bottlenecks encompass convolution kernels of assorted dimensions,
such as 1 × 1 and 3 × 3. Despite facilitating the amalgamation and extraction of features
across varied receptive fields, this composition precipitates an escalation in both the model
parameters and computational intricacy, proving detrimental for real-time landslide detection
applications. Consequently, drawing inspiration from GhostBottleneck, this study introduces
a restructured GhostC2f to optimize the backbone’s C2f structure, as showcased in Figure 7.
In this innovative design, the C2f’s bottleneck layers are supplanted by GhostBottleneck
layers. This modification enables the network to access an enriched feature map array without
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elevating the convolution computational load, thereby reducing the model complexity and
parameter count, and ultimately, enhancing the operational efficiency.
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Figure 7. GhostC2f’s structure.

2.3.2. Bidirectional Feature Pyramid Network (BiFPN)

In landslide detection processes, variations in the size and shape of landslides pose
considerable challenges. YOLOv8n implements a strategy that melds the Feature Pyramid
Network (FPN) and Path Aggregation Network (PAN) to amalgamate multi-scale feature
information. This approach not only captures object information across various scales but
also proficiently merges shallow high-resolution features with deep high-level semantic
features. Nonetheless, this results in an augmentation of both the parameter count and
computational load, while not fully accounting for the weight disparities among different
input features. Consequently, this study introduces a Balanced Feature Pyramid Network
(BIFPN) [53], depicted in Figure 8. This network realizes dynamic feature fusion through
learnable weights instead of using simple feature concatenation or summation. This
strategy enables the network to adjust the weights of each feature adaptively based on the
task requirements, thereby achieving superior performance.
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Figure 8. Structure diagram of the PAN and BiFPN: (a) structure of the PAN; and (b) structure of
the BiFPN.

Initially, the BiFPN discards nodes with only a single input or output edge, given
their relatively lower contributions to feature fusion. This strategy curtails the network’s
complexity, optimizing the architecture of the bidirectional network. Subsequently, the
BiFPN incorporates skip connections between the initial input and output nodes. This
inclusion facilitates cross-level feature fusion, thereby amplifying the accuracy of detection.
In the final analysis, the network perceives a set of paths as a singular feature layer, realizing
the fusion of more sophisticated features through multiple iterations, as shown in Figure 9.
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In addressing the diverse contributions from different resolution input features for
landslide localization and classification, this study employs a swift normalization fusion
method and introduces additional weights. This approach accomplishes feature fusion via
dividing each weight by the cumulative sum of weights, enabling the network to discern
the significance of each feature layer. Consequently, this results in enhanced performance
in landslide detection tasks. The detailed calculation process is depicted in Equation (1):

O = ∑
i

wi
ε + ∑

j
wj

· Ii (1)

where O denotes the output features, Ii represents the input features, and w signifies the
node weights. It is noteworthy that the learning rate ε is set to 0.0001, with the purpose of
preventing the generation of unstable outcomes.
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2.3.3. EGC2f Structure

When faced with practical landslide detection, one often encounters a variety of com-
plex detection backgrounds, which undoubtedly sets stricter standards for the accuracy
of the landslide detection model. The YOLOv8n’s neck layer employs the C2f structure,
allowing for the amalgamation of multi-level, multi-scale semantic information through
feature extraction, cross-layer connections, and integration. However, this design, while im-
proving the detection performance, also escalates computational complexity and parameter
count. Additionally, it does not fully address the channel dependence in the model output.
Consequently, this study, drawing inspiration from the attention mechanism, integrates
Efficient Channel Attention (ECA) [54] into the newly designed GhostC2f, culminating in
the innovative EGC2f structure. Detailed in Figure 10, this structure enhances information
extraction efficacy while maintaining a lightweight model.
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The SE attention mechanism relies on the compression of input features to achieve
information extraction. However, this dimensionality reduction method may hinder the
feature extraction ability during the convolution process. Therefore, the ECA (Efficient
Channel Attention) module introduces a local cross-channel interaction strategy while
keeping the dimensions unchanged, adding only a minimal number of model parameters
but significantly improving performance. The ECA module first performs global average
pooling on the input feature map, then applies a convolution kernel of size K to the
pooled features for dimensionality reduction convolution, and finally calculates the weight
information of each channel through the Sigmoid activation function. These weight pieces
of information are multiplied element-wise with the original input feature map, eventually
generating a feature map with channel attention. The adaptive function expression of the
one-dimensional convolution of size k is shown in Equation (2):

K =

∣∣∣∣ lb(C)
γ

+
b
γ

∣∣∣∣
odd

(2)

where C signifies the count of channels present in the input feature map. The parameter b
is utilized to regulate the deviation in the convolution kernel size. Meanwhile, γ serves to
modify the rate at which the size of the convolution kernel alters in correlation with the
channel count. The notation | | odd denotes the proximity between k and the nearest odd
number to the resultant value of the function.

2.4. Experimental Environment and Assessment Indicators

This study was executed within a Linux operating system, utilizing an Intel Xeon CPU
E5-2680 v3 and an NVIDIA GeForce RTX 2080 Ti GPU with 11 GB VRAM. The PyTorch
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1.7.0 framework and Python version 3.8 facilitated the execution. The experimental setup
incorporated hyperparameters such as an initial learning rate of 0.01, a comprehensive
300 training epochs, and a batch size of 32.

To conduct a thorough assessment of the proposed model’s efficacy in detecting
landslides, this study employed four fundamental evaluation metrics: precision (P), recall
(R), mean average precision (mAP), and F1. The corresponding computational formulas are
presented below (refer to Equations (3)–(6)):

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

F1 =
2 ∗ P ∗ R

P + R
(5)

mAP =

Q
∑

q=1
AP(q)

Q
(6)

where precision quantifies the proportion of actual positive classes within the positive class
predictions made by the model, whereas recall calculates the proportion of actual positive
class samples accurately predicted. The mean average precision (mAP) represents the
average of precision computed at various recall levels, serving as a comprehensive metric
for model evaluation. The F1, the harmonic mean of precision and recall, is employed to
holistically assess the model’s accuracy and stability, providing a balanced view of the
model performance [55,56].

To further evaluate the lightweight characteristics of the model, the following three
core indicators are used: the number of parameters, the number of floating-point operations
(FLOPs), and the size of the model weight file.

The parameters denote the learnable variables within the model, which are iteratively
refined during training to minimize the model’s loss. The FLOPs quantify the number of
floating-point calculations achievable within a specific time frame, serving as a standard
measure of a model’s computational complexity or a particular operation’s computational
expense. The model weight file size indicates the model’s intricacy and the storage space
needed for its weights.

3. Experiments and Results
3.1. Results before and after Optimization

To validate the performance of the proposed LBE-YOLO model, we conducted a
comparative validation with the sub-network YOLOv8n on the same validation dataset
after training. The specific results are presented in Table 1.

Table 1. Comparison of the landslide detection results.

Model Precision (%) Recall (%) F1 (%) mAP (%) Parameters (M)

YOLOv8n 86.4 85.8 86.0 87.7 3.01
LBE-YOLO 90.6 86.5 88.5 91.0 1.86

The data presented in Table 1 reveal a notable enhancement of the performance of
the LBE-YOLO model over YOLOv8n across various metrics, including accuracy, recall
rate, F1, mAP, and precision, registering improvements of 4.2%, 0.7%, 2.5%, and 3.3%,
respectively. This marked superiority primarily stems from the refinement of the BiFPN
architecture, bolstering the model’s capability to amalgamate features at disparate lev-
els. Furthermore, the incorporation of the novel ECA allows the model to concentrate
more on pivotal features instrumental for landslide identification, thereby mitigating the
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influence of inconsequential or disruptive features. Through the implementation of the
innovatively crafted GhostC2f and EGC2f structures, LBE-YOLO has efficaciously dimin-
ished the parameter volume by 38.2%. This advancement is predominantly realized by
alleviating the computational burden of actual convolution operations, consequently aug-
menting the model’s operational efficiency. In essence, the model proposed herein attains
a lightweight stature while preserving its detection efficacy, showcasing an augmented
detection proficiency for landslide targets.

For a holistic assessment and juxtaposition of the model’s efficacy in landslide detec-
tion before and after optimization, a comparative chart of the PR curve of the model, with
an IOU value of 0.5 during the testing phase, was delineated, as depicted in Figure 11.
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The Area Under the Curve (AUC) serves as a pivotal metric for evaluating classifi-
cation models; a larger AUC denotes superior model detection performance. Figure 11
unequivocally illustrates that the optimized model manifests enhanced detection capabilities.

3.2. Ablation Experiments

To demonstrate the effectiveness and lightweight characteristics of the LBE-YOLO
network design, ablation experiments were conducted on the novel structure proposed in
this study. The objective of this approach is to offer a clearer representation of the value
embedded in each enhancement strategy. The relevant experimental results are illustrated
in Figures 12 and 13 and Table 2.
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Table 2. Results of the ablation experiments.

Model mAP (%) Recall (%) FLOPs/G Weight/MB

YOLOv8n 87.7 86.3 8.1 5.92
YOLOv8n + Lightweighting 86.5 84.1 6.4 4.64

YOLOv8n + Lightweighting + BiFPN 87.4 85.7 5.5 3.82
YOLOv8n + Lightweighting + BiFPN + EGC2f (LBE-YOLO) 91.0 86.5 5.5 3.82

As illustrated in Table 2 and Figures 12 and 13, the integration of lightweight en-
hancements and the YOLOv8n sub-model resulted in a 32.0% and 35.5% reduction in the
model’s detection FLOP and weight, respectively. This outcome is primarily attributed
to the significant reduction in the model’s computational load facilitated by GhostConv,
which substitutes certain convolution operations with more cost-efficient linear transfor-
mations, thereby optimizing the model’s operational efficiency. Furthermore, this research
introduced the innovative GhostC2f and EGC2f structures, contributing not only to a fur-
ther decrease in the model’s weight file size and computational demands but also to an
augmentation of the model’s expressive capacity.

Upon the enhancement of the BiFPN, the model experienced a notable increase of 0.9%
in its mAP. This improvement is primarily attributed to the bidirectional information flow
enabled by the BiFPN, ensuring efficient integration of features across multiple scales. As a
result, the model can identify targets of varying scales with greater precision. Additionally,
the incorporation of learnable weights is crucial to balancing the contributions of features
at different levels, thereby enhancing the expressive capacity of the feature pyramid.

To elucidate the disparities in feature expression before and after the enhancement,
feature maps from both model versions were visualized, as illustrated in Figure 14. An
examination of the visualized results indicates that the feature maps generated by the
BiFPN demonstrate superior globality and multi-scalability. This suggests that the feature
maps contain a more diverse and rich set of information, significantly improving the
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model’s ability to accurately detect and identify a wide range of complex and variable
landslide features.

Upon the integration of the EGC2f structure, a significant enhancement was observed
in the model’s mAP value, marking a 3.6% increase. This improvement is primarily
attributed to the incorporation of Efficient Channel Attention (ECA). ECA, by learning
weights across various channels, can adaptively amplify the features of crucial channels
while diminishing those of non-essential ones. This adaptability allows the model to
focus more on features beneficial to the task at hand. Additionally, ECA utilizes one-
dimensional convolution for calculating the channel attention, effectively avoiding the
high computational complexity associated with global self-attention, thereby enhancing
the model’s computational efficiency.
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Figure 14. Feature visualization maps: (a) YOLOv8n + Lightweighting; and (b) YOLOv8n +
Lightweighting + BiFPN.

To empirically evaluate the impact of the introduced EGC2f structure on the model’s
performance, a Grad-CAM visualization analysis was conducted both before and after the
structure’s integration. An analysis of Figure 15 indicates that, following the incorporation
of the EGC2f structure, the model demonstrates an improved concentration on accurate
and relevant feature regions during classification or localization tasks. This refinement
significantly boosts the model’s detection efficacy for landslide targets across diverse scales.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 20 
 

 

To empirically evaluate the impact of the introduced EGC2f structure on the model’s 
performance, a Grad-CAM visualization analysis was conducted both before and after the 
structure’s integration. An analysis of Figure 15 indicates that, following the incorporation 
of the EGC2f structure, the model demonstrates an improved concentration on accurate 
and relevant feature regions during classification or localization tasks. This refinement 
significantly boosts the model’s detection efficacy for landslide targets across diverse 
scales. 

  
(a) (b) 

Figure 15. Grad-CAM visualization: (a) YOLOv8n + Lightweighting + BiFPN; and (b) LBE-YOLO. 

To elucidate the model’s detection capabilities, multiple landslides were chosen for 
evaluation, the results of which are illustrated in Figure 16. In this figure, the detection 
outcomes are denoted by rectangular boxes, each accompanied by the corresponding cat-
egory labels and associated confidence levels. It is evident that the LBE-YOLO model ex-
hibits outstanding performance in identifying landslides, accurately discerning landslides 
of diverse scales with significant confidence. 

Figure 15. Grad-CAM visualization: (a) YOLOv8n + Lightweighting + BiFPN; and (b) LBE-YOLO.

To elucidate the model’s detection capabilities, multiple landslides were chosen for
evaluation, the results of which are illustrated in Figure 16. In this figure, the detection



Remote Sens. 2024, 16, 534 14 of 19

outcomes are denoted by rectangular boxes, each accompanied by the corresponding
category labels and associated confidence levels. It is evident that the LBE-YOLO model
exhibits outstanding performance in identifying landslides, accurately discerning landslides
of diverse scales with significant confidence.
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3.3. Mainstream Algorithm Experiments

To assess the detection efficacy and lightweight features of the LBE-YOLO model, a
comparative experimental analysis was conducted against both single-stage and two-stage
mainstream object detection models. The outcomes of this comparative study are depicted
in Figure 17 and Table 3.

Table 3 elucidates that the Faster R-CNN model exhibits a relatively diminished de-
tection accuracy, predominantly attributed to its reliance on single-scale feature maps for
generating anchor boxes. This attribute compromises its efficacy in detecting multi-scale ob-
jects in comparison to the alternative two-stage detection models. Additionally, the intricate
network structure and substantial weight file size of the Faster R-CNN present obstacles
for terminal deployment. As the network deepens, there is a concomitant reduction in the
resolution of the feature map, thereby impairing the SSD model’s proficiency in detecting
smaller-scale objects, such as landslides. Conversely, YOLOv3-Tiny, while preserving the
model lightweighting, employs feature maps of three distinct scales for the bounding
box predictions, thereby improving the precision in locating landslides of various scales.
YOLOv5, a progression from YOLOv3, has refined the loss function, guiding the model to
focus on learning pivotal features during the training phase. This model also integrates a
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variety of data augmentation techniques, thereby enhancing the model’s generalization ca-
pability. YOLOv7-Tiny, despite achieving lightweighting through a diminution in the model
weights, witnesses a corresponding decrease in its capability for information extraction.
The proposed LBE-YOLO model, while sustaining a lightweight framework, augments
its ability for valid information extraction and optimizes feature fusion for landslides of
varying scales, ultimately leading to improved detection performance.

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 17. Comparison results with mainstream models. 

Table 3. Comparison results with mainstream models. 

Model Precision (%) Recall (%) F1 (%) mAP (%) Weight/MB 
Faster-RCNN 79.6 85.3 82.4 85.7 108.45 

SSD 80.1 86.6 83.2 86.8 97.03 
YOLOv3-tiny 85.3 87.5 86.4 87.3 16.46 

YOLOv5 87.6 88.2 87.9 89.2 13.69 
YOLOv7-tiny 88.2 84.0 86.0 88.6 11.67 
LBE-YOLO 90.6 86.5 88.5 91.0 3.82 

Table 3 elucidates that the Faster R-CNN model exhibits a relatively diminished de-
tection accuracy, predominantly attributed to its reliance on single-scale feature maps for 
generating anchor boxes. This attribute compromises its efficacy in detecting multi-scale 
objects in comparison to the alternative two-stage detection models. Additionally, the in-
tricate network structure and substantial weight file size of the Faster R-CNN present ob-
stacles for terminal deployment. As the network deepens, there is a concomitant reduction 
in the resolution of the feature map, thereby impairing the SSD model’s proficiency in 
detecting smaller-scale objects, such as landslides. Conversely, YOLOv3-Tiny, while pre-
serving the model lightweighting, employs feature maps of three distinct scales for the 
bounding box predictions, thereby improving the precision in locating landslides of vari-
ous scales. YOLOv5, a progression from YOLOv3, has refined the loss function, guiding 
the model to focus on learning pivotal features during the training phase. This model also 
integrates a variety of data augmentation techniques, thereby enhancing the model’s gen-
eralization capability. YOLOv7-Tiny, despite achieving lightweighting through a diminu-
tion in the model weights, witnesses a corresponding decrease in its capability for infor-
mation extraction. The proposed LBE-YOLO model, while sustaining a lightweight frame-
work, augments its ability for valid information extraction and optimizes feature fusion 
for landslides of varying scales, ultimately leading to improved detection performance. 

4. Discussion and Analysis 
The timely identification of landslides holds paramount significance for issuing 

timely warnings and enacting emergency procedures to minimize damage. Accordingly, 
this manuscript presents an LBE-YOLO model designed specifically to strike a balance 

Figure 17. Comparison results with mainstream models.

Table 3. Comparison results with mainstream models.

Model Precision (%) Recall (%) F1 (%) mAP (%) Weight/MB

Faster-RCNN 79.6 85.3 82.4 85.7 108.45
SSD 80.1 86.6 83.2 86.8 97.03

YOLOv3-tiny 85.3 87.5 86.4 87.3 16.46
YOLOv5 87.6 88.2 87.9 89.2 13.69

YOLOv7-tiny 88.2 84.0 86.0 88.6 11.67
LBE-YOLO 90.6 86.5 88.5 91.0 3.82

4. Discussion and Analysis

The timely identification of landslides holds paramount significance for issuing timely
warnings and enacting emergency procedures to minimize damage. Accordingly, this
manuscript presents an LBE-YOLO model designed specifically to strike a balance between
optimal detection performance and model lightweighting. When compared to the YOLO
series of detection models, it exhibits superior performance in landslide detection.

YOLOv8 stands as the most advanced model in the realm of single-stage object detec-
tion, demonstrating exceptional capabilities. However, the attainment of high performance
with this model often necessitates significant computational resources, thereby posing
challenges for its deployment on terminal devices. In light of this, the present study amal-
gamates the benefits derived from the GhostConv and YOLOv8n sub-models, thereby
maintaining elevated performance levels while simultaneously reducing the computational
and storage prerequisites. Furthermore, the introduction of a novel GhostC2f structure
serves to optimize the standard convolution operations, resulting in a reduction in both the
number of parameters and the computational expenditure. Simultaneously, an innovative
EGC2f structure is devised, contributing to further model lightening and augmenting the
extraction of pertinent information, which in turn enhances the detection performance. In
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addition, the refinement of the BiFPN enables the effective amalgamation of feature maps
derived from varying levels, thereby improving the model’s perceptibility for objects of
diverse dimensions and proportions. The empirical data delineated in Tables 1–3 unequivo-
cally showcase the exemplary performance of the proposed model in detecting landslides.

The data analysis from Experiment 3.3, presented in Table 3, indicates that the Faster-
RCNN model has lower accuracy and that its significant model weight limits hardware
deployment. Conversely, the SSD model shows higher detection accuracy but struggles
to process uniquely shaped or sized targets due to its reliance on fixed-size anchor boxes
during feature extraction. The YOLOv3-tiny model, with its straightforward architecture
of stacked convolutional and pooling layers, substantially reduces both the network’s
parameters and the computational requirements. However, this reduction, resulting from
fewer convolutional layers and filters, compromises its feature extraction efficiency, partic-
ularly impacting accuracy with targets of diverse sizes. In contrast, YOLOv5 enhances the
feature extraction and information flow by integrating the PANet structure. This integration
effectively combines features across various scales, thereby improving the detection of
differently sized targets. The YOLOv7-tiny model, employing a combination of the ELAN
and MaxPool2d structures, further boosts the feature extraction efficiency. Despite these
improvements, the model’s weight size remains considerably large. The LBE-YOLO model
proposed in this paper not only enhances the detection performance and achieves model
lightweighting but also strengthens the perception of targets at different scales. It can
efficiently identify landslides in complex backgrounds, providing a new perspective for
landslide detection.

Nonetheless, this study presents several limitations pertaining to the model optimiza-
tion. The amalgamation of the GhostConv and YOLOv8n sub-models, complemented
by the advent of the innovatively designed GhostC2f structure, has indeed mitigated the
model’s computational burden. However, this adaptation concurrently compromises its
capability for information extraction. In the course of optimizing the Path Aggregation Net-
work (PAN), the output garnered from the feature pyramid has not been fully harnessed,
thereby signifying potential enhancements in detection performance. Moreover, the dataset
employed in this research omits diverse and complex weather conditions such as nocturnal
settings, torrential rain, heavy snowfall, and dense fog.

In the future, structures that balance detection performance and are lightweight
will be designed to enhance landslide detection capabilities and optimize structures for
better identification of landslides of different scales. At the same time, endeavors will be
undertaken to diversify dataset types and broaden the range of scenarios encompassed,
thereby bolstering the model’s generalization proficiency.

5. Conclusions

This investigation introduces LBE-YOLO, a trailblazing deep learning methodology
devised for the dynamic and effective identification of landslides via computational means.
LBE-YOLO integrates two distinct sub-networks, namely GhostConv and YOLOv8n. Ghost-
Conv is instrumental in refining the network’s architecture for efficiency, whereas YOLOv8n
concentrates on global feature extraction. The novel introduction of the GhostC2f and
EGC2f structures was aimed at both streamlining the model and enhancing its proficiency
in capturing critical data. Furthermore, significant enhancements were implemented in
the Path Aggregation Network (PAN) to advance the feature fusion processes. Empirical
evidence attests to LBE-YOLO’s eminent capability in detection, outstripping other preva-
lent object detection frameworks. Future endeavors will focus on advancing this model’s
efficiency, with an emphasis on elevating its detection prowess and exploring possibilities
for its application in end-user devices.
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