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Abstract: With the emergence of the Smart City concept, the rapid advancement of urban three-
dimensional (3D) reconstruction becomes imperative. While current developments in the field
of 3D reconstruction have enabled the generation of 3D products such as Digital Surface Models
(DSM), challenges persist in accurately reconstructing shadows, handling occlusions, and addressing
low-texture areas in very-high-resolution remote sensing images. These challenges often lead to
difficulties in calculating satisfactory disparity maps using existing stereo matching methods, thereby
reducing the accuracy of 3D reconstruction. This issue is particularly pronounced in urban scenes,
which contain numerous super high-rise and densely distributed buildings, resulting in large dis-
parity values and occluded regions in stereo image pairs, and further leading to a large number
of mismatched points in the obtained disparity map. In response to these challenges, this paper
proposes a method to refine the disparity in urban scenes based on open-source GIS data. First,
we register the GIS data with the epipolar-rectified images since there always exists unignorable
geolocation errors between them. Specifically, buildings with different heights present different
offsets in GIS data registering; thus, we perform multi-modal matching for each building and merge
them into the final building mask. Subsequently, a two-layer optimization process is applied to the
initial disparity map based on the building mask, encompassing both global and local optimization.
Finally, we perform a post-correction on the building facades to obtain the final refined disparity map
that can be employed for high-precision 3D reconstruction. Experimental results on SuperView-1,
GaoFen-7, and GeoEye satellite images show that the proposed method has the ability to correct
the occluded and mismatched areas in the initial disparity map generated by both hand-crafted
and deep-learning stereo matching methods. The DSM generated by the refined disparity reduces
the average height error from 2.2 m to 1.6 m, which demonstrates superior performance compared
with other disparity refinement methods. Furthermore, the proposed method is able to improve the
integrity of the target structure and present steeper building facades and complete roofs, which are
conducive to subsequent 3D model generation.

Keywords: open-source GIS data; optical remote sensing images; urban scene; disparity refinement

1. Introduction

With the rapid development of remote sensing technology, large numbers of very-
high-resolution (VHR) satellite sensors make it possible to automatically reconstruct three-
dimensional (3D) surface models with sub-meter resolution, which are widely applied to
city planning, disaster monitoring, and other fields. Nevertheless, the demands for the
accuracy of 3D models across diverse applications are continually increasing. Consequently,
the efficient reconstruction of high-precision 3D models has become a research hotspot.
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In the process of 3D reconstruction, stereo matching is one of the critical steps, which
refers to pixel-by-pixel matching between the rectified image pair to calculate a disparity
map. Then, according to the disparity map and the stereoscopic relationship between the
image pair, the depth of each pixel in the image can be restored. Therefore, the accuracy of
the stereo matching algorithm results significantly influences the quality of 3D reconstruc-
tion. In the field of computer vision, scholars have extensively researched stereo matching
algorithms. These stereo matching methods can be divided into two categories: traditional
stereo matching methods [1–4] and deep learning-based stereo matching methods [5–9].
However, in practical applications, mismatched pixels caused by occlusion areas or low-
texture areas inevitably appear in the disparity maps calculated by various stereo matching
methods. Thus, many scholars have delved into researching disparity refinement methods
to correct the values of mismatched points in the disparity map caused by occlusion and
other issues. The majority of existing disparity refinement methods follow a three-step
strategy: detection, filling, and filtering. Among them, left–right consistency checking
(LRC) is a widely employed technique for outlier detection [10]. Additionally, Jang and
Ho [11] proposed an energy function to identify occlusion areas and classify them into
leftmost occlusions and inner occlusions. Banno and Ikeuchi [12] labeled pixels failing the
LRC as low confidence and introduced directional anisotropic diffusion to refine them.
Huang and Zhang [13] proposed a fast refinement method including belief aggregation
for outlier detection and belief propagation for padding. Mei et al. [14] detected outliers
and classified all outliers into occlusion and mismatching, and subsequently performed
corresponding interpolation on these outliers through iterative region voting. Ma et al. [15]
utilized bilateral filtering and weighted median filtering to refine disparity. Yan et al. [16]
conducted plane and inclined plane fitting of disparity based on the superpixel segmen-
tation results of color images to achieve the correction of outliers in the disparity map.
However, this method requires the input initial disparity to meet specific constraints and is
susceptible to the input color image.

Although scholars in the field of computer vision have delved into various methods
for refining disparity maps, these methods encounter challenges when large occlusion
areas exist in the images. Precisely refining abnormal matching points caused by occlusion
becomes a struggle, and, in certain instances, the methods may inadvertently introduce
cumulative errors. Consequently, rectifying disparity calculation errors induced by occlu-
sion remains a significant challenge in computer vision. In the context of remote sensing
images, this challenge becomes even more pronounced. The complexity of covered scenes
in remote sensing images exacerbates occlusion and mismatch situations, which places
higher requirements on the performance of disparity refinement methods in processing
occluded areas. Furthermore, in contrast to natural images in computer vision, remote
sensing images exhibit changeable and complex imaging conditions. Additionally, there are
problems in remote sensing images such as large differences in target scales, inconsistent
grayscale of the same target between different images, and susceptibility to interference
from solar shadows. As a result, traditional disparity refinement methods in the field of
computer vision often yield unsatisfactory results when applied to remote sensing images,
particularly in urban areas characterized by substantial differences in target height and
densely distributed buildings, as shown in Figure 1. Figure 1 illustrates an example of 3D
reconstruction in an urban scene. Among them, the yellow area in Figure 1a represents the
building facades, corresponding to the covered area in Figure 1b. Consequently, pixels in
these facades struggle to find correct corresponding pixels during stereo matching, leading
to mismatched points in the calculated disparity map, as highlighted in the red box in
Figure 1c. In the generating of DSM, these pixels are interpolated to abnormally high
elevation values, as shown in the white box in Figure 1d. In Figure 1b, the building facades
are obscured in the left image, inducing a slope in the DSM generated with the left image
as the reference, as shown in the blue box in Figure 1d. Therefore, when there are objects
with large disparity values in the image pair (as illustrated in Figure 1c, where the disparity
value difference between the building point and the ground point can reach 200 pixels),
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obvious building facades and occlusion areas emerge, resulting in numerous mismatched
points in the disparity map. Eventually, problems such as inclined building facades, unclear
edges of building roofs, and irregular building shapes are present in the generated DSM.

(a) (b)

(c) (d)
Figure 1. The example of 3D reconstruction results for buildings with large occluded areas in the
image. (a) The left image. (b) The right image. (c) The disparity map calculated by applying (a) as
the reference image. (d) The generated DSM. The yellow areas in (a,b) represent building facades.
The values within the boxes marked in (c) are the pixel disparity values.

In addition, with the emergence of concepts such as Smart City, the demands for the
accuracy of three-dimensional urban reconstruction in urban planning and other fields have
increased sharply. Buildings, serving as pivotal components, hold the utmost significance
in the construction of the Smart City. The precise geometric structure and topological infor-
mation of building models play a good supporting role in urban infrastructure planning
and Smart City construction [17]. Therefore, the accurate extraction of 3D building models
has become a focal point of attention due to its potential to significantly enhance Smart City
development. Most of the existing 3D building model extraction methods rely on aerial
photography and laser point cloud data, which usually require substantial human resources
and incur high costs. In contrast, 3D reconstruction of buildings based on VHR satellite
images presents an opportunity for substantial cost reduction, addressing an urgent need.
Nevertheless, as mentioned earlier, urban scenes captured in remote sensing images may
encounter significant occlusion and mismatching challenges arising from buildings. This
has prompted scholars to conduct in-depth research on reconstruction methods specifically
tailored for building targets in remote sensing images. Huang et al. [18] utilized ZY-3
satellite images and combined them with the building height data provided by A-map,
proposing a multi-view, multi-spectral, and multi-objective neural network method to
extract building footprints and heights. Qi et al. [19] estimated building height based on
the building shadow in Google Earth images, but this method imposes relatively high
requirements on building height, satellite imaging angle, solar altitude angle, and azimuth
angle. Liu et al. [20] employed the random forest method to extract building footprints from
images and combined it with DSM to estimate building heights. However, the accuracy
of extracting building footprints via the random forest method is relatively low, and the
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building height estimation is susceptible to ground elevation value in DSM. Wang et al. [21]
proposed a method that initially extracts building footprints from GF-7 satellite images
using a multi-stage U-Net and then derives building heights based on the DSM generated
from the images. However, the effectiveness of this method relies on the accuracy of the
DSM generated from the images. In situations where the satellite zenith angle is large,
resulting in a large occlusion area and prominent building facades, incorrect elevation
values around building footprints in the DSM may occur, consequently leading to errors in
building height estimation.

In general, although serious target occlusion and mismatch problems are prevalent in
stereo matching of remote sensing images, the corresponding disparity refinement meth-
ods for stereo matching are rarely studied but focus on refining the results generated in
subsequent steps. For building targets, current refined reconstruction methods mostly
include two categories: shadow-based height estimation methods and DSM-based height
extraction methods. However, the effectiveness of height extraction methods based on
building shadows is significantly compromised by the considerable variability in shadows
under different imaging conditions in remote sensing images. For building reconstruction
methods relying on DSM, their accuracy is susceptible to the satellite observation angle and
building height, especially the severe occlusion of super high-rise buildings in remote sens-
ing images. Therefore, achieving satisfactory results with existing building reconstruction
methods becomes challenging in the presence of super high-rise building targets. Moreover,
the majority of these methods only focus on reconstructing building targets and ignore
other objects.

Therefore, in order to achieve the refined reconstruction of super high-rise buildings
while preserving other ground objects, we employ the disparity refinement process based
on the stereo matching results. Among them, in the building extraction step, we introduce
GIS data for assistance. The currently available two-dimensional GIS data contain abundant
ground object information, such as building footprints, and have been applied in various
fields such as earthquake disaster detection [22]. By utilizing the building footprint infor-
mation from GIS data to replace building detection in remote sensing images, the impact
of shadows and satellite observation angles on reconstruction can be reduced, and the
integrity and regularity of building structures can also be improved.

Based on the above analysis, we propose a remote sensing image disparity refinement
method to achieve accurate reconstruction of super high-rise building targets by combining
GIS data information. First, to extract building targets from images, we propose a precise
building mask extraction method from GIS building vectors. By employing multi-modal
matching of GIS building vectors with building roofs, the building roof mask of the image
is calculated, and the building footprint and facade mask are further determined through
offset estimation. In comparison to traditional methods of building extraction from images,
the proposed building mask extraction method can obtain more accurate prior shape
information of buildings from GIS vectors and therefore demonstrates higher accuracy.
Subsequently, according to the extracted building mask, the proposed method employs
a two-layer optimization process based on Markov Random Fields and RANSAC fitting,
combined with post-correction of the disparity in the region of interest, through which
the final refined disparity is obtained. The proposed method effectively solves mismatched
points arising from super high-rise building facades and occlusions in the disparity map,
consequently enhancing the accuracy of DSM generation.

2. Materials and Methods

This paper proposes a stereo matching disparity refinement method for remote sensing
images. With the assistance of GIS vector data, the disparity values of buildings are refined,
laying the foundation for generating high-precision DSM. The inputs for this disparity
refinement method encompass an optical remote sensing image pair, publicly available
DEM data, and open-source GIS data. The output is the disparity map refined for the
disparity values of building targets. Figure 2 illustrates the overall flow of DSM generation
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using the proposed disparity refinement method. The entire processing flow roughly
includes 5 steps of the proposed disparity refinement method and the final DSM generation
step. Among them, steps 1–3 are described in Section 2.1, step 4 is described in Section 2.2,
and steps 5–6 are elaborated in Section 2.3.

Figure 2. Schematic diagram of the processing flow of DSM generated after processing by the
proposed disparity refinement method. The overall process comprises 6 steps, with steps 1–5
constituting the disparity refinement phase, and step 6 is the DSM generation step based on the
refined disparity map.

2.1. Image Pair Correction Processing and Initial Disparity Map Generation

First, before all processes, it is necessary to preprocess the remote sensing image
pair. We employ the Rational Function Model (RFM) to establish the relationship between
object space and image space. The RFM is a generalized sensor model that can replace
the linear array pushbroom camera imaging model and Synthetic Aperture Radar (SAR)
image imaging model [23]. This model makes full use of the auxiliary parameters of
satellite images, determining the model coefficients through a fitting process against existing
rigorous geometric models. In practical applications, RFM is usually represented by
Rational Polynomial Coefficients (RPC). Notably, there are errors from ephemeris and
satellite drift in the obtained RPC, which need to be eliminated by bundle adjustment [24].

Subsequently, epipolar rectification is performed on the preprocessed image pair. This
process effectively reduces the search range for matching points between image pairs from
2D to 1D, thereby significantly enhancing the accuracy and efficiency of stereo matching.
However, for remote image pairs lacking a strict stereoscopic relationship, traditional
epipolar constraints become inapplicable [25]. To overcome this challenge, we employ the
approximate epipolar resampling method based on the local elevation surface to rectify the
image pair and obtain the epipolar-rectified image pair [26]. All subsequent processing is
conducted on the epipolar-rectified images.

After obtaining the epipolar-rectified images, we calculate the initial disparity map
through stereo matching. In the selection of the stereo matching method, we employ both
an optical flow method designed for large disparity [27] and a deep-learning-based stereo
matching0 network [28] to calculate the disparity map.

2.2. GIS Vector Data Processing and Building Mask Generation

The GIS vector data we obtained contain abundant building footprint information,
neatly organized within a shapefile, utilizing polygonal surface vectors. From the shapefile,
we can extract the latitude and longitude coordinates of each vertex constituting the
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building footprint polygons. However, owing to inherent geolocation errors in GIS data
and the absence of precise building heights, the building footprints cannot be accurately
mapped directly into remote sensing image space using RPC. Instead, there is an offset
between the mapped footprint and the true location of the building in the image. Therefore,
it is necessary to register the footprints with the buildings in the remote sensing images.
Traditional methods of registering building vectors and images often rely on the affine
transformation model and apply a unified transformation across all vectors. However,
when projecting vectors corresponding to buildings of varying heights onto epipolar-
rectified remote sensing images, the offsets from their true positions differ, causing a
uniform vector application, which is impractical. To address this, we propose a monolithic
model-oriented registration algorithm designed for building footprints and remote sensing
images. The specific implementation steps are as follows:

1. Building polygon projection. Initially, we extract each building vector within the
geographical scope of the processing area from the GIS data, encompassing coordi-
nates of vertex and building size. Subsequently, utilizing the DEM, refined RPCs,
and the parameters of epipolar rectification, we transform all individual building
polygons into the image space of the epipolar-rectified image. Thus, we obtain the
initial building mask of the epipolar-rectified image, denoted as buildingshp.

2. Multi-modal and multi-building matching. For each building mask, we employ
the multi-modal matching algorithm [29] to align the mask with the corresponding
building roof in the epipolar-rectified image, and the registered building mask is
denoted as buildingroo f . Moreover, to enhance the stability of the matching results,
we crop the epipolar-rectified image based on the position of the building mask in
buildingshp, preserving solely the image content around the building target to mitigate
the interference of external information in the image. Then, we check the registration
accuracy after the building mask is rectified using the matching offset obtained from
the multi-modal matching method. An example is illustrated in Figure 3. As shown
in Figure 3a, noticeable offsets exist between the original building polygons and
their corresponding building roofs in the image, and the offsets of each polygon are
inconsistent. Moreover, these offsets may even exceed 100 pixels, posing significant
challenges for the matching work. After registration using our method, the polygons
are adjusted to align with the positions of the building roofs, as shown in Figure 3b.

3. Building facade extraction. Based on the registered building mask and RPCs, we
calculate the offset of each building footprint relative to the roof in the image by
utilizing the disparity values of the building roof and surrounding ground points
from the initial disparity map. The process includes the following steps: (1) obtain
the disparity values for the roof and ground, respectively; (2) utilize RPCs and the
disparity values obtained in step (1) to estimate the roof height (h1) and ground height
(h2); and (3) by giving different height values (h1 and h2) to the same point in object
space, calculate the offset of the building footprint relative to the roof. As a result,
we obtain the building footprint mask in the epipolar-rectified image, denoted as
building f oot. By analyzing the offset between building f oot and buildingroo f , we obtain
the building facade mask in the image, denoted as building f acade. It is essential to
highlight that in this process, to mitigate the adverse impact of unmatched points on
the offset calculation of the building footprint relative to the roof, we only consider
pixels with high disparity confidence for the calculation. Hence, the confidence level
of each pixel disparity value needs to be determined in advance.

4. Disparity-based building mask segmentation. Given that open-source building vec-
tors provide only basic footprint shape information and are inadequate for the accurate
reconstruction of buildings with complex roof structures, we perform a secondary
segmentation on the building mask. We employ a statistical region merging-based
segmentation method to extract multiple level height planes within each buildingroo f
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based on the disparity distribution within the roof superpixel [30]. For any two
regions, R1 and R2, the merging criterion is defined as follows:

P(R, R′) =

{
true, if|R̄ − R̄′| ≤

√
b2(R) + b2(R′)

false, otherwise,
(1)

b(R) = g
√
(1/(2Q|R|)) ln(|R|R||/δ), (2)

where δ = 1/(6N2). |R| represents the number of pixels in the image area R. g
denotes the gray level of the input data(usually set to 256). Q is employed to eval-
uate the possibility of merging two regions. This parameter plays a crucial role in
controlling the number of regions in the segmentation result. Given that the data
input in this paper is confined to a narrow range, primarily encompassing the roof,
the scenario is relatively simple. In practical applications, we set Q to a smaller value,
specifically 20. If P is true, the two regions will be merged, otherwise, they will remain
separate. Figure 4 gives an example of disparity-based building mask segmentation.
The building roofs illustrated in Figure 4a,d exhibit complex multi-layer structures.
However, the existing building vector data merely label them into two polygons,
as shown in Figure 4b,e. Through the secondary segmentation of the building roof
vector based on disparity distribution, we obtain the roof mask that more accurately
represents the building height, as shown in Figure 4c,f.

5. Building mask generation. Finally, by merging building f acade corresponding to each
building vector with the secondary segmented buildingroo f , we derive the mask
corresponding to all buildings within the range of the epipolar-rectified image.

(a) (b)
Figure 3. Schematic diagram of the position of building polygon vectors in the epipolar-rectified
image. (x, y) represents the image coordinates of the point. col o f f set and row o f f set represent the
offsets of the x coordinate and y coordinate, respectively. (a) The raw GIS building polygon vectors
and the image. (b) The registered GIS building polygon vectors and the image.

(a) (b) (c) (d) (e) (f)

Figure 4. The secondary segmentation results of the registered building roof vectors. (a) Image
of building-1. (b) Registered roof mask of building-1. (c) Roof mask of building-1 after secondary
segmentation. (d) Image of building-2. (e) Registered roof mask of building-2. (f) Roof mask of
building-2 after secondary segmentation.
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2.3. Disparity Map Refinement Based on Building Mask

Utilizing the building mask acquired in the previous step, we perform refinement
on the initial disparity map. This refinement process includes a preliminary segmenta-
based disparity refinement (SDR) [16] and post-correction of disparity values in the region
of interest. It should be emphasized that compared with the original SDR method, we
employ the building mask obtained in Section 2.2 instead of the image superpixel data
to guide the correction of the disparity map. The overall flowchart is shown in Figure 5.
The SDR method includes two layers of optimization. The first layer is a global optimization
layer that estimates the ground-parallel disparity planes through Markov Random Field
(MRF) [31], depicted by the orange dashed box in Figure 5. The second layer is the local
optimization layer, utilizing the RANSAC fitting method [32,33] to estimate the disparity
planes tilted compared to the ground, as illustrated in the green dotted box in Figure 5.

Figure 5. The flowchart for refining the disparity map based on the obtained building mask. The or-
ange dotted box is the local optimization part of the disparity map, and the green dotted box is
the global optimization part. {sk} is the set of building superpixels obtained based on the building
mask. µs is the mean disparity of the superpixel s. N3d represents the 3D neighborhood relationship
between superpixels. πs and π′

s are the estimated disparity planes of superpixel s.

In the first global optimization layer, the disparity distribution within superpixel s is
initially modeled as a normal distribution:

Normd(µs, σs) =
1√

2πσs
exp

(
− (d − µs)

2

2σ2
s

)
, (3)

where d represents the disparity, and µs and σs represent disparity mean and variance of
superpixel s, respectively. Subsequently, based on the principles of MRF, the superpixels
within the input image are transformed into graph nodes, and the following energy function
is obtained:

E(µ) = ∑
s∈Ω

ϕs(µs) + λ ∑
(s,t)∈N

ψst(µs, µt), (4)

where ϕs(µs) represents the data item, ψst(µs, µt) is the smoothing term, λ is a parameter
that balances the influence of the smoothness term, N represents the set of neighboring
superpixels, and Ω is the set of superpixels. By minimizing the total energy function
(Equation (4)), the disparity of each superpixel can be determined. Next, adjacent superpix-
els with the same disparity are merged into a new superpixel; thereby, we obtain several
parallel disparity planes. Finally, by comparing the differences in disparity values between
different superpixels, the 3D neighborhood relationship between superpixels is calculated.
At this point, the first global optimization layer of disparity is completed.

The second-layer disparity optimization process consists of two steps: RANSAC
slanted plane fitting and subsequent slanted plane refinement. Initially, based on the initial
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disparity map, the RANSAC fitting method is applied to establish the slanted plane model,
denoted as πs = (as, bs, cs), for each superpixel s. Since there is an assumption that the
disparity distribution within each superpixel follows a normal distribution, the effective
distribution must conform to the unimodal distribution with a continuous disparity domain.
To enhance robustness, the density distribution is used to replace the disparity distribution.
The disparity density of a given disparity value d within the superpixel s is defined
as follows:

ρs(d) = ∑
x∈s

F (|d − d(x)| ≤ L), (5)

where L is the width of the histogram bin, x represents each pixel within superpixel s,
and F (·) is a function of condition, defined as

F (·) =
{

0, if · is false
1, if · is true.

(6)

According to the input initial disparity, the RANSAC method is employed to fit
the prior average disparity µs of each superpixel. The resulting fit is then compared
with the disparity density distribution within the superpixel to ensure the success of the
RANSAC fitting. Subsequently, the refinement of the slant disparity plane continues
after the RANSAC plane fitting. The initial plane πs, calculated earlier through plane
fitting, is individually refitted for each superpixel s. However, the effectiveness in regions
lacking texture or existing occlusion is typically unsatisfying. To solve this, πs undergoes
further refinement based on probability, utilizing the prior information from the local 3D
neighborhood of superpixel s. For a pair of superpixels (s, t) ∈ N , if their mean disparities
are similar, they are considered 3D neighbors, expressed as (s, t) ∈ N 3d; otherwise, they are
not 3D neighbors, represented as (s, t) /∈ N 3d. During this process, only prior information
from the 3D neighborhood of superpixel s is taken into account. Consequently, for a
superpixel t belonging to the 3D neighborhood of superpixel s (denoted as t ∈ N 3d(s)),
the posterior probability that the disparity plane is πt is expressed as

Pr(πt|p1,...,Ns) =
Pr(p1,...,Ns |πt)Pr(πt)

∑t′∈N3d(s) Pr(p1,...,Ns |πt′)Pr(πt′)
, (7)

where p1,...,Ns = {pi|pi = (ui, vi, di), i = 1, ..., Ns} are the observations of superpixel s. Then,
the weighted least squares method is applied to estimate the slant plane for each superpixel
to generate the second-layer optimized disparity map. Subsequently, following the filtering
of the optimized disparity map, the preliminary refined disparity map is obtained.

In the preceding step, the disparity values of the building roofs have been refined.
To further diminish the possibility of disparity-induced errors in subsequent DSM genera-
tion due to mismatched points, a post-correction process is implemented on the building
facades disparity values. For each building, we employ the ground disparity value around
the building calculated in Section 2.2 to replace the disparity values of pixels within the
building facade mask building f acade. At last, we obtain the refined disparity map, uti-
lizing the disparity refinement method assisted by GIS building vector data to facilitate
subsequent DSM generation.

2.4. Study Area and Data Preparation

In this subsection, we provide a detailed introduction to the study area and remote
sensing images, GIS vectors, and other data used in this paper.

Imagery and study area. The proposed method mainly utilizes four pairs of in-track
stereo VHR remote sensing images for experiments. Specifically, these consist of two pairs
of SuperView-1 (SV1) satellite images, one pair of GeoEye satellite images, and one pair of
Gaofen-7 (GF7) satellite images. The corresponding coverage areas encompass Hawaii, San
Diego, Orange County, and Omaha in the United States. These study areas are strategically
chosen from urban scenes, ensuring the presence of numerous building targets, to evaluate
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the effectiveness of the proposed method. And there are abundant GIS data and laser
point cloud data in these areas. Additionally, for parallel preprocessing, the entire image is
partitioned into several blocks, each with a size of 2048 × 2048 pixels.

GIS vector data preparation. The GIS data utilized in this paper are sourced from
the OpenStreetMap (OSM) database, a globally renowned open geographic data platform.
Users on the OSM platform have the flexibility to create, edit, download, and use data from
the database [34]. This extensive database encompasses various point, line, and surface
vectors, including features like roads, rivers, buildings, and more. Specifically, we employ
the building polygon vectors within the OSM database to assist in the refinement of
disparity. After processing, the OSM vector data can be converted into corresponding raster
vectors for subsequent analysis.

Initial disparity calculation. The commonly used stereo matching method at present
is the traditional semi-global matching (SGM). Although this method is extensively applied
in traditional images, it falls short of achieving satisfactory results under conditions of large
disparity. In remote sensing images, complex ground objects, particularly super high-rise
buildings, often result in significant disparity differences. Even after epipolar rectification,
it is difficult to maintain the parallax disparity within a small range for all objects in the
field of view. Considering the unique challenges of remote sensing images, we employ
the large displacement optical flow (LDOF) estimation method for stereo matching, which
is adept at handling image pairs with large disparity [27]. In addition to this traditional
stereo matching method, we include experiments with the CFNet stereo matching method
based on deep learning to demonstrate the general applicability of our method [28]. This
method achieves stereo matching by integrating the pyramid feature extraction network,
fusion cost volume, and cascade cost volume.

Lidar data processing. Due to lacking the ground truth data of disparity, in order to
objectively evaluate the disparity refinement results, we utilize the accuracy of the DSM
generated from the disparity as the evaluation metric. To establish an accurate ground
truth, we acquire publicly available laser point cloud data, processing the data to derive the
ground truth of surface elevation. This point cloud data are sourced from the 3D Elevation
Program (3DEP) project developed by the United States Geological Survey [35].

3. Results
3.1. Comparison of Disparity Refinement Experimental Results

We first perform the image preprocessing and epipolar rectification on the two image
pairs separately. Subsequently, we utilize the LDOF method to acquire the initial disparity
maps for each image pair. Following this, we use GIS building vector data to refine the
disparity maps. We conducted experiments on the four pairs of remote sensing images
detailed in Section 2.4. Due to the absence of true disparity values for accuracy evaluation,
in this subsection, we solely assess the visual effect of the disparity refinement results. In the
next subsection, a comprehensive and objective evaluation of the disparity refinement effect
on DSM elevation accuracy will be conducted. Some of the experimental results are shown
in Figure 6. The first row of Figure 6 includes several super high-rise buildings, each
exceeding 60 m in height, with the tallest building being over 100 m. These tall buildings
present a significant challenge to stereo matching as their disparity values in the image pair
can extend beyond 200 pixels. As illustrated in Figure 6b, the disparity values correspond-
ing to the building facades in the left image are inaccurately computed. After disparity
refinement, the shapes of the building roofs are more regular, and the disparity values
of mismatched points on the building facades are corrected to be approximately equal to
the disparity values of the ground points, as shown in Figure 6d. This refinement process
significantly contributes to the generation of a more accurate DSM.

In addition to tall buildings, our method effectively refines the disparity of short
buildings as well. In the initial disparity map depicted in Figure 6g, certain factors, such
as significant grayscale variations of identical targets in the image and limited contrast
with the background, lead to obvious mismatched points within the building. These issues
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resulted in the building’s structural details being lost. However, through the application of
our method to refine the disparity map, the building’s structure is successfully restored.
Additionally, by performing the secondary segmentation of the building vector, our method
preserves the multi-level structure of the building roof. The introduced disparity confi-
dence also proves beneficial in handling large areas of disparity abnormality, as evident in
anomalies inside the building depicted in Figure 6g.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Image pairs and disparity refinement results. (a) Left image 1 from SV1. (b) Right image
1 from SV1. (c) Initial disparity map 1. (d) Refined disparity map 1. (e) Left image 2 from GeyEye.
(f) Right image 2 from GeyEye. (g) Initial disparity map 2. (h) Refined disparity map 2.

3.2. Comparison of the Accuracy of DSM Generated by Different Methods

In this subsection, we conduct a comprehensive evaluation of the DSM elevation
accuracy generated based on stereo matching disparity results. Initial disparity maps are
computed for the epipolar-rectified image pairs using both the LDOF method [27] and the
CFNet method [28]. Subsequently, the initial disparity maps undergo refinement. Along-
side our method, we incorporate the original SDR method as a comparative algorithm,
which is specifically designed to handle occlusions in natural image disparity [16]. Then,
we generate DSM based on the obtained disparity results through aerial triangulation and
other processes. In the experiments involving the utilization of the refined disparity map
for DSM generation, we also employ DSM fusion processing to fill in elevation information
for occluded areas. This process involves utilizing two images with distinct imaging per-
spectives as reference images, generating DSM1 and DSM2, respectively, and then merging
DSM1 and DSM2 to obtain the final DSM.

In addition to the SDR disparity refinement method, to further demonstrate the
effectiveness of our disparity refinement method in improving DSM elevation accuracy,
we also compared it with the method that directly refines DSM. We selected the advanced
ResDepth method as the DSM refinement comparison algorithm [36]. This method takes
the initial DSM and the corresponding orthorectified images as input and outputs the
refined DSM.

In summary, in the DSM elevation accuracy comparison experiment in this subsection,
the disparity maps we used include (1) the disparity map calculated via the LDOF method;
(2) the disparity map calculated via the LDOF method and the SDR refinement method;
(3) the disparity map calculated via the LDOF method and our refinement method; (4) the
disparity map calculated via the CFNet method; (5) the disparity map calculated via the
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CFNet method and the SDR refinement method; and (6) the disparity map calculated via
the CFNet method and our refinement method. In the DSM refinement experiment, we
are set to perform ResDepth-based refinement on the DSM generated based on the LDOF
disparity and the DSM generated based on the CFNet disparity, respectively.

In the comparison phase, to assess the efficacy of the proposed method in refining the
disparity values of super high-rise buildings, most of the images we selected contain tall
building targets. DSM quality is evaluated by comparing the error between the generated
DSM and the ground truth. The performance metric employed is the mean absolute error
(MAE) defined in Equation (8). In this equation, i is the pixel number, N signifies the total
number of pixels, hi represents the estimated elevation value, and ĥi denotes the ground
truth value. To illustrate the elevation accuracy of the generated DSM, we conducted
experiments using two pairs of SV1 images and a pair of GF7 images, respectively. Some
experimental results are detailed in Table 1.

MAE =
1
N

N

∑
i=1

∣∣∣hi − ĥi

∣∣∣ (8)

Table 1. The elevation errors of the DSM generated via different methods. LDOF and CFNet represent
a hand-crafted stereo matching method and a deep-learning stereo matching method, respectively.
SDR and ResDepth represent the original SDR disparity refinement method and the ResDepth-based
DSM refinement method, respectively. RoI-n represents the n-th test area.

Method MAE (m)

RoI-1 RoI-2 RoI-3 RoI-4

LDOF (Hand-Crafted) 2.20 1.86 2.55 5.58
LDOF + SDR 2.23 1.82 2.37 5.53
LDOF + ResDepth 1.74 1.89 2.52 5.14
LDOF + Our method 1.61 1.43 2.18 3.85
CFNet (Deep-Learning) 1.99 1.62 2.40 4.47
CFNet + SDR 2.22 1.27 2.39 5.20
CFNet + ResDepth 2.14 2.02 2.56 4.28
CFNet + Our method 1.59 1.17 2.01 3.71

To more intuitively represent the DSM results, we utilize the QTReader software
(v8.4.0) to perform a virtual stereoscopic display of the obtained DSM [37]. Figures 7–10
present the virtual stereoscopic display results for several areas of interest, showcasing the
DSMs generated through various methods.

The results presented in Table 1 demonstrate that the DSM generated based on the
refined disparity through our method exhibits the highest accuracy, demonstrating its
effectiveness for the initial disparity maps calculated via both the traditional hand-crafted
method (LDOF) and deep learning-based method (CFNet). It is essential to note that, since
our refinement method is focused on building objects, the elevation accuracy improvement
across the entire image range might not exhibit a substantial absolute increase. However,
when compared with the DSM results derived from the initial disparity, our method
shows significant relative enhancement, achieving approximately 27% improvement in
elevation accuracy. Furthermore, in contrast to the DSM obtained through the SDR disparity
refinement method, our method exhibits superior performance and lower elevation errors.
In addition to the elevation index, the DSM stereoscopic display results in Figures 7–10
show that the proposed method has more obvious advantages. For example, in Figures 7a,e
and Figures 8a,e, building facades manifest as inclined planes with discernible burrs along
the edges. However, after refinement through the proposed method, building facades
become steeper and the structures of the buildings are clearer, as shown in Figure 8d,h.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 7. DSM virtual stereoscopic display generated by different methods of ROI-1. (a) DSM
generated by LDOF (hand-crafted). (b) DSM generated by LDOF with SDR refinement. (c) DSM
generated by LDOF with ResDepth refinement. (d) DSM generated by LDOF with the proposed
method. (e) DSM generated by CFNet (deep-learing). (f) DSM generated by CFNet with SDR
refinement. (g) DSM generated by CFNet with ResDepth refinement. (h) DSM generated by CFNet
with the proposed method. (i) DSM generated by MGM-s2p. (j) DSM generated by ENVI software
(v5.6).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 8. DSM virtual stereoscopic display generated by different methods of ROI-2. (a) DSM
generated by LDOF (hand-crafted). (b) DSM generated by LDOF with SDR refinement. (c) DSM
generated by LDOF with ResDepth refinement. (d) DSM generated by LDOF with the proposed
method. (e) DSM generated by CFNet (deep-learing). (f) DSM generated by CFNet with SDR
refinement. (g) DSM generated by CFNet with ResDepth refinement. (h) DSM generated by CFNet
with the proposed method. (i) DSM generated by MGM-s2p. (j) DSM generated by ENVI software
(v5.6).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 9. DSM virtual stereoscopic display generated by different methods of ROI-3. (a) DSM generated
by LDOF (hand-crafted). (b) DSM generated by LDOF with SDR refinement. (c) DSM generated by
LDOF with ResDepth refinement. (d) DSM generated by LDOF with the proposed method. (e) DSM
generated by CFNet (deep-learing). (f) DSM generated by CFNet with SDR refinement. (g) DSM
generated by CFNet with ResDepth refinement. (h) DSM generated by CFNet with the proposed
method. (i) DSM generated by MGM-s2p. (j) DSM generated by ENVI software (v5.6).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 10. DSM virtual stereoscopic display generated by different methods of ROI-4. (a) DSM generated
by LDOF (hand-crafted). (b) DSM generated by LDOF with SDR refinement. (c) DSM generated by
LDOF with ResDepth refinement. (d) DSM generated by LDOF with the proposed method. (e) DSM
generated by CFNet (deep-learing). (f) DSM generated by CFNet with SDR refinement. (g) DSM
generated by CFNet with ResDepth refinement. (h) DSM generated by CFNet with the proposed
method. (i) DSM generated by MGM-s2p. (j) DSM generated by ENVI software (v5.6).
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Furthermore, the experimental results of DSM refinement using the ResDepth net-
work indicate that this method cannot achieve satisfactory results for super high-rise
buildings, as illustrated in Figures 7c–10c and 7g–10g. Upon comparison with the DSM
generated via the disparity process based on the proposed disparity refinement method in
Figures 7 and 8, it is evident that the buildings in the ResDepth network refined DSM have,
to a large extent, lost their original heights and structures. And the elevation errors of
the DSM, detailed in Table 1, further affirm that the DSM errors after ResDepth network
refinement have not seen significant improvement. Consequently, in contrast to the DSM
refinement method based on the ResDepth network, the DSM elevation accuracy achieved
after processing via the proposed disparity refinement method is not only higher but, more
importantly, more conducive to the reconstruction of super high-rise building targets.

In addition to various methods benchmarking against the DSM generation framework
utilized in this study, we also evaluated our method against two established approaches:
the advanced More Global Matching-based s2p method (MGM-s2p) [38,39] and the ENVI
software (v5.6)-based DSM generation method [40]. The s2p method, representing the
satellite stereo pipeline for pushbroom images, is widely recognized for its application in
stereo production. On the other hand, the ENVI software (v5.6) incorporates processing
modules tailored for satellite images such as GF7 and SV1. Table 2 lists the DSM eleva-
tion accuracy obtained by employing these two different DSM generation frameworks,
respectively, and compares it with the results obtained based on the proposed method.
And the stereo displays of DSM obtained using the MGM-s2p method and ENVI software
(v5.6)-based method are shown in Figures 7i–10i and 7j–10j, respectively.

Table 2. The elevation errors of the DSM generated via different methods. LDOF and CFNet represent
a hand-crafted stereo matching method and a deep learning stereo matching method, respectively.
MGM-s2p and ENVI, respectively, represent two DSM generation methods different from our DSM
generation benchmark. RoI-n represents the n-th test area.

Method MAE (m)

RoI-1 RoI-2 RoI-3 RoI-4

MGM-s2p 2.99 1.73 3.36 4.81
ENVI 3.40 1.88 3.46 5.71

LDOF + Our method 1.61 1.43 2.18 3.85
CFNet + Our method 1.59 1.17 2.01 3.71

It can be seen from the results that these two DSM-generating algorithms cannot
produce a satisfactory DSM. In the outcomes of both methods, buildings manifest as
irregular edges with significant elevation errors, as illustrated in Figures 7i,j and 8i,j.
Consequently, despite the widespread utilization of these two methods for DSM generation,
achieving precise DSM in scenarios featuring super high-rise buildings proves to be a
challenging endeavor.

In summary, the previous experiments demonstrate that, after epipolar rectification,
constraining the matching point search range between image pairs to a relatively narrow
scope already obtains high stereo matching accuracy. Nevertheless, when dealing with
super high-rise building objects, existing stereo matching methods fall short of achieving
satisfactory results. These mismatched points on the building facades lead to severe
slopes in the generated DSM, making it difficult to distinguish the edges of the building,
as shown in Figures 7a,e and 8a,e. After applying our disparity refinement method to
process the initial disparity, the effect of the generated DSM is significantly improved.
For instance, the building reconstruction effects presented in the four images in the middle
of Figure 7 are far better than those based on the initial disparity in the first column.
It is noteworthy that while the building objects generated through the SDR disparity
refinement method exhibit relatively steep facades, the structure of the building’s roof
remains unclear, featuring some unusual elevation points. In contrast, the buildings
obtained using our disparity refinement method have distinct, complete outlines and
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complete shapes, significantly enhancing the overall visual impact. Moreover, compared
with the method of directly refining DSM based on the ResDepth network and the method
based on other DSM generation frameworks (MGM-s2p method and ENVI-based method),
the proposed disparity refinement method still has obvious advantages for high-precision
reconstruction of super high-rise building targets.

From the perspective of DSM elevation error, our enhanced method also demonstrates
superior performance. It needs to be emphasized that our refinement method is primarily
designed for building objects. However, calculating the elevation error exclusively for
buildings is challenging; therefore, we must assess the elevation accuracy of the entire image
as the evaluation index. Furthermore, the DSM generated based on the initial disparity
already exhibits relatively high accuracy. Consequently, due to the factors mentioned above,
the absolute improvement of the DSM error metric by the proposed method is limited.
Nevertheless, the relative reduction of error can approach nearly 30% at the highest.

4. Discussion
4.1. 3D Building Model Generation

To verify that the proposed method can be used for subsequent high-precision 3D
model generation, this paper made a preliminary attempt at generating 3D building models.
Figure 11 shows the 3D building model generated by DSM before and after processing
with the proposed method. By comparing the 3D reconstruction results in Figures 11a,b,
it can be observed that the proposed disparity refinement method can reconstruct super
high-rise building targets with clear structures and steep elevations. However, it should be
emphasized that building model generation is not the primary focus of our research; hence,
we employ a simple 3D model generation method based on DSM and remote sensing
image pairs. Despite the absence of advanced 3D model generation techniques, the results
depicted in Figure 11 demonstrate the potential of the proposed method in achieving
refined 3D reconstruction of buildings.

(a) (b)
Figure 11. Three-dimensional building model generated by DSM before and after processing with the
proposed method. (a) 3D building model generated by the original DSM. (b) 3D building model
generated by the DSM after processing using the proposed disparity refinement method.

4.2. Limitations

While the proposed disparity refinement method demonstrates effectiveness in en-
hancing the reconstruction of super high-rise building targets, there remain areas for further
optimization. In this paper, the GIS data utilized are obtained from the OpenStreetMap
website. A potential challenge arises from the time difference between OSM vector data
and remote sensing images, resulting in differences between building vectors and images
in certain areas and leading to vector mismatch during disparity refinement. Additionally,
when dealing with building targets with irregular-shaped roofs, the complexity of building
facades poses a challenge to accurate extraction, making it difficult for our method to
achieve satisfactory results.

Furthermore, it should be emphasized that our disparity refinement method has
limitations on the input disparity accuracy. Specifically, we require that the raw disparity
input must encompass the disparity values of some pixels corresponding to super high-rise
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building targets. If the entirety of building target pixels in the raw disparity map manifests
as mismatching points, indicating that the pixels of the building targets in the disparity
maps are all low-confidence points, the building mask extraction will not be accurate,
thereby diminishing the impact of the disparity refinement.

Therefore, in the future, we will further research the accurate extraction methods for
super high-rise building facades with complex and irregular roof shapes. Simultaneously,
we will explore precise building detection methods driven by GIS vector data to obtain
building footprint vectors with higher consistency with remote sensing images. Further-
more, in this paper, we research the disparity refinement method for remote sensing image
pairs. In the future, we can try to extend it to multi-view remote sensing images.

5. Conclusions

This paper proposes a method for refining disparity maps in stereo matching applied
to very-high-resolution remote sensing images in urban environments, utilizing GIS data.
First, we propose a method to extract building masks corresponding to remote sensing
images based on OSM building vectors. This extraction process involves multiple steps,
such as the multi-modal registration of building vectors and the extraction of building
facades. Second, employing these building masks as image segmentation information, we
present a two-step disparity refinement method specifically designed for building targets.
This method comprises preliminary optimization steps for global and local optimization of
the disparity map, along with the disparity post-correction procedure applied to building
facades. Finally, we obtain the refined disparity map optimized for building targets.

The proposed menthod mainly has the following advantages:

1. Replacing image segmentation information with open-source GIS data enhances the
precision and regularity of building shapes, contributing to the generation of more
accurate building models.

2. A method for matching GIS vectors with remote sensing images is proposed, handling
the problem of offsets between building footprints and imaging locations.

3. By implementing a preliminary two-layer optimization of the disparity map, coupled
with disparity post-correction of the building facades, the disparity values of building
targets, particularly the disparity values within the building facades, are refined. This
resolves the issue of inaccurate disparity estimation for super high-rise buildings.

Finally, the proposed disparity refinement method is extensively evaluated using
ground truth data from LiDAR point clouds. The experimental results demonstrate the
efficacy of the proposed disparity refinement method in reducing the elevation error of
the generated DSM, thereby significantly enhancing the reconstruction of buildings in
urban scenes. In particular, this method successfully solves issues such as the mismatching
problem caused by super high-rise building facades and the presence of hole points in
the DSM due to large occlusion areas. Furthermore, the proposed disparity refinement
method is universal in traditional stereo matching methods and deep learning-based stereo
matching methods.
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