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Abstract: Estimating the geographic positions in GPS-denied environments is of great significance to
the safe flight of unmanned aerial vehicles (UAVs). In this paper, we propose a novel geographic
position estimation method for UAVs after road network alignment. We discuss the generally
overlooked issue, namely, how to estimate the geographic position of the UAV after successful
road network alignment, and propose a precise robust solution. In our method, the optimal initial
solution of the geographic position of the UAV is first estimated from the road network alignment
result, which is typically presented as a homography transformation between the observed road
map and the reference one. The geographic position estimation is then modeled as an optimization
problem to align the observed road with the reference one to improve the estimation accuracy further.
Experiments on synthetic and real flight aerial image datasets show that the proposed algorithm can
estimate more accurate geographic position of the UAV in real time and is robust to the errors from
homography transformation estimation compared to the currently commonly-used method.

Keywords: geographic position estimation; road network alignment; homography matrix decomposition

1. Introduction

Estimating the geographic position is a fundamental requirement for UAVs, which
is usually achieved using GPS [1]. However, there also exist some situations where the
GPS is unreliable, such as when the GPS is jammed. Since ample, free, and georeferenced
maps, which cover many parts of the globe, are available online, such as the satellite
imagery from Google Maps or the road map for OpenStreetMap (OSM), many researchers
have tried to utilize georeferenced maps to solve the geolocalization problem for UAVs in
GPS-denied environments.

Such methods model geolocalization using a georeferenced map as an image registra-
tion problem where the core issue is to estimate the transformation that aligns the observed
aerial image from the onboard camera to a known georeferenced map. The transformation
is often modeled as a similarity transformation when the optical axis of the camera is
perpendicular to the ground or more generally as a homography transformation. Many
researchers have tried to meet the challenge of the image registration problem using robust
low-level vision features [2–5] or semantic vision features [6–8]. Generally speaking, geolo-
calization using georeferenced maps can be divided into two categories: geolocalization
using original satellite imagery and geolocalization using semantic maps, such as a road
map or building contour.

Geolocalization using satellite imagery: Geolocalization using satellite imagery is
more intuitive. To get around the difficulties in image registration caused by the signifi-
cant difference between the observed aerial images and satellite imagery, early attempts
usually utilize robust low-level vision features to perform image registration. In [2,3],
the crosscorrelation and the HOG were used to measure the similarity between two images
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to estimate a 2D translation between two rotation-and-scale-aligned images. Ref. [4] used
mutual information as the similarity metric and utilized the template matching method to
estimate the similarity transformation. Recently, some researchers have tried to solve the
satellite imagery registration problem with deep learning-based methods. Ref. [5] followed
the idea proposed in [9] and registered aerial images to satellite imagery by aligning a
feature map learned with a VGG16 network [10], and they reported a localization accuracy
of 8 m. Ref. [11] proposed a localization solution using the Monte Carlo localization
method, where the similarity between the onboard aerial image and the reference satellite
imageries was measured using a convolutional neural network. Ref. [12] estimated the
geographic position of UAVs by aligning onboard aerial images to satellite imagery using
SuperPoint [13], which is a kind of local descriptor.

Geolocalization using semantic maps: Benefitting from the high stability and relia-
bility of semantic maps and the improved performance of semantic segmentation using
deep learning techniques [14–16], geolocalization using semantic maps has attracted the
attention of more researchers. In [6], building contours were employed to match to se-
mantic maps using the Hu moments [17] approach with a carefully designed pipeline.
In [7,8], road intersections were utilized to build the feature correspondences between
an aerial image and a reference road map to reduce the error accumulation caused by
inertial navigation. In [18], a large-area road geolocalization method was proposed, where
the geometric hashing method was utilized to align the road fragment obtained by car
tracking to a known road map. Different from the aforementioned methods, which use a
similarity transformation hypothesis and thus only work when the camera is nadir, in our
prior work [19,20], we proposed two projective-invariant geometric features and the ac-
companying matching methods and achieved road network alignment for aerial images
with projective perspectives over a sizable search region. In contrast to these two-stage
methods, where semantic segmentation and shape matching are separated, Ref. [21] pro-
posed to regress the similarity transformation between an aerial image and its reference
road map using a Siamese network. Their approach, however, is only useful at locations
with complex-shaped roadways, such as highway intersections.

Camera pose estimation: Even though matching to georeference maps is studied
in many literature works, the subsequent issue, accurate geographic position estimation,
is often disregarded. Camera pose estimation is a classical problem in multiple-view
geometry and also a fundamental task in many computer vision applications. The problem
is well solved in the case of estimating the camera pose between two central projection
images. The problem can be solved using the algorithms proposed in [22] or [23] when
the scenario is assumed to be planar. More generally, Refs. [24,25] proposed methods to
recover the camera motion from the fundamental matrix between two frames without the
planar assumption. In addition, the camera pose can be estimated from correspondences
between 2D image points and 3D object points when the depth of the scene is known using
the methods in [26,27], which details the perspective-n-point (PnP) problem. However,
there is still no public research paper which addresses the problem of estimating the camera
motion between a central projection image and an orthographic projection image, which is
the case when we need to recover the geographic position of the camera by matching it to a
georeferenced orthographic map.

Some works on geolocalization use the translation of the estimated similarity trans-
formation to recover the geographic position of the camera [2–4,21], which is equal to
computing the projection point of the image center using the estimated transformation.
Such methods only work properly when the optical axis of the camera is perpendicular
to the ground, or external information is used to compensate for the deviation [12]. Some
other works [18–20] donated the geolocalization result using the homography or simplified
similarity transformation between the aerial image and the georeferenced map, wherein
the geographic position of the UAV was thus unavailable. To the best of our knowledge, no
public research article has addressed the problem of estimating the geographic position of
the camera when the transformation between the aerial image from the onboard camera
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and the georeferenced maps is known without the assumption that the optical axis of the
camera is perpendicular to the ground.

In summary, the main contributions of this article are as follows:

(1) The initial solution of estimating the camera geographic position and attitude from
the homography transformation between the aerial image from an onboard camera
and the georeferenced maps is derived.

(2) A fast and robust position refining method is proposed which improves the accuracy of
geographic position estimation even when the homography transformation estimation
is noisy.

(3) A real-time continuous road-matching-based geolocalization method for UAVs is
presented.

2. Materials and Methods

In this section, we introduce the method to estimate the geographic position of the
UAV using road network alignment with a georeferenced map in detail. We first give
the formulation of the problem and introduce the coordinate system used. And then, the
relation between the geographic position t and attitude R of a UAV and the estimated road
registration result, usually expressed with a homography transformation H, is derived,
with which the initial optimal solution of t and R is then computed. And then, a pose refin-
ing method is performed by aligning all observed roads to georeferenced roads to improve
the pose estimation accuracy further. Finally, a continuous real-time geolocalization system
using road network alignment is designed and presented based on the proposed camera
geographic position algorithm. The detailed algorithm is described as follows.

2.1. Problem Formulation

The problem of estimating the geographic position of a UAV after road network
alignment can be described as follows: given the georeferenced road map of a certain area,
of which the geographic boundary is {Bw, Be, Bs, Bn}, the ground sample distance (GSD) is
S, and the camera intrinsic parameter matrix is K, can the geographic pose {R, t} of the
UAV be recovered when the transformation H between the observed aerial image and the
reference road map is estimated?

To address the issue, we introduce the east-north-up (ENU) coordinate system (shown
in Figure 1), of which the coordinate origin [Bw, Bs, h]T is the southwest corner of the
reference road map area, the x axis points to the east, the y axis points to the north, and the
z axis is up. In practical applications, the position in a predefined ENU coordinate system
is usually used, so we mainly focus on estimating the geographic position of UAV in the
ENU coordinate system in this paper.

U

E

N

cxcy

cz ��
��

Figure 1. Definition of coordinate systems.
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Let pg = [x, y, z]T be a road point expressed in the ENU coordinate system, let
pI = [u, v, 1]T be the homography coordinate of the corresponding point in the observed
aerial image, and let R, t be the rotation matrix and translation vector of the camera
expressed in the ENU coordinate system. The transformation between pI and pg can
be computed as pI = sK

(
Rpg + t

)
[28], where s is the scale factor with which the third

dimension of the vector is normalized to 1. Writing R as R =
[
r1 r2 r3

]T , we can obtain
pI = sK(xr1 + yr2 + zr3 + t). Since we suppose the local roads lie on the same plane, the z
of pg is always equal to 0 in the defined ENU coordinate system. Then, it can be deduced
that pI = sK(xr1 + yr2 + t). Writing

H = sK
[
r1 r2 t

]
, (1)

we can obtain pI = Hp
′
g, where p

′
g = [x, y, 1]T is the corresponding homography coordi-

nation of the projection point in the XOY plane of pg. We can see that the transformation
between the aerial image and the XOY plane of the defined ENU coordination system can
be expressed as a simple homography transformation, which is determined only by the
camera intrinsic parameter matrix K and camera geographic pose {R, t}.

Moreover, the transformation between the XOY plane and the reference road map
image can be computed as

TXOY
RI =

S 0 Bw
0 −S Bn
0 0 1

 (2)

which is fixed once the reference road map is given. So, the camera pose in the defined
ENU coordinate system is determined once the homography transformation between the
aerial image and reference road map is estimated.

2.2. Estimate of the Initial Solution of the Camera Geographic Pose from the Homography Matrix

In Section 2.1, we deduce the formulation between the camera geographic pose and
the homography transformation that projects the points from the defined ENU coordinate
system to the aerial image coordinate system. In this section, the algorithm to recover the
camera pose {R, t} in the ENU coordinate system is introduced in detail.

2.2.1. Estimate Geographic Attitude R

Multiplying both sides of Equation (1) by K−1 gives

K−1H = s
[
r1 r2 t

]
(3)

Writing A =
[
r1 r2

]
, B =

[
K−1H

]
1,2 =

[
b1 b2

]
, we obtain

sA = B (4)

Here, A is subject to ATA = I, where I is a two-dimension identity matrix.
Since there exist errors in the estimation of H and K, B may be not fully compatible

with any camera pose R that determines the matrix A. We face the task of determining the
optimal solution of A given B. Here, we use the Frobenius norm to measure the difference
between optimal Â, ŝ, and the observed matrix B, and then solving Equation (4) is equal to
minimizing the following cost function:

ŝ, Â = arg min
s,A

∥sA − B∥2
F, subject to ATA = I (5)

Expressing Frobenius norm in Equation (5) with the trace of matrix gives

∥sA − B∥2
F = trace

(
(sA − B)T(sA − B)

)
= 2s2 − 2 trace

(
ATB

)
s + trace

(
BTB

) (6)
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The minimum of Equation (6) is obtained when s = trace
(
ATB

)
/2, and the corre-

sponding minimum is trace
(
BTB

)
− trace

(
ATB

)2/2. So, minimizing Equation (6) is equal
to maximizing trace

(
ATB

)
.

We write the SVD decomposition of B as B = UWVT , where W =

 w1 0
0 w2
0 0

,

and U, V are 3 × 3 and 2 × 2 identity matrices, respectively; we then obtain

trace
(

ATB
)
= trace

(
ATUWVT

)
= trace

(
VTATUW

)
(7)

Writing Z = VTATU gives

trace
(

VTATUW
)
= trace(ZW) =

2

∑
i=1

ziiwi (8)

where zii = vT
i ATui, i = 1, 2 and vi, ui are the ith column of V, U respectively.

Since zii = vT
i ATui ≤

∥∥vT
i

∥∥∥∥ATui
∥∥ =

∥∥ATui
∥∥, i = 1, 2 and A =

[
r1 r2

]
, where

rT
1 , rT

2 are unit vectors, we obtain

zii ≤
∥∥∥ATui

∥∥∥ ≤ 1 (9)

The equal relation holds, if and only if A = UEVT , where E =

 1 0
0 1
0 0

. So,

Equation (8) reaches the maximum when

A = UEVT (10)

Finally, the initial solution of the optimal geographic attitude is

R̂ =
[
â1 â2 â1 × â2

]
(11)

where â1 and â2 are the first and second column of Â = UEVT , respectively.

2.2.2. Estimating the Geographic Position t

Since Equation (6) reaches a minimum when s = trace
(
ATB

)
/2, we obtain the optimal ŝ

ŝ = trace
(

ÂTB
)

/2 = (w1 + w2)/2 (12)

Combining Equation (3) and Equation (12), we obtain the geographic position

t̂ = 2
[
K−1H

]
3
/(w1 + w2). (13)

where [X]3 reprents the third column of the matrix X.

2.3. Refining the Camera Geographic Pose

In Section 2.2, we have shown that the solution of the camera geographic pose can
be computed from the estimated homography transformation using the road network
alignment method. The accuracy of the estimated camera geographic pose is determined
directly by the accuracy of the estimated homography transformation, where the estimation
error exists unavoidably. To improve the accuracy and robustness of the camera geographic
pose estimation, we model the camera geographic pose estimation as a problem to minimize
the alignment error of the reference road map and the observed roads:
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R̂, t̂ = argmin
R,t

∑
xq∈Iq

H
(

min
xr∈Ir

∥∥w
(
xq; R, t, K

)
− xr

∥∥2
)

(14)

where Iq is the road point set in the aerial image from the onboard camera, and Ir is the
road point set in the reference road map. H(∗) is the Huber loss function used to make the
optimization robust to outliers. w

(
xq; R, t, K

)
is the function that projects a point xq in the

aerial image to the reference road map, which can be computed using the camera model
as follows:

w
(
xq; R, t, K

)
=

[RTt]3[
RTK−1xq

]
3

[
RTK−1xq

]
1,2

− [RTt]1,2 (15)

where [y]i refers to the ith row of vector y.
In Equation (14), the aligning error of a road point xq in the aerial image is measured

using the distance between its projection point and the nearest road point in the reference
road map to the projection point. Since this kind of metric is nondifferentiable, it is difficult
to solve Equation (14). Fortunately, when the reference road map is given, the minimum
distance to a road point in a certain position is determined and can be computed with the
distance transforms algorithm [29] in advance. Writing the Voronoi image computed by
the distance transformations algorithm as V(x), we obtain the simplified formulation:

R̂, t̂ = argmin
R,t

∑
xq∈Iq

H
(

V
(
w
(
xq; R, t, K

))2
)

(16)

Equation (16) can be solved efficiently using the Levenberg Marquardt algorithm
using the solution deduced in Section 2.2 as the initial value.

2.4. Road Network Alignment-Based Real-Time Geolocalization Method

As demonstrated in Section 2.1, the geographic position of the camera can be com-
puted once the aerial image is aligned to a georeferenced road map, and the homography
transformation between them is estimated. For practical applications, the estimation of the
camera geographic position must run in real time, which cannot be achieved using the road
network alignment-based method, since road network alignment is time-consuming. How-
ever, as shown in our previous work [30], it is possible to achieve real-time alignment to
the georeferenced road map when combining it with the relative transformation estimation
computed from the ORB feature [31] matching to adjacent frames. Thus, we design a real-
time geolocalization pipeline for UAVs by combining the relative transformation estimation
from adjacent frames and geographic alignment to a given georeferenced road map.

As shown in Figure 2, the proposed road network alignment-based geolocalization
method includes two threads: the geographic position estimation thread and the road
network alignment thread.

Geographic position estimation thread: We use the method proposed in our previous
work [30] to estimate relative homography transformation to a local reference keyframe.
Different from the method in [30], we stitch the RGB image instead of detecting and stitch-
ing roads in each frame into a road mosaic image to achieve faster estimation. Thus, we
can estimate the transformation Hlocal

f between the current frame and the local reference
frame (usually the first frame sent to the thread) and expend the mosaic of the scene in
real time. With the geographic alignment result Hgeo

local from the road network alignment
thread, the homography transformation between the current frame and the georeferenced
road map can be computed as Hgeo

f = Hgeo
localH

local
f . The geographic position of the cam-

era is then estimated using the method proposed in Section 2.2 and refined using the
method in Section 2.3. Once the current frame moves too far from its reference keyframe,
a new keyframe will be created, and the old keyframe will be sent to the road network
alignment thread.
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Road network alignment-based geographic alignment thread: Upon receiving the
keyframe from the geographic position estimation thread, road detection is conducted on
the RGB image mosaic of the keyframe. A global road network feature search is performed
for the first keyframe, or the homography transformation refining is conducted using the
initial geographic alignment estimation from the geographic position estimation thread for
the later keyframes using both of the methods proposed in our previous work [20]. Thus,
the optimized transformation Hgeo

k f between the keyframe and the georeferenced road map
can be obtained and is then used to update the transformation between the local reference
frame and the georeferenced road map using Hgeo

local = Hgeo
k f (H

local
k f )−1.

New image Tracking keyframe

• ORB feature extract and matching

• Relative homography transformation 

estimation to keyframe

Create 

new 

keyframe?

Update keyframe

• Update ORB features

• Mosaic new images to 

keyframe

Geographic aligning new mosaic

• Road detection

• Road matching and registration

Geographic 

pose estimation

New mosaic

Yes

No

Figure 2. Pipeline of the proposed road network alignment-based real-time geolocalization method.

3. Results

We performed experiments on both synthetic and real flight aerial image datasets to
evaluate the performance of the proposed algorithm. In both experiments, we focused
on evaluating the accuracy of the geographic positions of UAVs estimated using different
methods. The geolocalization accuracy was measured using the total translation error in
the X (longitude) and Y (latitude) directions between the estimated geographic position
and the ground truth. The performance of the proposed method was compared with the
commonly used position estimation method [2–4,12,21], where the projection point of the
center point in the aerial image under the estimated homography transformtion is used as
the position of the camera.

3.1. Experiment on Synthetic Aerial Image Dataset

In the experiment on the synthetic aerial image dataset, the synthetic “multi-poses
dataset” reported in our previous work [19] was used to test the position estimation
accuracy under different UAV poses. In the synthetic “multi-poses dataset”, 100 positions
were selected randomly, and 10 aerial images, of which the yaws and rolls were kept the
same while the pitches were varied from 0◦ to 45◦, were generated in each position. We used
the road match algorithm in [19] to estimate the homography transformation between the
aerial images and the reference road map, and we then estimated the geographic position of
the camera using the proposed method. The error was computed as ε =

∥∥∥pgr
xy − pe

xy

∥∥∥, where

pgr
xy and pe

xy are the ground truth and estimated horizontal position of the UAV, respectively.
We denote the result estimated with the proposed initial solution as Ti, the result optimized
with the pose refining procedure as Tr, and the result computed with the projection point
of the center point in the aerial image as Tpro. The result is reported in Figure 3.
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Figure 3. Position estimation error on synthetic aerial image dataset. Here, ‘Ti’ is the result estimated
with the proposed initial solution; ‘Tr’ is the result after using the pose refining procedure, and ‘Tpro’
is the result computed with the projection point of the center point in the aerial image under the
estimated homography transformation.

3.2. Experiment on Real Flight Aerial Image Dataset

In the experiment, we captured three real flight videos with the DJI M300-RTK UAV
in different scenes. The videos were captured with a straight-down-looking camera, while
the UAV was operated under the control of a UAV manipulator. The manipulator operated
from a car following the UAV, thereby ensuring that the UAV was within a safe control
distance. The original resolutions of the videos were 1920 × 1080, and they were resized
to 960 × 540 in our experiments. The frames per second (FPS) of the original videos were
30. The positions of each frame were measured with using real-time kinematic (RTK)
equipment mounted on the UAV and taken as the ground truth. The flight altitudes of the
three videos were 500 m, 450 m, and 800 m, the maximum speeds were all 10 m/s, the total
flight times were all about 170 s, and the lengths of the trajectory were about 1580 m,
1640 m and 1430 m. The detailed flight information for the three flights is summarized in
Table 1. The three videos were caputred in different environmental conditions. Video A
was captured in the city area, while the other two videos were captured in a suburb where
the roads were sparser compared to those in video A. And video C was caputred on a foggy
day, while the other two videos were caputred on sunny days. Thus, the three videos are
representative. Some frames from the three videos are shown in Figure 4.

We downloaded the reference satellite map from a Google satellite map, cut it into
small tiles, extracted the road map using the method in [14] in each tile, merged these road
map tiles into a whole road map, and took the generated whole road map as our reference
road map. The reference road map was expressed in the Mercator projection coordinate
system (EPSG 3857) with the GSD of 1.0 m/pixel.

We then performed geolocalization experiments on the real flight aerial image dataset
using the method described in Section 2.4. All the experiments were conducted on Nvidia
Xavier AGX, which contains an 8-core NVIDIA Carmel Armv8.2 CPU and 32G of RAM,
which can provide computility of up to 32 tera operations per second (TOPS) with a power
consumption of no more than 30 W .
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Table 1. Flight parameters for the real flight dataset.

Altitude (m) Maximum
Speed (m/s) Length (m) Time (s)

A 500 10 1580 170

B 450 10 1640 170

C 800 10 1430 174

Figure 4. Several representative frames from the three real flight videos. Images in the 1st, 2nd,
and 3rd row are from video A, video B, and video C, respectively.

The geolocalization trajectories of the UAV for the three videos were recorded, and the
geolocalization errors were computed and are shown in Figure 5. As can be seen, the pro-
posed method (with the pose refining procedure) achieved the smallest geolocalization error
in most cases in all three flights. To visually illustrate the trajectories estimated by different
methods, we present the trajectories estimates from three different methods among the satel-
lite map in Figure 6. The minimums, maximums, means, and medians of the geolocalization
errors for the three geographic position estimation methods are shown in Table 2. It can be
seen from Table 2 that the maximums, means, and medians of the geolocalization errors
estimated using the proposed method (with the pose refining procedure) were minimal in
all the three flights, which indicates the high accuracy of the proposed method.

Table 2. Statistic features of geolocalization error from three geographic position estimation methods.
Best results are highlighted in bold.

Minimum
(m)

Maximum
(m) Mean (m) Median (m)

A

Ti 0.07 28.75 10.00 7.51

Tr 0.41 18.66 5.46 3.97

Tpro 0.12 18.75 7.96 6.23

B

Ti 2.42 51.03 23.47 22.81

Tr 2.07 34.60 11.93 12.28

Tpro 1.19 41.49 16.37 15.78

C

Ti 0.13 56.75 20.11 13.07

Tr 0.33 26.84 10.91 9.47

Tpro 1.11 35.60 14.12 11.91
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Figure 5. Position estimation error on real flight aerial image dataset. The errors of trajectory for
video A, B and C are shown in subfigure (A), (B) and (C) respectively.
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Figure 6. Camera trajectories of flight A on satellite map (in EPSG 3857).

The running time of the proposed method, which includes the time to compute the
initial solution and the time to optimize the estimated pose, is also recorded and is shown
in Table 3. The average running times of the geographic position estimation for the three
flights were all less than 17 ms. The total time to process one frame was about 100 ms,
including the time to estimate relative pose based on the ORB feature (about 40 ms), the time
to extract the road (about 35 ms), and the time to estimate the geographic pose (about
17 ms), which means that the proposed road network alignment-based geolocalization
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method can run in about 10 Hz in practical applications, which is comparable with that
of the GPS.

Table 3. Statistic features of running time.

Maximum (ms) Mean (ms) Median (ms)

A 33.06 16.10 15.20

B 37.88 15.43 13.82

C 47.62 15.42 13.58

4. Discussion

Results from experiments conducted on both synthetic and real-flight datasets conclu-
sively show that the proposed method adeptly and accurately estimates the geographic
position of the UAV, irrespective of whether the camera’s optical axis is perpendicular to
the ground.

The result on synthetic aerial image dataset shown in Figure 3 demonstrates that the
maximum values and medians of the errors of the geographic positions estimated using the
proposed initial solution were less than 10 m and 5 m, respectively, and they were reduced
to 4 m and 2 m, respectively, after using the proposed pose refining procedure under all
poses. This suggests that the proposed geographic position estimation method can estimate
accurate geographic positions and that the proposed pose refining algorithm is effective
in reducing the positioning error. The position errors estimated using the projection point
increased rapidly with the pitch and reached tens of meters, even when the pitch was as
small as 5◦, which means the method works only when the camera is nadir. The positioning
accuracy after using the pose refining procedure improved slightly with the increase in
pitch, which mainly benefits from the larger visual field under a larger pitch. In such cases,
more roads are observed and provide more constraints for the pose optimization.

In the analysis of three real-flight aerial image sequences, notable reductions in po-
sition estimation errors were observed, exemplified by significant decreases at specific
time points, such as 48.0 seconds and 77.5 seconds, as illustrated in Figure 5A, which
were mainly due to successful road mosaic georeferencing. Since the image mosaicking
algorithm computes the homography transformations of the image sequence in a recursive
manner, there existed error accumulation in the estimated homography transformations.
In other words, the accuracy of the estimated homography transformation improved as
a frame got closer to its corresponding georeferenced keyframe. This phenomenon leads
to abrupt decreases in positioning errors estimated with projection point. It indicates
that estimating the position with the projection point is sensitive to the error in the com-
puting homography transformation. Even though the proposed initial solution was also
sensitive to the homography transformation estimation error, the error could be reduced
effectively using the pose refining procedure in most cases, thus making our complete
position estimation algorithm robust to homography transformation estimation noise.

There existed differences in the geographic position estimation accuracy in the three
flights. The differences may mainly come from two aspects: the flight height and the density
of road in the scene. Generally speaking, more observed roads can provide more constraints
when estimating the homography transformation and refining the camera pose. When the
roads of the scene are denser, more roads may be captured by the camera. As is shown in
Figure 4, among the three flights, the road of the scene in flight A was much denser than
that in B and C, thus resulting in the most accurate geographic position estimation. Also, a
relatively high height may improve the estimation accuracy because the field of view is
larger and more roads may be captured by the camera when the UAV flies at a relatively
high height. Nevertheless, aerial images captured at higher flight altitudes exhibit a lower
GSD, which is a factor that tends to marginally decrease the accuracy of the geographic
position estimation.
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5. Summary and Conclusions

In this paper, we concentrated on estimating the geographic position of the UAV
with road network alignment in GPS-denied environments. We proposed a two-stage
approach to estimate the UAV’s position in a given geographic coordinate system after
successfully georeferencing images obtained by the UAV. The optimal initial solution of
the camera pose that minimizes the Frobenius norm distance between the homography
transformation estimated with road network alignment and that computed with the camera
pose was first deduced and then refined further by solving the optimization problem that
minimizes the alignment error between the observed road map and the reference road
map. Experiments demonstrate that the proposed method can compute a more accurate
geographic position and is less sensitive to the homography transformation estimation
error in comparison to the commonly used method that estimates the geographic position
using the projection point of the aerial image center, which works only when the camera is
nadir. In the proposed method, it was assumed that all observed roads lay on the same
horizontal plane, which holds in most but not all scenes, such as winding mountain roads.
We plan to explore more general methods to address this issue in future research.
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