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j.krzyszczak@ipan.lublin.pl

6 Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University,
SE-10691 Stockholm, Sweden

7 Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços, S.
Martinho do Bispo, 3045-093 Coimbra, Portugal

8 Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of
Coimbra, Bencanta, 3045-601 Coimbra, Portugal

* Correspondence: carla.ferreira@natgeo.su.se

Abstract: The pressing issue of global warming is particularly evident in urban areas, where urban
thermal islands amplify the warming effect. Understanding land surface temperature (LST) changes
is crucial in mitigating and adapting to the effect of urban heat islands, and ultimately addressing
the broader challenge of global warming. This study estimates LST in the city of Yazd, Iran, where
field and high-resolution thermal image data are scarce. LST is assessed through surface parameters
(indices) available from Landsat-8 satellite images for two contrasting seasons—winter and summer
of 2019 and 2020, and then it is estimated for 2021. The LST is modeled using six machine learning
algorithms implemented in R software (version 4.0.2). The accuracy of the models is measured using
root mean square error (RMSE), mean absolute error (MAE), root mean square logarithmic error
(RMSLE), and mean and standard deviation of the different performance indicators. The results
show that the gradient boosting model (GBM) machine learning algorithm is the most accurate in
estimating LST. The albedo and NDVI are the surface features with the greatest impact on LST for
both the summer (with 80.3% and 11.27% of importance) and winter (with 72.74% and 17.21% of
importance). The estimated LST for 2021 showed acceptable accuracy for both seasons. The GBM
models for each of the seasons are useful for modeling and estimating the LST based on surface
parameters using machine learning, and to support decision-making related to spatial variations in
urban surface temperatures. The method developed can help to better understand the urban heat
island effect and ultimately support mitigation strategies to improve human well-being and enhance
resilience to climate change.

Keywords: land surface temperature modeling; land surface parameters; machine learning; gradient
boosting method
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1. Introduction

The planet’s surface plays a crucial role in earth sciences, as it is influenced by factors
such as energy input, surface discharge, humidity, and atmospheric air movements, which
collectively determine the net energy. Understanding the surface energy budget and
accurately calculating surface temperature is essential for various earth science studies,
including those related to urban planning, water resource management, natural disasters,
and climate change [1–4].

An increase in urban heat storage capacity creates heat islands, which make the urban
areas warmer than the surrounding rural areas [5–7]. This local difference in temperature
harms people and the environment as it hinders air quality, and increases energy con-
sumption. It also causes a loss of biological control and affects people’s health [8–11]. The
temperature in the urban environment is influenced by a wide range of climatic, geographic,
and human factors, reflecting local climate characteristics that differ from atmospheric
temperature. As a result, recent research has increasingly focused on identifying these
temperature changes in urban areas [12,13]. Land surface temperature (LST) is a key deter-
minant of the energy balance in physical processes occurring on the earth’s surface [14,15].
The study of LST, along with other factors like evapotranspiration and soil salinity, proves
valuable in examining the effects of global warming on food security, energy consumption,
carbon sinks [16,17], and finally, human well-being [18,19].

In general, two terms are used to describe urban landscapes. Landscape composition,
which refers to the number (or proportion) of land use categories in a defined unit (such as
a path, pixel, or region), while landscape arrangement refers to the spatial arrangement
of those units [20]. It has already been shown that LST is directly connected to land
use/land cover (LU/LC) [21]. It is understood that changes in land use and climate have
contributed to the loss of global biodiversity [22]. For instance, Lin et al. [23] investigated
the relationship between the morphological characteristics of built-up areas and stressed
their influence on urban thermal environments and the intensity of surface urban heat
islands (SUHIs). Therefore, to elucidate the effect of LU/LC on LST, it is vital to study the
relationship between them, especially for various climatic zones.

The study of the spatial pattern of urban heat islands is critical in discovering the effects
of dispersion and changes in the impact of LU/LC on LST. Furthermore, the subsequent
LST simulations for the upcoming years, based on LU/LC, play an important role in
predicting the effects of heat islands on the future city environment. Such modeling can
lead to the adoption of new strategies and policies for controlling the LU/LC changes
and support the design of urban areas in such a way that they could reduce the effects of
urban heat islands [24,25]. Temperature regulation in cities is one of several ecosystem
services provided by green spaces in urban areas. In this regard, two approaches are widely
discussed, the first is based on the division of land (lower density and more dispersion),
whereas the second assumes saving land (higher density and lesser dispersion) [26,27], but
their impact on LST is not fully understood.

Extensive advances in thermal remote sensing, Geographic Information Systems (GIS),
and statistical methods have enabled new possibilities for the scientific community for
assessing the relationships between landscapes and the urban heat island effects [24]. To
optimally use land resources, it is necessary to obtain information about LU/LC changes.
As they mainly happen on a large scale, ground truth data collection is very time- and
labor-consuming, thus costly, and sometimes even impossible to perform. Multi-spectral
satellite imagery and remote sensing techniques can be used as important tools in study-
ing these landscape changes [28], as well as the effects on vital factors, including water
sources [29–32].

Recently, the application of remote sensing in urban areas has been mainly focused on
aspects related to the LST and spatial patterns of urban heat islands and their relationship
with surface parameters, balance, and energy fluxes in the urban surface [33,34], and the
relationship between atmospheric temperature and LST [35]. Peng et al. [36] investigated
the relationship between LST and topographic elements in Hangzhou, China. The study
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showed a negative correlation between LST, altitude, and slope. Although this study
presented a weak relationship between LST and aspect, a positive and strong correlation
between the shaded relief map and LST was found. Alavipanah et al. [37] performed a
spatio-temporal analysis of the thermal islands in Mashhad, Iran, with a focus on urban
development and LU/LC changes based on the data from Landsat-5 (TM), Landsat-7
(ETM+), and Landsat-8 (OLI and TIRS) images. They used the NDVI threshold method,
Planck’s law, and two separate window algorithms. The results indicated that the land use
change from agricultural to urban areas is the main factor leading to an increase in LST and
the creation of urban heat islands.

In recent years, machine learning is increasingly being used in remote sensing studies.
Machine learning (ML) is a branch of artificial intelligence and computer science that
emphasizes the use of data and algorithms to learn and gradually improve the performance
and accuracy of results. It is an important part of the growing field of data science [38].
First, cellular automata (CA), Markov chain (MC), multiple-layer perceptron (MLP), and
artificial neural networks (ANN) are used to predict LU/LC changes by identifying patterns
from historical land use data. Conventional machine learning (ML) methods, on the other
hand, frequently use linear regression analysis to predict future LSTs [39,40]. The most
popular linear models that, in some cases, can produce respectable results in LST prediction
are the multiple linear regression (MLR) and ordinary least squares (OLS) models [41].
The combination of remote sensing and machine learning can lead to the use of more
advanced and accurate mathematical algorithms in recognizing and solving environmental
problems. Studies such as [20] have investigated the effect of urban landscape composition
and configuration on LST using landscape segmentation indicators and machine learning,
but the quantification and investigation of the effect of urban parameters on LST and its
modeling with a thermal remote sensing–machine learning approach have received less
attention. Therefore, this study aims to evaluate machine learning models to estimate the
LST using the landscape’s physical parameters and remote sensing indicators from Landsat-
8 images for contrasting seasons (i.e., summer and winter). This study is developed in
Yazd County, Iran, where data availability is scarce, including both field weather data and
high-resolution thermal images. Machine learning algorithms were used to generate LST
data as an output based on spectral bands and different physical variables by choosing
an optimal model, training it carefully, and evaluating the accuracy of its output. Urban
decision-makers and researchers can use the results of this research when there is no access
to field or high-resolution thermal data or for the purpose of gap-filling thermal data
for a better understanding of urban heat island dynamics and the future planning of the
city’s management and development. The estimated LST can be used for controlling soil
moisture, the city’s thermal islands, and evapotranspiration rates [42].

2. Materials and Methods
2.1. Study Area

The study area is Yazd County, located in central Iran, with a total area of 676.5 km2.
This county includes the cities of Yazd, Hamidia, Shahedieh, and Zarch (Figure 1). The
average altitude of the county is 1128.7 m, and the altitude of Yazd’s city ranges from
1199 m to 1276 m, increasing from the north and northeast directions to the south and
southwest. The average slope of this city is 2.1%, which covers 95.4% of the city in the
north-to-south direction [43]. Yazd County has a hot and dry climate, with July, June, and
August being the hottest months (average summer temperature ranging from 23 ◦C to
40 ◦C), and December, January, and February being the coldest (average winter temperature
ranging from 0 ◦C to 17 ◦C). With an annual average temperature of 22 ◦C and an annual
average precipitation of 57.8 mm, Yazd is one of the driest cities in Iran [44].
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Figure 1. The digital elevation model (DEM) and elevation contours of the study area (Yazd County) 
with cities outlined together with intercity (grade 1) and urban (grade 2) road map (a), the location 
of Yazd County within the Yazd province (b), and the Yazd province location in Iran (c). 

2.2. Methodology 
2.2.1. Input Data: Satellite Images 

In this study, 30 m multi-spectral and 100 m thermal bands of Landsat-8 images (in-
cluding OLI and TIRS sensors) were downloaded from the USGU website of the United 
States of America (www.earthexplorer.usgs.gov) to conduct the research. As this study 
aims to model the parameters affecting the LST and to estimate it using machine learning, 
images from the coldest (February) and the hottest (August) months in Yazd regarding 
2019 and 2020 were used [44]. The characteristics of the images used in this research are 
presented in Table 1. 

Table 1. Information about the remote sensing images used in the research. Note that the overall 
image includes a larger area than investigated in this study. 

Satellite/Sensor 
Spatial 
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2019-08-18 
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LC08_L1TP_162038_20190818
_20200827_02_T1 0.0 

2020-02-12 
06:56:59 

LC08_L1TP_162038_20200210
_20200823_02_T1 36.4 

2020-08-18 
06:56:59 

LC08_L1TP_162038_20200820
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2021-02-12 
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LC08_L1TP_162038_20210212
_20210302_02_T1 

19.0 

2021-08-23 
06:57:07 

LC08_L1TP_162038_20210823
_20210831_02_T1 

22.4 

Figure 1. The digital elevation model (DEM) and elevation contours of the study area (Yazd County)
with cities outlined together with intercity (grade 1) and urban (grade 2) road map (a), the location of
Yazd County within the Yazd province (b), and the Yazd province location in Iran (c).

2.2. Methodology
2.2.1. Input Data: Satellite Images

In this study, 30 m multi-spectral and 100 m thermal bands of Landsat-8 images
(including OLI and TIRS sensors) were downloaded from the USGU website of the United
States of America (www.earthexplorer.usgs.gov) to conduct the research. As this study
aims to model the parameters affecting the LST and to estimate it using machine learning,
images from the coldest (February) and the hottest (August) months in Yazd regarding
2019 and 2020 were used [44]. The characteristics of the images used in this research are
presented in Table 1.

Table 1. Information about the remote sensing images used in the research. Note that the overall
image includes a larger area than investigated in this study.

Satellite/Sensor Spatial
Resolution (m) Date/Hour (GMT) Image ID Cloud Cover (%)

Landsat-8/OLI 30

2019-02-07
06:56:42 LC08_L1TP_162038_20190207_20200829_02_T1 31.0

2019-08-18
06:57:05 LC08_L1TP_162038_20190818_20200827_02_T1 0.0

2020-02-12
06:56:59 LC08_L1TP_162038_20200210_20200823_02_T1 36.4

2020-08-18
06:56:59 LC08_L1TP_162038_20200820_20200905_02_T1 27.0

2021-02-12
06:57:01 LC08_L1TP_162038_20210212_20210302_02_T1 19.0

2021-08-23
06:57:07 LC08_L1TP_162038_20210823_20210831_02_T1 22.4

www.earthexplorer.usgs.gov
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The multi-spectral images were prepared for performing subsequent calculations
and extracting spectral indices, after geometric and atmospheric corrections. For the
atmospheric correction, the fast line-of-sight atmospheric analysis of hypercubes (FLAASH)
algorithm [45–48] was used. Also, the atmospheric errors in the thermal bands were
reduced using the thermal atmospheric correction algorithm [49,50].

2.2.2. Disaggregation of Radiometric Surface Temperature (DisTrad)

The DisTrad technique is used in remote sensing to combine thermal infrared (TIR)
images with higher spatial resolution visible and near-infrared (VNIR) images. DisTrad
aims to enhance the interpretability and accuracy of TIR imagery by fusing it with VNIR
imagery. The original DisTrad approach is based on the correlation between LST and
the normalized difference vegetation index (NDVI). Details about the DisTrad model are
provided in [51]. In order to match the pixel size of thermal data with multi-spectral data
and to increase the accuracy of subsequent calculations, the thermal data were downscaled
in our research. The DisTrad method has shown high performance and accuracy in down-
scaling the thermal bands in several studies [51–55]. In this study, NDVI was combined
with the normalized difference built-up index (NDBI) for downscaling the thermal bands,
given the improvement in performance accuracy for the study area [51]. To validate the
downscaled images, the results of the DisTrad method were resampled for comparison
with the original unfused images that have also been used, for example in [56], in other
research. The performance of the DisTrad method was assessed with the root mean square
error (RMSE).

2.2.3. Land Surface Parameters
Calculation of Land Surface Temperature (LST)

After applying the necessary corrections and pre-processing (Section 2.2.1), the data
were used to calculate the parameters (indices) of the land surface. LST, as one of the most
important parameters, was calculated from the brightness temperature using emissivity
correction [57–64], following Equation (1):

LST =

 τ

1 + w
(

τ
p

)
ln(ε)

 (1)

where τ is at-sensor brightness temperature; w is the wavelength of emitted radiance
(10.8 µm Landsat-8 TIRS 10th band); p = h × c/s

(
1.438 × 10−2 m·K

)
, with h being the

Plank’s constant (6.626 × 10−34 J·s); s is the Boltzmann Constant (1.38 × 10−23 J/K); c is the
velocity of light (2.988 × 108 m/s); and ε is the land surface emissivity.

The temperature value at the sensor (brightness) was extracted using Equation (2) [57–64]:

τ =

 K2

ln
(

K1
Lϕ

+ 1
)
 (2)

where K1 and K2 are the thermal conversion constants taken from Landsat-8 Thermal
Infrared Sensor (TIRS) metadata of the 10th band (Table 2). In the above equation, Lϕ is
spectral radiance values.

Table 2. Landsat thermal band conversion constants.

Sensor Band K1 [W/(m2·sr·µm)] K2 [K]

TIRS 10 774.8 1321
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To calculate at-sensor brightness temperature (τ) from the thermal band, raw data
were transformed into spectral radiance values using Equation (3) [65]:

Lϕ = ML × QCal + AL (3)

where Lϕ is the top of atmosphere (TOA) spectral radiance [W/(m2·sr·µm)]; ML is a
multiplicative rescaling factor dependent on the metadata for a particular band; QCal is the
quantized and calibrated standard product’s pixel values (digital number); and AL is the
additive rescaling factor dependent on the metadata for a particular band.

The land surface emissivity (ε) was calculated using Equation (4) [57–61,63,64]:

ε = n Pv + m (4)

where n = 0.004 and m = 0.986; and Pv denotes the vegetation proportion, also referred to
as fractional vegetation cover. The vegetation proportion (Pv) was calculated following
Equation (5) [57–64]:

Pv =

[
NDVI − NDVImin

NDVImax − NDVImin

]2
(5)

where NDVImin and NDVImax are the minimal and the maximal values of the NDVI (calcu-
lated according to Equation (7)).

Calculation of Urban Land Surface Features

Before LST modeling, it was necessary to select surface features for machine learning
model training that would allow the determination of the optimal model, and check the
effect and importance of each of these features on the LST from the sensitivity analysis
approach. The following surface geographical features of Yazd city were selected, based on
a literature review of the relevant ones, calculated and used in the modeling:

(a) Albedo to provide information about the surface’s reflective properties, which
can affect the absorption and re-emission of heat. High albedo surfaces reflect more solar
radiation and tend to have lower LST values [66]. Albedo was calculated for each pixel of
the image.

(b) The NDVI index to assess the cooling effect of vegetation on the surface. Higher
NDVI values indicate more vegetation cover, which can lead to lower LST values due to
evapotranspiration and shading [67].

(c) The NDBI index to provide information about the spatial distribution of urban
areas, which tend to have higher LST values due to the urban heat island effect [68].

(d) The normalized difference bareness index (NDBaI) to provide information about
the presence of bare soil or bare land surfaces, which can have higher LST values due to
their lower heat capacity compared to vegetated areas.

(e) Elevation, given its effect on the air temperature lapse rate, which can influence
LST. Higher elevation areas tend to have lower LST values due to the decrease in atmo-
spheric pressure and temperature with altitude [69]. The elevation of each pixel was taken
from DEM.

(f) Distance from water bodies (for each pixel) to account for the influence of water on
surface temperature. Areas closer to water bodies tend to have lower LST values due to
evaporative cooling [70].

(g) Distance from mountains (for each pixel) to account for the potential shading and
cooling effects of nearby mountainous terrain [71].

(h) Distance from grade 1 (highways and intercity roads) and 2 (boulevards and main
streets in the city) roads, extracted from OpenStreetMap road network data [72] for each
pixel to account for the potential influence of nearby roads on surface temperature.

Each one of the eight surface features was calculated as follows.
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Albedo index

Several methods created by Liang [66] allow for the determination of albedo from
various satellite sensors. In this research, the normalized version of Smith’s (2010) Landsat
method was used to calculate the Landsat shortwave albedo [73] (Equation (6)):

Albedo =

(
0.356b2 + 0.130b4 + 0.373b5 + 0.085b6 + 0.072 + b7 − 0.0018

1.016

)
(6)

where bx represents Landsat-8 bands 2 (Blue), 4 (Red), 5 (NIR), 6 (SWIR1), and 7 (SWIR2).
Normalized Difference Vegetation Index (NDVI)
NDVI is the (normalized) ratio between the Landsat-8 red (R) and near-infrared (NIR)

bands (Equation (7)) [59,74]:

NDVI =
(

NIR − R
NIR + R

)
(7)

Negative values of NDVI (−1 to ~0) indicate water, ice, and snow. The values close
to zero indicate rock, sand, and soil, whereas small positive values (~0 to 0.2) indicate
vegetation, and large positive values (~0.2 to 1) indicate dense vegetation [75,76].

Normalized Difference Built-up Index (NDBI)

The NDBI is a build-up index created to decrease the reflectance of the NIR band in
order to identify vegetation and moist surroundings, while at the same time optimizing the
reflectance of the SWIR band to detect built-up land [77]. The NDBI is calculated as:

NDBI =
(

SWIR1 − NIR
SWIR1 + NIR

)
(8)

where SWIR1 represents short-wavelength infrared band-1 and NIR represents the near-
infrared band.

Normalized Difference Bareness Index (NDBaI)

NDBaI is an index to identify bareness and is calculated following Equation (9).
Values > −0.150 indicate bare land [78]:

NDBaI =
(

SWIR1 − TIR1
SWIR1 + TIR1

)
(9)

where TIR1 is the thermal infrared (10th) band of Landsat-8.

Elevation by Digital Elevation Map (DEM)

To obtain the elevation of each pixel as one of the input parameters to the model, a
30 m ASTER GLOBAL DEM image of the study area, derived from the USGU website, was
used. The image was first stacked to definitely be resampled to the pixel size of the spectral
bands and finally used as one of the input parameters.

Distances

The distance to (1) heights (mountains), (2) primary and secondary roads, and (3) water
bodies was calculated using the Euclidean distance of each pixel from the studied area
to these features. To be more precise, the Euclidean distance between each cell’s center
and the source cell’s center was determined based on true Euclidean distance. Xmax and
Ymax serve as the other two sides of the triangle, and the hypotenuse is calculated for
each cell to establish its distance to each source cell (Figure 2). This is how the Euclidean
algorithm conceptually operates. Instead of the cell distance, the true Euclidean distance
is determined via this computation. When determining the shortest distance to a source,
if it is less than the maximum distance allowed, the value is set to the cell location on the
output image [79].
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To calculate the distance from water bodies, first, the water bodies in the study area
were extracted for each image using the modified normalized difference water index
(MNDWI). MNDWI uses the SWIR band to replace the green band in the normalized
difference water index (NDWI) (Equation (10)). This allows it to restrict both vegetation and
impervious surface objects, while, at the same time, revealing subtle water characteristics
like suspended silt and pollution problems [80]:

MNDWI =
(

G − SWIR1
G + SWIR1

)
(10)

where G is green (third) band of Landsat-8.

SHapley Additive exPlanation (SHAP)

The impact of the explanatory variables was assessed using the Shapley value ap-
proach [81]. This approach divides the prediction variability among all possible covari-
ates [82]. In this manner, in a model-agnostic way, irrespective of the underlying model,
the impact of all explanatory variables on all point predictions can be evaluated [83]. The
computational viewpoint of the SHapley Additive exPlanation (SHAP) framework displays
the Shapley values, which represent model predictions as linear combinations of binary
variables that indicate the presence or absence of each covariate in the model. By perform-
ing this, the computational time constraints are evaded that come with kernel-based SHAP
estimation [84]. In this study, the contribution of each feature for each instance is displayed
on the SHAP summary plot. The sum of the feature contributions and the bias term is
equal to the raw prediction of the model, i.e., prediction before applying the inverse link
function [85].

2.2.4. Optimal Model Selection

To select the optimal model, the automated machine learning (AutoML) function was
used in the R programming environment. AutoML has made it simple for non-experts in
the field of machine learning science to be hands-on with machine learning, even though
high-performing learning models still require some data science expertise. In particular,
deep neural networks are notoriously hard for a non-expert to adjust correctly. AutoML
machine learning tool has been built with an intuitive user interface that streamlines the
process of training a huge number of candidate models, making it really accessible to
non-experts [86]. AutoML includes automatic training and tuning of many models within
a user-specified time-limit and selects the appropriate model using cross-validation. This
allowed testing of machine learning models to estimate LST. In this study, six machine
learning models were selected based on their accuracy in image processing tasks; based on
a literature review and limitations of existing algorithms in the H2O model-building phase.
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Since the search-stopping criteria were set to be allowed, all appropriate H2O algorithms
were allowed to participate in the modeling process:

(1) Random forest (RF) which is commonly used in image processing tasks such
as image classification and object detection. RF can handle high-dimensional data and
provides accurate results by combining multiple decision trees [87].

(2) Extremely randomized trees (XRT) which is similar to RF but with a higher level of
randomness. This is also used in image processing tasks such as image classification and
feature selection. XRT can provide robust performance and handle noisy or incomplete
image data [88].

(3) Gradient boosting machine (GBM) is widely used in image processing for tasks
like image segmentation and object recognition. It can handle large datasets and provide
high accuracy [89].

(4) Generalized linear model (GLM) is a flexible statistical model that can handle
various types of data distribution. In image processing, GLM is often used for tasks such
as image denoising or image reconstruction. GLM can effectively model the relationship
between input and output variables in image data [90].

(5) StackedEnsemble that combines multiple base models to improve predictive perfor-
mance. It is commonly used in image processing for tasks like image recognition and object
detection. StackedEnsemble can leverage the strengths of different models and provide
enhanced accuracy [91].

(6) Artificial neural networks (ANNs) are deep learning models widely used for tasks
like image classification, object detection, and image generation. ANNs consist of multiple
layers of interconnected neurons that can learn complex patterns from image data. They can
automatically extract features and achieve state-of-the-art performance in various image
processing applications [92].

These six machine learning models were also used/tested to estimate LST in different
tunings, i.e., the experimental process of finding the optimal values of hyperparameters to
maximize model performance. For optimal model selection, aggregated data from two years
from each season (in order to increase data variance) were divided into training, testing,
and validation datasets. The separation of the data into training and testing sets (ratio 85:15)
was performed using the R package Split (version 4.0.2) [93] to obtain a trustworthy result
after a few runs [94]. By using a probabilistic splitting approach, this method can perform
well on large data as well as unordered [95] and unweighted [96] databases according to the
computing of an approximate splitting vector by sampling the aforementioned datasets [95].
Each machine learning model was then applied to the validation dataset, and the most
accurate model for predicting the new dataset was then chosen by comparing the model
performance. Hyperparameter tweaking is used to determine which train and test datasets
are best suited for each sort of machine learning model. The performance of the machine
learning models was assessed using statistical metrics, namely root mean absolute error
(RMSE), root mean square logarithmic error (RMSLE), and mean absolute error (MAE).
Also, in order to evaluate the estimated LST map more accurately, the distance of each pixel
from the estimated image to the 45◦ line was calculated from the actual values. To achieve
this objective, the LST values were computed for every pixel row and utilized to ascertain
the distance from the 45◦ polynomial line (DFPL) for each pixel using Equation (11). Using
this equation to find the distance between two points, the length of the line segment that
connects the two points is measured. The DFPL is commonly indicative of the residual or
variance between the observed value and the estimated value derived from the polynomial
regression model:

d =

√
(x − x0)

2 + (y − y0)
2 (11)

where, d is the distance of each pixel; and x and y are the coordinates of each pixel in the
assumption that (x0, y0) and (x, y) are two pixels in a two-dimensional space.
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3. Results
3.1. Validation of LST Maps

Before calculating the LST maps, the remote sensing images were downscaled to the
pixel size of the Landsat-8 spectral bands (30 m) using the DisTrad method. The LST maps
were prepared for the two seasons (winter and summer) for both 2019 and 2020, and used
as the basis for models’ learning (Figure 3). In general, the LST results in the summer
ranged from 79.5 ◦C to 67.42 ◦C in 2019, and from 80.8 ◦C to 49.11 ◦C in 2020. In winter, the
maximum and minimum LST were 41.4 ◦C and 35.6 ◦C in 2019, and 50.8 ◦C and 21.8 ◦C in
2020, respectively (Figure 3). The low minimum values in 2020 were confirmed by a local
unofficial weather station.
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The results of the performance metrics regarding the resampled downscaled images
and the unfused images (see Section 2.2.2) are presented in Table 3. The results of evaluating
the accuracy of LST 30 m range between 2.0 ◦C and 4.0 ◦C, with average values of 2.7 ◦C,
which indicate that the method used provides acceptable results.

Table 3. The mean RMSE results of the comparison between downscaled and actual LST images used
in the present study.

LST Date RMSE (◦C)

2019-02-07 2.08

2019-08-18 4.001

2020-02-12 2.97

2020-08-18 2.01

Based on model predictions, the LST images of the winter and summer of 2021 are
shown in Figure 4. In 2021, the predicted values for the summer range between 83.4 ◦C
and 44.5 ◦C, and for the winter between 58.23 ◦C and 9.81 ◦C.
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Figure 4. The LST images of the 2021 winter (left) and summer (right) based on model predictions.

3.2. Model Input Data

The ground surface features of the Yazd County at the time of taking the thermal
images (Table 1) were calculated. They include albedo for each pixel (Figure 5a), NDVI
(Figure 5b), NDBI (Figure 5c), NDBaI (Figure 5e), distance from water bodies for each pixel
(Figure 5f), elevation of each pixel (from DEM) (Figure 1), distance from mountains for each
pixel (Figure 5f, top panel), and distance from grade 1 and 2 roads for each pixel (Figure 5f,
bottom panel).
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Figure 5. Spatial variation in calculated ground surface features: (a) albedo, (b) NDVI, (c) NDBI,
(d) NDBaI, (e) distance (m) from water bodies for each pixel, and (f) distance from mountains (top)
and grade 1 and 2 roads (bottom) for each pixel map. Each figure includes maps for 2019 (top), 2020
(middle), and 2021 (bottom) for the winter (left panels) and summer (right panels) seasons.
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3.3. Data Frame Creation, Test and Selection of the Optimum Model

After calculating the ground surface features utilized as the input for the mod-
els, the implementation of AutoML facilitated the selection of the most suitable model
and the fine-tuning of its parameters. The results of the statistical metrics for the
top 17 models investigated are shown in Table 4. Among the tested models, the
“GBM_4_AutoML_1_20220802_231417” model had the best performance for summer,
given the high accuracy of the results (RMSE of 0.32 ◦C, MAE of 0.17 ◦C, and RMSLE of
0.00 ◦C), and the “GBM_1_AutoML_1_20220803_104005” was the optimum model for
winter, with RMSE of 0.27 ◦C, MAE of 0.14 ◦C, and RMSLE of 0.01 ◦C.

Table 4. Statistical measures for model accuracy of the top 17 tested models for summer and winter.

Rank Season Model ID RMSE (◦C) MAE (◦C) RMSLE
(◦C)

1
Summer GBM_4_AutoML_1_20220802_231417 0.32 0.17 0.00

Winter GBM_1_AutoML_1_20220803_104005 0.27 0.14 0.01

2
Summer GBM_3_AutoML_1_20220802_231417 0.33 0.16 0.00

Winter DeepLearning_1_AutoML_1_20220803_104005 0.32 0.16 0.01

3
Summer GBM_5_AutoML_1_20220802_231417 0.34 0.17 0.00

Winter StackedEnsemble_BestOfFamily_3_AutoML_1_20220803_104005 0.34 0.22 0.01

4
Summer GBM_2_AutoML_1_20220802_231417 0.34 0.17 0.00

Winter StackedEnsemble_AllModels_2_AutoML_1_20220803_104005 0.34 0.22 0.01

5
Summer GBM_1_AutoML_1_20220802_231417 0.34 0.16 0.00

Winter StackedEnsemble_AllModels_3_AutoML_1_20220803_104005 0.34 0.22 0.01

6
Summer DRF_1_AutoML_1_20220802_231417 0.34 0.16 0.00

Winter StackedEnsemble_AllModels_1_AutoML_1_20220803_104005 0.35 0.22 0.01

7
Summer XRT_1_AutoML_1_20220802_231417 0.35 0.17 0.00

Winter StackedEnsemble_BestOfFamily_1_AutoML_1_20220803_104005 0.35 0.22 0.01

8
Summer DeepLearning_1_AutoML_1_20220802_231417 0.39 0.19 0.01

Winter StackedEnsemble_BestOfFamily_2_AutoML_1_20220803_104005 0.35 0.22 0.01

9
Summer GBM_grid_1_AutoML_1_20220802_231417_model_1 0.43 0.26 0.01

Winter DRF_1_AutoML_1_20220803_104005 0.39 0.22 0.01

10
Summer DeepLearning_grid_1_AutoML_1_20220802_231417_model_3 0.48 0.27 0.01

Winter XRT_1_AutoML_1_20220803_104005 0.44 0.25 0.01

11
Summer DeepLearning_grid_1_AutoML_1_20220802_231417_model_2 0.48 0.26 0.01

Winter GBM_3_AutoML_1_20220803_104005 0.60 0.42 0.01

12
Summer DeepLearning_grid_1_AutoML_1_20220802_231417_model_1 0.51 0.29 0.01

Winter GBM_2_AutoML_1_20220803_104005 0.60 0.42 0.01

13
Summer StackedEnsemble_AllModels_4_AutoML_1_20220802_231417 0.64 0.52 0.01

Winter GBM_4_AutoML_1_20220803_104005 0.67 0.47 0.02

14
Summer StackedEnsemble_AllModels_3_AutoML_1_20220802_231417 0.65 0.53 0.01

Winter GLM_1_AutoML_1_20220803_104005 0.68 0.51 0.02

15
Summer StackedEnsemble_AllModels_2_AutoML_1_20220802_231417 0.65 0.53 0.01

Winter DeepLearning_grid_1_AutoML_1_20220803_104005_model_1 0.82 0.63 0.02

16
Summer StackedEnsemble_AllModels_1_AutoML_1_20220802_231417 0.65 0.53 0.01

Winter GBM_5_AutoML_1_20220803_104005 1.27 0.90 0.03

17
Summer StackedEnsemble_BestOfFamily_3_AutoML_1_20220802_231417 0.65 0.54 0.01

Winter GBM_grid_1_AutoML_1_20220803_104005_model_1 1.98 1.31 0.05
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3.4. Modeling of the LST

The extracted optimal model exhibited high accuracy in predicting the LST for the
utilized dataset. Table 5 presents the calculated importance and effect of ground surface
parameters on LST during the summer and winter seasons. It shows that albedo is the
feature with the highest importance for predicting LST, accounting for 80.3% for summer
and 72.7% for the winter season. NDVI is the second parameter with the highest importance
and influence on LST, accounting for 11.27% for summer and 17.21% for winter seasons. The
third most important parameter in the summer season was the NDBaI, with an importance
equal to 3.2%, whereas for the winter season, the NDBI was more effective, with an
importance equal to 4.45%. Other parameters (fourth to eighth) had an importance (almost)
equal to 1%.

Table 5. Importance of the impact of the studied parameters on the LST for the summer and
winter seasons.

Rank Season Variable Importance (%) Scaled
Importance

1
Summer Albedo 80.30 1.00000

Winter Albedo 72.74 1.00000

2
Summer NDVI 11.27 0.12769

Winter NDVI 17.21 0.21058

3
Summer NDBAI 3.23 0.00260

Winter NDBI 4.45 0.00548

4
Summer NDBI 1.16 0.00183

Winter NDBAI 1.44 0.00534

5
Summer DEM 1.02 0.00021

Winter Water Distance 1.09 0.00109

6
Summer Road Distance 1.01 0.00009

Winter Mountainous
Area Distance 1.04 0.00046

7
Summer Water Distance 1.01 0.00007

Winter Road Distance 1.02 0.00024

8
Summer Mountainous

Area Distance 1.00 0.00003

Winter DEM 1.01 0.00018

The SHAP summary plot (Figure 6) which shows each variable’s contribution, showing
its average Shapley value across all inputs, helps to obtain a better view of the importance
of each land surface feature and how they affect LST. Albedo has the most expansion in
SHAP values and is known as the most important parameter for LST estimation. According
to the SHAP values, most of the higher albedo values are positive. Each pixel has a different
influence on the model’s output, particularly the ones with lower values. On the other
hand, lower and higher values related to NDVI, DEM, and NDBI are placed on the positive
and negative side of SHAP values, respectively, with the difference that lower values of
NDBI are seen on the negative side, and higher values are also seen on the positive side. In
the NDVI values, an elongated peak is observed, which is divided into two parts, starting
from approximately SHAP = 0, which shows lower values towards SHAP > 0 and higher
values towards SHAP < 0. In NDBAI values, a very large peak can be seen, which shows
the distribution of its values from less in the negative direction to more in the positive
direction of SHAP values. The distance from water has a peak on the positive side of SHAP
values, whereas the distance from the road shows two peaks of values, one with higher



Remote Sens. 2024, 16, 454 15 of 24

values around zero SHAP (more toward negative SHAP values) and one with lower values,
towards positive SHAP values. The distance from mountainous areas has also shown the
distribution of its higher values in the negative direction of SHAP values and its lower
values starting with a peak in negative SHAP values and towards its positive values.
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After model learning, the maps with estimated LST for the winter and summer of
2021 are presented in Figure 7. The LST values for each row of pixels were calculated and
used to determine the distance of each pixel value from the 45◦ polynomial line (DFPL),
which typically represents the residual or the difference between the observed value and
the predicted value based on the polynomial regression model. These distance images,
showcasing the variation from the actual LST values for 2021, are visually represented on the
right side of the top and down panels in Figure 7. Based on DFPL image statistics (Table 6),
the LST estimation shows an acceptable difference compared to the actual LST image, with
a standard deviation of 3.3 ◦C and 3.5 ◦C for winter and summer 2021, respectively. This
means that about 76% of pixels (from a total of 3,006,432) are estimated with a difference of
3 ◦C or less compared to the actual LST, which is an acceptable accuracy [97].
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Figure 7. The map of the estimated LST for winter 2021 (top) and summer (down) 2021 for the Yazd
cities (left) and its distance from the 45◦ polynomial line (DFPL) image (right).

Table 6. Mean and standard deviation (STDEV) values of land surface temperature (LST) in the
estimated map for winter and summer 2021.

Index (◦C) Winter Summer

Mean 3.03 2.858

STDEV 3.280 3.484

The scatterplot and histogram of estimated and actual LST images for both winter and
summer 2021 (Figure 8) indicate the acceptable accuracy of the model’s LST estimation.
The histograms (Figure 8, figures on the right) show the differences in the values of the
two compared images, which are highlighted by pink and pale blue colors at the edges.
Additionally, statistical metrics such as MAE of 3.6 ◦C for winter and 3.4 ◦C for summer
2021 also indicate an acceptable accuracy of the models used for LST mapping (Table 7).

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 7. The map of the estimated LST for winter 2021 (top) and summer (down) 2021 for the Yazd 
cities (left) and its distance from the 45° polynomial line (DFPL) image (right). 

The scatterplot and histogram of estimated and actual LST images for both winter 
and summer 2021 (Figure 8) indicate the acceptable accuracy of the model’s LST estima-
tion. The histograms (Figure 8, figures on the right) show the differences in the values of 
the two compared images, which are highlighted by pink and pale blue colors at the edges. 
Additionally, statistical metrics such as MAE of 3.6 °C for winter and 3.4 °C for summer 
2021 also indicate an acceptable accuracy of the models used for LST mapping (Table 7). 

Table 7. The statistical measures for comparison between the estimated and actual LST maps for the 
winter and summer of 2021. 

Index Winter (°C) Summer (°C) 
MAE 3.559 3.358 
RMSE 5.247 5.296 

RMSLE 0.152 0.128 
 

  

Figure 8. Cont.



Remote Sens. 2024, 16, 454 17 of 24Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 24 
 

 

  
Figure 8. Scatterplot for estimated and actual LST values (left), and histogram for actual (LST) and 
estimated (LSTpre) LST values (right) for winter (top) and summer (down) 2021. 

4. Discussion 
The current research uses machine learning models to estimate LST in Yazd city, 

which is located in a hot and dry climate zone with limited data availability. In this re-
search, Landsat-8 satellite images were used, given, e.g., their good history in spatial data 
modeling [98–101]. Based on the obtained results, a fusion of thermal data can be per-
formed with acceptable accuracy using the DisTrad method. The mean RMSE between 
the fused and unfused thermal data obtained in the study area was 2.7 °C (Table 3), which 
confirms the proper performance of the DisTrad model in thermal data downscaling. The 
high accuracy of this method has been confirmed in similar studies elsewhere, especially 
when compared with other thermal band downscaling algorithms [51–54]. 

The procedure for the selection of the most suitable machine learning model among 
the used models indicated that for the input data used, the GBM was the most accurate 
one, with an RMSE of 0.32 °C and 0.27 °C for the summer and winter seasons, respectively 
(Table 4). The GBM model, which builds regression trees on all of the features of the da-
taset in a fully distributed way [102], has been evaluated as an accurate and suitable model 
in several previous research studies dealing with spatial data [103–106]. In previous stud-
ies, other machine learning models, such as generative adversarial networks (GAN) [41], 
boosted regression tree (BRT), random forest (RF) [107], and support vector machine 
(SVM) [108], were also studied and evaluated and may be considered in future research. 
Models such as cellular automata (CA) and Markov models, for example, have been used 
in a variety of domains such as urban planning, land use forecasting, ecology, and climate 
change modelling [109–111]. For 2021, the estimation of the LST showed sufficiently high 
accuracy when compared with the actual LST, with a standard deviation of 3.3 °C and 3.5 
°C (Table 6) and MAE equal to 3.6 °C and 3.4 °C (Table 7) in winter and summer, respec-
tively, which is in line with the acceptable error of ±3 °C for LST calculation by the algo-
rithms provided [97]. 

By utilizing spectral indices and machine learning algorithms, the research identified 
key land surface parameters that significantly influence LST in different seasons. Specifi-
cally, albedo and NDVI were found to have a substantial impact on LST (Table 5). Albedo 
had the highest importance and influenced LST to the highest degree, with 80.3% and 
72.7% of importance for summer and winter, respectively. Albedo also showed the largest 
spread in SHAP values, which can be a double confirmation of the effect and importance 
of this parameter on LST. The distribution of lower albedo values on both sides (positive 
and negative) of SHAP values can indicate the greater effect of these values on LST. Prob-
ably, it is a confirmation or a response to some city surfaces that have high (concrete) and 
low (asphalt) albedos [112], and therefore have opposite functions in reflecting or absorb-
ing a higher percentage of solar radiation with different albedo. Those with higher ab-
sorption rates absorb more heat from the sun. Consequently, these surfaces tend to have 
different LST values, probably because they absorb a larger portion of the solar radiation, 

Figure 8. Scatterplot for estimated and actual LST values (left), and histogram for actual (LST) and
estimated (LSTpre) LST values (right) for winter (top) and summer (down) 2021.

Table 7. The statistical measures for comparison between the estimated and actual LST maps for the
winter and summer of 2021.

Index Winter (◦C) Summer (◦C)

MAE 3.559 3.358

RMSE 5.247 5.296

RMSLE 0.152 0.128

4. Discussion

The current research uses machine learning models to estimate LST in Yazd city,
which is located in a hot and dry climate zone with limited data availability. In this
research, Landsat-8 satellite images were used, given, e.g., their good history in spatial
data modeling [98–101]. Based on the obtained results, a fusion of thermal data can be
performed with acceptable accuracy using the DisTrad method. The mean RMSE between
the fused and unfused thermal data obtained in the study area was 2.7 ◦C (Table 3), which
confirms the proper performance of the DisTrad model in thermal data downscaling. The
high accuracy of this method has been confirmed in similar studies elsewhere, especially
when compared with other thermal band downscaling algorithms [51–54].

The procedure for the selection of the most suitable machine learning model among
the used models indicated that for the input data used, the GBM was the most accurate
one, with an RMSE of 0.32 ◦C and 0.27 ◦C for the summer and winter seasons, respectively
(Table 4). The GBM model, which builds regression trees on all of the features of the dataset
in a fully distributed way [102], has been evaluated as an accurate and suitable model in
several previous research studies dealing with spatial data [103–106]. In previous studies,
other machine learning models, such as generative adversarial networks (GAN) [41],
boosted regression tree (BRT), random forest (RF) [107], and support vector machine
(SVM) [108], were also studied and evaluated and may be considered in future research.
Models such as cellular automata (CA) and Markov models, for example, have been used
in a variety of domains such as urban planning, land use forecasting, ecology, and climate
change modelling [109–111]. For 2021, the estimation of the LST showed sufficiently high
accuracy when compared with the actual LST, with a standard deviation of 3.3 ◦C and
3.5 ◦C (Table 6) and MAE equal to 3.6 ◦C and 3.4 ◦C (Table 7) in winter and summer,
respectively, which is in line with the acceptable error of ±3 ◦C for LST calculation by the
algorithms provided [97].

By utilizing spectral indices and machine learning algorithms, the research identified
key land surface parameters that significantly influence LST in different seasons. Specifi-
cally, albedo and NDVI were found to have a substantial impact on LST (Table 5). Albedo
had the highest importance and influenced LST to the highest degree, with 80.3% and
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72.7% of importance for summer and winter, respectively. Albedo also showed the largest
spread in SHAP values, which can be a double confirmation of the effect and importance of
this parameter on LST. The distribution of lower albedo values on both sides (positive and
negative) of SHAP values can indicate the greater effect of these values on LST. Probably,
it is a confirmation or a response to some city surfaces that have high (concrete) and low
(asphalt) albedos [112], and therefore have opposite functions in reflecting or absorbing a
higher percentage of solar radiation with different albedo. Those with higher absorption
rates absorb more heat from the sun. Consequently, these surfaces tend to have different
LST values, probably because they absorb a larger portion of the solar radiation, which is
converted into heat energy, so the surface temperature increases. This influence is lower in
winter possibly due to the increase in surface moisture which can play a balancing role in
addition to the colder air and the effect on LST in the colder season. NDVI was the second
most important factor impacting the LST in both summer and winter, having an influence
equal to 11.3% and 17.2%, respectively (Table 5). The higher impact of NDVI on LST in
winter is possibly because of fewer leaves and less dense vegetation, resulting in lower
NDVI values. In winter, an increase in NDVI values can lead to increasing LST [113,114]. A
positive correlation between NDVI and LST values in winter has been reported in previous
studies [115]. The distribution of higher and lower values of NDVI in SHAP was also
almost completely related to the negative and positive values of SHAP, respectively, which
support the great effect of NDVI on LST. NDBaI with an influence equal to 3.2% in summer
and NDBI with an influence equal to 4.5% in winter also had a considerable impact on LST.
This is probably because of the barren lands, which are very hot during the summer in
the vicinity of Yazd [116], and also the increase in heat in the residential areas during the
winter season due to the use of heating devices. NDBaI values are also relatively widely
present in SHAP, with lower values associated with negative SHAPs and higher values
associated with positive SHAPs, and this can show the reinforcing role of their presence in
increasing LST. Additionally, the reduced vegetation cover may lead to a higher reception
of solar energy, and thus increase in LST, in built-up areas in winter than in summer. Other
studies have reported a positive relationship between NDBI and LST, especially in the
winter season [117]. The NDBI values in SHAP showed the two poles of less in positive and
more in negative SHAP in addition to a peak of less in negative SHAP values, which can
be due to the role of built-up areas in increasing LST in most cases and vice versa. It also
shows its cooling factors (e.g., plants, irrigation, roof gardens) in some areas. Although the
values of the distance from water and road showed a small share of influence on LST (~1%),
their distribution in SHAP shows their influence in a reverse way. LST increases with the
increasing distance to water but decreases with the increasing distance to roads. The two
peaks of the distance from the road can be seen from two different perspectives: on the one
hand, proximity to roads and the increase in LST due to the increase in density of built-up
areas in some areas, and on the other hand, the distance from roads and the decrease in
LST due to distance from asphalt and vehicle activity in some other (most) areas.

This study simplifies and develops machine learning models in the field of environ-
mental sciences and thermal remote sensing, establishing a new bridge towards research on
their compatibility and improving their accuracy as much as possible in the field of inter-
disciplinary research in the future. In this connection, data modeling with the approach of
prediction and estimation using machine learning and deep learning has been considered
in various research studies in the field of spatial sciences, especially agriculture, plants, and
other related issues [118,119]. The modeling footprint of spatial thermal data can be used in
more studies in the future. However, this study has some limitations. The main limitation
was the impossibility of accessing and collecting accurate ground data or high-resolution
thermal images. We suggest future research using data collection teams to obtain the field
data. Furthermore, additional non-image parameters should be included in LST modeling
using machine learning or deep learning models. For example, future research should
consider investigating the impact of variables such as soil moisture and soil type, solar
radiation, type of air circulation, and cloudiness as considered in a few studies predicting
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land surface temperature like [120]. This research also suggests that future research should
report the estimated values of LST using machine learning in the peri-urban areas and
surrounding villages so that the role of the factors influencing the creation of heat islands
in this connection is also considered. This suggestion is based on the scientific background
of the average temperature difference between urban and the surrounding rural areas, and
its basics have been studied in previous research [121–123].

The findings of this research provide valuable insights for city managers in under-
standing the factors contributing to urban LST to develop appropriate strategies to mitigate
the associated heat stress, and to support effective urban planning. Moreover, the de-
veloped models can be applied in the study area for temporal and spatial gap-filling of
thermal data. The methodology developed offers a reliable tool for estimating surface
temperature and supporting decision-making and planning processes in urban areas with
similar climatic characteristics.

5. Conclusions

This study estimates land surface temperature (LST) in Yazd City, characterized by a
hot and arid climate region, utilizing land surface parameters derived from spectral indices
and machine learning algorithms. The analysis employed six machine learning algorithms
and incorporated various ground surface features, including albedo, NDVI, NDBI, NDBaI,
distance from water bodies, elevation, distance from mountains, and distance from roads,
extracted from Landsat-8 imagery during the winter and summer seasons of 2019 and 2020.
The best model, selected based on three accuracy metrics (i.e., RMSE, MA, and RMSLE)
was implemented and evaluated to estimate LST in 2021. According to the results of this
research, the following conclusions can be drawn:

1. Assessing ground surface temperature using machine learning models: the GBM
algorithm outperforms the other machine learning models for LST estimation, given
its highest accuracy. Due to the high accuracy and the ability to use complex data
such as spectral indices, machine learning models can be used to estimate LST in areas
where thermal data are limited.

2. Effect of environmental factors in determining Earth’s surface temperature: albedo ex-
erts a significant impact on LST, with an importance of 80.30% and 72.74% in summer
and winter seasons, respectively. NDVI is the second most important factor in deter-
mining LST, accounting for 11.27% and 17.21%, correspondingly. The other six ground
surface features investigated have an importance of ~5% in LST for both seasons.

3. Ability to estimate temperature at different spatial scales: spectral indices and machine
learning algorithms can be used to estimate LST on a large spatial scale. But for smaller
scales, improved and adaptive methods may be needed.

4. The use of spectral indices in time analysis: by considering different spectral indices
in different seasons, it is possible to conduct temporal analyses of LST and examine
patterns and seasonal changes. These analyses provide a better understanding of the
temperature dynamics of the study areas.

The outcomes of this study provide valuable insights into the application of machine
learning models for estimating LST using remote sensing spectral indices in areas lacking
thermal bands or when finer spatial scales are required. Our findings can be useful in
future research and to support decision making regarding practical solutions for urban
heat island effect mitigation and environmental management.
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