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Abstract: Since camera and LiDAR sensors provide complementary information for the 3D semantic
segmentation of intelligent vehicles, extensive efforts have been invested to fuse information from
multi-modal data. Despite considerable advantages, fusion-based methods still have inevitable
limitations: field-of-view disparity between two modal inputs, demanding precise paired data as
inputs in both the training and inferring stages, and consuming more resources. These limitations
pose significant obstacles to the practical application of fusion-based methods in real-world scenarios.
Therefore, we propose a robust 3D semantic segmentation method based on multi-modal collaborative
learning, aiming to enhance feature extraction and segmentation performance for point clouds. In
practice, an attention based cross-modal knowledge distillation module is proposed to effectively
acquire comprehensive information from multi-modal data and guide the pure point cloud network;
then, a confidence-map-driven late fusion strategy is proposed to dynamically fuse the results of
two modalities at the pixel-level to complement their advantages and further optimize segmentation
results. The proposed method is evaluated on two public datasets (urban dataset SemanticKITTI and
off-road dataset RELLIS-3D) and our unstructured test set. The experimental results demonstrate the
competitiveness of state-of-the-art methods in diverse scenarios and a robustness to sensor faults.

Keywords: 3D semantic segmentation; multi-modal fusion; collaborative learning; knowledge
distillation

1. Introduction

With the continual progression of intelligent driving technology, the safety of intel-
ligent vehicles (IVs) has attracted significant attention and interest [1]. In the field of
intelligent driving technology, efficient, effective, and robust environmental perception
serves as a foundational prerequisite for subsequent tasks, such as the precise positioning,
reliable planning, and secure control of these IVs [2]. As the core module of environmental
perception methods, 3D semantic segmentation is able to densely allocate specific semantic
labels to individual pixel points, including entities like drivable surfaces and backgrounds,
and has emerged as a focal point of concern in recent years.

LiDAR-only semantic segmentation approaches utilize a diverse set of techniques
to fully harness geometric information and have managed to achieve competitive results
in structured scenarios, such as indoor environments and typical urban traffic scenes [3].
Nevertheless, when confronted with complex and dynamically changing surroundings
characterized by sparse and visually similar geometric attributes, these methods encounter
limitations inherent to LiDAR sensors, leading to below-expectation performance [4].

A promising method to overcome such limitations lies in the incorporation of camera
images, which provide a wealth of dense semantic features, including color and texture

Remote Sens. 2024, 16, 453. https://doi.org/10.3390/rs16030453 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16030453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1684-9936
https://orcid.org/0000-0001-9483-5559
https://doi.org/10.3390/rs16030453
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16030453?type=check_update&version=1


Remote Sens. 2024, 16, 453 2 of 18

information. Consequently, LiDAR–camera fusion is a strategic approach to enhance the
accuracy and robustness of 3D semantic segmentation methods in challenging environmen-
tal conditions [5,6]. Utilizing sensor calibration matrices, current LiDAR–camera fusion
approaches typically adopt one of two primary strategies: either projecting image pixels
onto LiDAR coordinates and performing feature fusion approaches within the sparsely
populated LiDAR domain [7–11], or projecting point clouds onto image planes using
perspective projection to merge corresponding multi-modal features [4,12–16].

Despite the significant advantages offered by multi-modal fusion, these methods still
have following inherent limitations that cannot be circumvented:

(a) Field of View Disparity:

The LiDAR and camera sensors typically possess differing field-of-view characteristics,
with only a small overlap area (as depicted in Figure 1). Consequently, it becomes infeasible
to establish point-to-pixel mapping for point clouds located outside this overlap area, which
significantly restricts the broader application of fusion-based methods.
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tion could have detrimental impacts on segmentation performance and might even lead 
to algorithm failures. Figure 2 illustrates this vulnerability; for example, cameras are sus-
ceptible to light interference, which can result in issues like image confusion, blurriness, 
overexposure, and other anomalies, while LiDAR sensors can be affected by weather con-
ditions like rain, snow, and fog, leading to phenomena such as “ghost” points or a signif-
icant reduction in the amount of point cloud data. 
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Figure 1. A sample field-of-view difference between LiDAR and camera. (a) Original point cloud;
(b) point cloud in camera field-of-view shown in red.

(b) Dependency on Precise Paired Data:

Fusion-based methods critically rely on the availability of accurately paired data,
specifically precise point-pixel mapping between LiDAR and camera data. This mapping
is crucial for both the training and inference stages. Thus, any data error or sensor mal-
function could have detrimental impacts on segmentation performance and might even
lead to algorithm failures. Figure 2 illustrates this vulnerability; for example, cameras are
susceptible to light interference, which can result in issues like image confusion, blurriness,
overexposure, and other anomalies, while LiDAR sensors can be affected by weather condi-
tions like rain, snow, and fog, leading to phenomena such as “ghost” points or a significant
reduction in the amount of point cloud data.
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(c) Resource-Intensive Processing:

Fusion-based approaches require the simultaneous processing of both point cloud and
image data, leading to increased demands on computing resources and storage space. Even
if efforts have been made to mitigate these challenges through multi-tasking or cascading,
such resource demands can pose a substantial burden, especially on devices with limited
resources, when deploying real-time applications.

In order to address the aforementioned challenges, this paper presents a robust 3D
semantic segmentation method based on multi-modal collaborative learning. It comprehen-
sively considers the complementarity between point cloud and image data at the feature
level and output level during training, overcoming the limitation of LiDAR-only methods;
benefiting from multi-modal collaborative learning, it can conduct 3D semantic segmenta-
tion without image inputs during inference, overcoming the limitations of multi-modal
fusion-based methods. Extensive evaluations were conducted across diverse datasets,
including the urban dataset SemanticKITTI [17], the off-road dataset RELLIS-3D [18], and
our unstructured test set with sparse LiDAR points. The experimental results affirm that,
by leveraging the synergies between point cloud and image data, our proposed method can
achieve efficient, accurate, and robust 3D semantic segmentation performance in diverse
and complex scenarios, especially when the raw data are corrupted. The main contributions
of this paper are summarized as follows:

(a) This paper proposes a robust 3D semantic segmentation method based on multi-modal
collaborative learning, which effectively deals with the limitations and restrictions of
fusion-based 3D semantic segmentation methods.

(b) An attention-based cross-modal knowledge distillation module is proposed to assist
3D feature extraction using 2D image features with higher contributions, which further
helps distill multi-modal knowledge to single point-cloud modality for accurate and
robust semantic segmentation.

(c) A late fusion strategy guided by a confidence map is proposed to emphasize the
strengths of each modality by dynamically assigning per-pixel weights of outputs and
further optimizing segmentation results.

The rest of this paper consists of the following sections: Section 2 reviews the related
works, Section 3 presents the methodology, Section 4 presents and analyzes the experiments,
and Section 5 is the work’s conclusion.

2. Related Works
2.1. LiDAR-Based 3D Semantic Segmentation Methods

In general, LiDAR-based 3D semantic segmentation methods can be divided into the
following three categories based on distinct data representations.

Point-based methods [19–21] directly process unordered point clouds using MLP-
based (multi-layer-perceptron-based) techniques. These methods have demonstrated excel-
lent segmentation results on small-scale and dense point clouds. However, their application
to sparse inputs in large-scale scenarios is often limited by factors such as poor locality, high
computational costs, and substantial memory requirements, resulting in lower accuracy
and slower reasoning speeds.

Voxel-based methods [22–26] transform point clouds into dense voxels and employ 3D
convolution to extract and reconstruct the features in each voxel, which achieves superior
segmentation results. However, the redundancy in dense voxel representation and the
computational inefficiency of 3D convolution contribute to an exponential increase in the
complexity of these methods, leading to poor real-time performance.

Projection-based methods can keep a good balance between segmentation performance
and real-time performance, benefiting from the compactness of inputs and the lightness
of 2D CNNs. They typically employ top-down or spherical projection for point cloud
preprocessing, resulting in the formation of Bird’s-Eye Views (BEVs) [27–29] and Range
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Views (RVs) [30–32]. Nevertheless, the BEV approach remains sparse while preserving the
size of objects, and the RV approach disrupts the original topological relationships.

Considering the demand of accurate feature extraction and real-time application, we
utilized our former work [33] as the 3D branch backbone, which is a multi-projection fusion
method and leverages rich complementary information between different views.

2.2. Knowledge Distillation Methods

Knowledge distillation (KD) was originally proposed for network model compres-
sion [34], that is, transferring rich hidden information from complex and large teacher
networks to lightweight and compact student networks, aiming to reduce the performance
gap between the two models. It was initially designed for image classification tasks, taking
various forms of knowledge as distillation targets, including intermediate outputs [35,36],
visual attention maps [37,38], interlayer similarity maps [39], and sample-level similarity
maps [40,41].

Recent advancements have extended knowledge distillation to semantic segmentation
tasks for intermediate feature extraction. For instance, ref. [42] simultaneously extracts pixel-
level knowledge, paired-similarity knowledge, and global knowledge, achieving high-order
consistency between fine-grained and comprehensive network outputs. Ref. [43] facilitates
student model learning by reinterpreting the teacher network’s output as a new potential
domain and proposes an affinity distillation module to capture the long-term dependencies
of the teacher network. Ref. [44] introduces a point-to-voxel knowledge distillation method
and a difficulty-sensing sampling strategy to enhance distillation efficiency.

With the rapid progress of multi-modal computer vision technology, more and more
research has applied knowledge distillation to the prior information on transmission
between different modalities. For example, refs. [45–47] use additional two-dimensional
image information during training to enhance algorithm performance in the inferring stage;
ref. [48] introduces 2D-assisted pre-training; ref. [49] expands 2D convolution into 3D
convolution; and ref. [50] proposes a dense foreground-guided feature imitation method
and sparse instance distillation method to transfer spatial knowledge from LiDAR to
multiple camera images for 3D target detection.

Nevertheless, in contrast to dense and regular camera images, LiDAR point clouds
have inherent characteristics like sparsity, randomness, and variable density. This sub-
stantial disparity between the two modalities poses a formidable challenge for knowledge
distillation across modalities. The direct application of knowledge distillation between
the two modalities will pollute the specific modal information. Therefore, we propose
an attention-based cross-modal knowledge distillation module, enhancing the feature
extraction of the 3D branch without losing its specific modality information.

3. Methods

In this section, we introduce a robust 3D semantic segmentation method based on
multi-modal collaborative learning, as shown in Figure 3. First, the efficient semantic
segmentation backbone (including 2D and 3D branches) is utilized to leverage rich com-
plementary information and offer reliable intermediate features for later multi-modal
collaborative learning. Then, a cross-modal knowledge distillation module is proposed to
enhance the feature representation of the 3D branch in multiple scales using prior feature
information from the 2D branch. Finally, a late fusion strategy driven by confidence map-
ping is proposed to weight the prediction results of the two modal branches in a direct and
explicit manner, which highlights the advantages of each modal branch while weakening
the interference of incorrect data inputs, so as to generate the final accurate and robust
prediction results.

In the following subsections, the architecture of the proposed method will be described
in detail.
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3.1. Semantic Segmentation Backbone

There are two primary objectives of 2D and 3D semantic segmentation backbones:
first, to offer reliable semantic information and geometrical features to the latter proposed
cross-modal knowledge distillation module; second, to utilize their outputs to further
constrain and enhance the final results of 3D semantic segmentation.

To achieve these goals, we simply employ HRNet [51] as the 2D branch and our
former work [33] as the 3D branch for efficient and effective feature extraction and semantic
segmentation. To be specific, the 2D branch, HRNet, maintains high-resolution representa-
tions through the whole process, providing semantically richer and spatially more precise
2D semantic features; the 3D branch combines RV and BEV at both the feature-level and
output-level, which significantly mitigates information loss during the projection.

3.2. Attention-Based Cross-Modal Knowledge Distillation Module

The proposed cross-modal knowledge distillation module (see Figure 4) first fuses
the paired 2D and 3D features {FC, FR, FB} based on the attentional mapping (AM); then,
it distills the enhanced fusion features Ffe

C and the enhanced 3D features Fe
R, Fe

B in a unidi-
rectional alignment. In this manner, we can transfer the comprehensive information from
multi-modal data into the LiDAR model for its feature enhancement, while retaining its
specific characteristics. Below, we take Image-RV as an example to analyze the process.

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 18 
 

 

In the following subsections, the architecture of the proposed method will be de-
scribed in detail. 

 
Figure 3. Overall architecture of the proposed method, comprising two key components: the cross-
modal knowledge distillation module and the late fusion strategy driven by confidence mapping. 

3.1. Semantic Segmentation Backbone 
There are two primary objectives of 2D and 3D semantic segmentation backbones: 

first, to offer reliable semantic information and geometrical features to the latter proposed 
cross-modal knowledge distillation module; second, to utilize their outputs to further con-
strain and enhance the final results of 3D semantic segmentation. 

To achieve these goals, we simply employ HRNet [51] as the 2D branch and our for-
mer work [33] as the 3D branch for efficient and effective feature extraction and semantic 
segmentation. To be specific, the 2D branch, HRNet, maintains high-resolution represen-
tations through the whole process, providing semantically richer and spatially more pre-
cise 2D semantic features; the 3D branch combines RV and BEV at both the feature-level 
and output-level, which significantly mitigates information loss during the projection. 

3.2. Attention-Based Cross-Modal Knowledge Distillation Module 
The proposed cross-modal knowledge distillation module (see Figure 4) first fuses 

the paired 2D and 3D features {FC,FR,FB} based on the attentional mapping (AM); then, 
it distills the enhanced fusion features FC

fe and the enhanced 3D features FR
e , FB

e  in a uni-
directional alignment. In this manner, we can transfer the comprehensive information 
from multi-modal data into the LiDAR model for its feature enhancement, while retaining 
its specific characteristics. Below, we take Image-RV as an example to analyze the process. 

 
Figure 4. The architecture of the cross-modal knowledge distillation module. Figure 4. The architecture of the cross-modal knowledge distillation module.

3.2.1. Feature Alignment

The feature alignment between camera images and LiDAR RV images is introduced to
generate pairwise matching features of the two modalities, so as to facilitate the subsequent
knowledge distillation. It is implemented by calculating the geometric transformation
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matrices MC2R (mapping from camera image to range image) and MR2C (mapping from
range image to camera image). The two metrics are inverses of each other: MC2R and MR2C.
Here, we take MC2R as an example to analyze the process of fusion.

During the transformation, we utilize the original point cloud as an intermediary
agent. We first calculate the matrix MC2P ∈ ZHc×Wc in Equation (1), which aligns the
features of camera images to original point clouds, as shown in Figure 5.

MC2P =

 n(0,0) · · · n(0,Wc-1)
...

. . .
...

n(Hc-1,0) · · · n(Hc-1,Wc-1)

 (1)

where (H c, Wc) are the width and height of the 2D camera images, and{
n(i,j)|0 ≤ i ≤Hc-1, 0 ≤ j ≤Wc -1} is the n(i,j)th point which projects on (i, j) coordinates.

Then, the transformation matrix MP2R ∈ ZN×2 from original points to RV images is formed
as follows:

MP2R =
[
r0 · · · rN-1

]
=

[
u0 · · · uN-1
v0 · · · vN-1

]
(2)

where N is the number of points, and {rk= (uk, vk )|0 ≤ k ≤ N-1} represents the projected
pixel coordinates of the 2D RV image, corresponding to the kth point. By calculating the
MC2P and MP2R, we obtain the geometric transformation matrix MC2R ∈ ZHr×Wr×2:

MC2R =


rn(0,0) · · · rn(0,Wc-1)

...
. . .

...
rn(Hc-1,0) · · · rn(Hc-1,Wc-1)

 (3)
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3.2.2. Fusion and Distillation

After feature alignment, we can utilize paired features from the 2D and 3D branches
for the fusion and distillation block.

Considering the huge feature gap introduced by different modal networks, it is inap-
propriate to fuse 3D features and their corresponding 2D features directly. Therefore, we
design a 2D-Learner based on MLP to narrow the gap between different modal features. It
can be formulated as follows:

Fconvert= 2D_Learner(MR2C·FR) (4)

Then, we design a fusion method based on spatial attention to achieve the enhanced
fusion features, which could improve the feature representation by focusing on important
features and suppressing unimportant features. It can be formulated as follows:

Ffe
C= A ⊙ Ff

C
Ff

C = Fconvert&FC
(5)
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where ⊙ represents point-wise multiplication; & represents channel concatenation; and
A represents the attentional map which takes 2D and 3D features into comprehensive
consideration. This can be formulated as follows:

A =N(FC)+N(Fconvert)
2

N(F) = HFWFsoftmax(P(F)
τ )

P(F)i,j =
1

Ch

Ch
∑

ch=1

∣∣∣Fch,i,j

∣∣∣ (6)

where F ∈ RCh×HF×WF represents the feature map; P(F) ∈ RHF×WF represents the result of
average-pooling the absolute values along the channel dimensions of F; N(F) ∈ RHF×WF

represents the attention derived from softmax standardization of values at all spatial
locations; and τ represents the hyperparameter that regulates the distribution entropy.

After that, we operate feature distillation between enhanced fusion feature Ffe
C and

enhance 3D feature Fe
R = MC2R·Fconvert + FR. Specifically, we design a feature-level dis-

tillation loss Lossdis as the supplement of the segmentation task loss, which comprises
multi-scale feature imitation loss Lossfea and attention imitation loss Lossatt. Feature im-
itation loss aims at narrowing distribution differences between the two modal features.
Attention imitation loss aims at enabling Fe

R to learn and generate attention patterns similar
to Ffe

C , thus focusing more attention on spatial positions that Ffe
C considers more important.

The overall distillation loss is expressed as follows:

Lossdis = Lossfea

(
Ffe

C , Fe
R

)
+ λLossatt

(
Ffe

C , Fe
R

)
Lossfea(X1, X2) =

Ch

∑
ch=1

HF

∑
i=1

WF

∑
j=1

(
X1ch,i,j-X2ch,i,j

)2

Lossatt(X1, X2) =
HF

∑
i=1

WF

∑
j=1

∣∣∣P(X1)i,j-P(X2)i,j

∣∣∣
(7)

where λ represents the hyperparameter that controls the relative importance between the
two loss functions and balances them at the same scale.

Through the above analysis, we can see that Fconvert is generated from 3D point cloud
features, while also be influenced by the 2D image branch with enhanced fusion features
Ffe

C as input. Therefore, as the intermediary between enhanced fusion features and 3D
point cloud features, the 2D-Learner could effectively prevent the image modality from
contaminating specific information on point cloud modality in the distillation process,
while simultaneously providing rich color, texture, and semantic information for the point
cloud modality.

In addition, the fusion branch is adopted only in the training stage, and the 2D
image branch can be discarded in the inference stage. Compared with multi-modal-fusion-
based methods, our method could process raw point clouds, avoiding the large blind
area of image field-of-view, and effectively avoiding additional computational burdens in
practical applications.

3.3. Confidence-Map-Driven Late Fusion Strategy

Through the above multi-modal knowledge distillation module, the 3D branch can
learn additional semantic features from the 2D branch. However, the advantages of these
features may not be fully reflected in the segmentation results, that is, the predicted results
of the fusion methods are often not as good in some aspects as predictions based solely on
images. For example, image-only segmentation methods have an absolute advantage in
small target segmentation and object contour extraction in complex backgrounds, but the
performance may decrease when fused with sparse point clouds.
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Furthermore, influenced by the diversity of scene elements and the accuracy of sensor
devices, the data-quality level of multi-modal fusion inputs is uneven. For example,
cameras are susceptible to lighting interference, leading to phenomena such as image
blur and overexposure; LiDAR is prone to the impact of weather conditions like rain or
snow, resulting in a sharp decrease in the number of point clouds. This unevenness is also
reflected in the output results of their respective modal branches. Therefore, when the
image quality is low, it is advisable to rely more on the geometric and depth information
from point clouds to mitigate the interference of erroneous color and texture information.
Conversely, low-quality point clouds often struggle to accurately represent the spatial
geometric information of the scenario.

In summary, the impact of different modalities on the prediction results should not
be equal. Therefore, inspired by the idea of decision-level fusion, we propose a late fusion
strategy based on confidence mapping. This strategy directly and explicitly weights the
prediction results of the two modal branches, highlighting the respective advantages of
each modality branch while mitigating the interference of erroneous data inputs, so as to
output the final accurate and robust predictions. Specifically, a pixel-by-pixel confidence
weight map is calculated using the probability of the predicted segmentation results, which
is used to measure the reliability of the output segmentation results of each modality branch.
For a segmentation network, its output consists of Class channels, each representing the
probability that a pixel belongs to a particular category in the Class categories. The category
with the highest probability is chosen as the final segmentation result. Generally, when
the prediction for a pixel has an extremely high probability for a particular category and
low probabilities for the others, this prediction can be considered with high confidence;
conversely, when the probability distribution between categories is close to uniform, it
indicates low confidence in the prediction for that pixel. Inspired by this, we designed the
calculation of output confidence as follows:

Prf = sigmoid(W2D ⊙ Pr2D + W3D ⊙ Pr3D)

W2D =

√√√√ 1
Class-1

Class

∑
i=1

(Pr2D(i)-max{Pr2D(j) |j ∈ [1, Class]}) 2

W3D =

√√√√ 1
Class-1

Class

∑
i=1

(Pr3D(i)-max{Pr3D(j) |j ∈ [1, Class]}) 2

(8)

where W2D and W3D represent the confidence maps of the 2D branch and 3D branch,
respectively; Pr2D and Pr3D represent the segmentation results of the 2D branch and 3D
branch, respectively; and Prf represents the final fusion results.

3.4. Joint Learning

In the optimization of the 2D branch, traditional supervised learning methods are
not unsuitable due to the lack of dense image annotations. Consequently, we adopt the
concept of transfer learning and introduce a 2D semantic discriminator Ds to differentiate
between predicted semantic labels and ground truth (GT) semantic labels. Specifically,
Ds incorporates both global and Markov discriminators, which enables the consideration
of local texture information as well as ensuring global consistency. The adversarial loss
Loss2D can be formulated as follows:

Loss2D = Lglobal + LMarkov

L(DS, Prf, GT2D) = Epr[log(Ds(Prf))] + EGT[log(1 -Ds(GT2D))]
(9)

where GT2D represents the sparse 2D GT semantic labels generated by projecting the corre-
sponding 3D GT semantic labels using point-to-pixel mapping, Prf is the corresponding
predicted probability, and E represents the expectation operation.



Remote Sens. 2024, 16, 453 9 of 18

For 3D branch optimization, we combine the weighted cross-entropy loss and Lovasz-
softmax loss to optimize the point cloud branch:

Loss3D = -∑
i

1√
vi

GT3D(i) log Pr3D(i) +
1

Class∑
k

J(e(classk)) (10)

where vi is the frequency of each category (the number of points in each category), GT3D
and Pr3D are the GT and corresponding predicted probability, J is the Lovasz extension of
IoU (Intersection-over-Union), and e(classk) is the vector of errors for category classk.

We amalgamate the loss functions from the two segmentation branches and the
distillation loss to optimize the entire network through end-to-end training, aiming to
maximize the IoU index for each category. The final loss function can be formulated
as follows:

Losstotal = Loss2D + Loss3D + Lossdis (11)

4. Experiments and Results
4.1. Dataset

To assess the effectiveness of our method at improving accuracy and robustness,
we utilized the urban dataset SemanticKITTI and the off-road dataset RELLIS-3D, which
provide diverse scenarios allowing us to comprehensively evaluate the performance of our
method. The details are as follows:

SemanticKITTI is a widely used benchmark dataset for semantic segmentation tasks
in autonomous driving. The dataset provides images and point clouds with semantic-
level 3D annotations. It contains 19,130 frames for training, 4071 frames for validity, and
24,892 frames for testing. We treated train–valid–test sequences and 19 categories which
are consistent with the benchmark algorithms.

RELLIS-3D was collected from three unpaved roads on the Texas A&M University
RELLIS campus, containing images and point clouds with semantic-level 3D annotations.
It contains 7800 frames for training, 2413 frames for validity, and 3343 frames for testing.
We treated train–valid–test sequences and 14 categories which are consistent with the
benchmark algorithms.

Additionally, we collected 100 frames of the unstructured scene, where outdoor park-
ing lots and roads without clear road boundaries or lacking marking lines are considered
as unstructured scenes. The test set was gathered using a vehicle equipped with a Velo-
dyne 32-line LiDAR and a forward-view monocular camera for visualization. Notably,
the two sensors were synchronized in time, but external parameter calibration was not
conducted. The lack of sensor calibration matrices disabled the implement of fusion-based
methods, and the sparsity in beam numbers simulated the fault of LiDAR inputs. These
distinctive characteristics make our unstructured test set particularly suitable for testing
the segmentation performance and robustness of these methods.

4.2. Implement Details

Cross-modal knowledge distillation was applied to the middle and the last layer of
the encoders. We set the spatial-attention-related hyper-parameters as τ = 0.5, referring
to [34,52,53], and the loss related hyper-parameters as λ = 2.5 × 10−3, referring to [34,54].

Our network was trained for 50 epochs with a batch size of 16. We utilized stochastic
gradient descent (SGD) as the optimizer with a weight decay of 0.001, a momentum of 0.9,
and an initial learning rate of 0.02. All experiments were on NVIDIA RTX 3090 GPUs.

We verified the performance of the proposed methodology using the common evalua-
tion index (IoU and mIoU) in semantic segmentation tasks.

4.3. Comparative Results and Discussion of SemanticKITTI

We compared the results of our proposed method with typical and representative
LiDAR segmentation methods on the SemanticKITTI benchmark. To be specific, RandLA-
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Net and KPConv were on behalf of SOTA point-based methods, while SPVNAS and
Cylinder3D were on behalf of voxel-based methods; PolarNet and SalsaNext were on
behalf of single-projection-based methods; and MPF, GFNet, AMVNet, and our 3D Branch
were on behalf of multi-projection-based methods. These methods are top algorithms in
their respective fields on the SemanticKITTI benchmark. Moreover, three representative
and open-access LiDAR–camera fusion segmentation methods (RGBAL, xMUDA, and
PMF) were used as the comparison.

The quantitative comparison results are shown in Tables 1 and 2, where the bold num-
bers indicate the best results, and the green bold numbers indicate the second-best results.

Table 1. Results and time of typical LiDAR-only methods and our method on SemanticKITTI test set.
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RandLA-Net 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7 53.9 769
KPConv 96.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 95.0 64.2 84.8 69.2 69.1 56.4 47.4 58.8 263

SPVNAS 97.3 51.5 50.8 59.8 58.8 65.7 65.2 43.7 90.2 67.6 75.2 16.9 91.3 65.9 86.1 73.4 71 64.2 66.9 66.4 256
Cylinder3D 97.1 67.6 64.0 59.0 58.6 73.9 67.9 36.0 91.4 65.1 75.5 32.3 91.0 66.5 85.4 71.8 68.5 62.6 65.6 67.8 179

PolarNet 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5 54.3 63
SalsaNext 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1 59.5 42

MPF 93.4 30.2 38.3 26.1 28.5 48.1 46.1 18.1 90.6 62.3 74.5 30.6 88.5 59.7 83.5 59.7 69.2 49.7 58.1 55.5 35
GFNet 96.0 53.2 48.3 31.7 47.3 62.8 57.3 44.7 93.6 72.5 80.8 31.2 94.0 73.9 85.2 71.1 69.3 61.8 68.0 65.4 100

AMVNet 96.2 59.9 54.2 48.8 45.7 71.0 65.7 11.0 90.1 71.0 75.8 32.4 92.4 69.1 85.6 71.7 69.6 62.7 67.2 65.3 -
Our 3D Branch 96.4 54.3 51.2 48.1 49.1 65.3 64.8 36.2 93.8 74.5 78.2 33.7 93.2 70.6 86.2 72.1 69.0 65.2 69.3 66.9 83

Ours 97.1 66.8 58.8 54.3 59.0 66.4 66.3 80.0 93.7 79.8 79.1 40.2 95.1 74.8 85.9 73.7 68.7 66.5 69.5 72.4 83

Table 2. Results and time of typical LiDAR–camera fusion methods and our method on SemanticKITTI
validity set, where we only used point clouds in camera field-of-view.

Methods C
ar

B
ic

yc
le

M
ot

or
cy

cl
e

Tr
uc

k

O
th

er
V

eh
ic

le

Pe
rs

on

B
ic

yc
li

st

M
ot

or
cy

cl
is

t

R
oa

d

Pa
rk

in
g

Si
de

w
al

k

O
th

er
G

ro
un

d

B
ui

ld
in

g

Fe
nc

e

V
eg

et
at

io
n

Tr
un

k

Te
rr

ai
n

Po
le

Tr
af

fic
Si

gn

m
Io

U
(%

)

Ti
m

e
(m

s)

RGBAL 87.9 36.8 26.4 63.8 54.6 58.0 72.0 0.0 94.6 43.6 77.5 0.7 78.9 52.7 84.3 60.8 72.9 56.1 39.5 55.9 12
xMUDA 93.2 11.9 33.3 72.6 51.8 68.0 61.3 0.0 95.7 36.4 78.6 0.1 86.2 57.1 78.7 69.0 74.5 59.5 37.2 56.1 33

PMF 94.6 49.0 62.0 68.2 72.5 68.7 66.1 0.0 96.3 44.3 80.4 0.0 87.8 56.8 87.6 71.2 72.7 64.8 43.5 62.4 27

Ours 97.5 40.4 77.4 94.2 73.4 73.3 93.4 0.0 94.1 51.1 82.1 0.2 91.6 64.9 87.2 67.3 71.7 65.9 49.0 67.1 21

It is obvious that our method outperformed all the methods in terms of mIoU; to be
specific, there was a 4.6% improvement from the best LiDAR-only method, Cylinder3D, and
4.7% from the best fusion-based method, PMF. Moreover, our method could still guarantee
the real-time performance, since an 83 ms processing time is less than 100 ms (calculated
from 10 Hz LiDAR collection frequency).

When compared with LiDAR-only methods (see Table 1), our method achieved the best
performance in 9 of all 19 categories and the second-best performance in 6 of all categories.
This outperformance shows that our method can effectively merge comprehensive multi-
modal features (including the dense semantic feature information of images) into point
clouds to make up for the deficiency of the performance, especially in those categories
with sparse features (e.g., motorcyclist, fence, trunk, pole, traffic sign) or similar geometric
features (e.g., building, parking, sidewalk), which cannot be effectively distinguished solely
using LiDAR geometric features. The same conclusions can be drawn from Figure 6 with
fewer error points, where correct/incorrect predictions are painted in gray/red, respectively,
to highlight the differences.
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When compared with fusion methods (see Table 2), our multi-modal collaborative
learning method can effectively integrate multi-modal features and eliminate the extreme
sensitivity of image modality to complex and variable environments (e.g., diverse illumina-
tion intensity, similar color textures), resulting in the best performance in most categories
(12 of all 19 categories). Additionally, the absence of dense GT labels for 2D semantic
segmentation renders fusion-based methods less adept at distinguishing small, irregular
objects. Optimization based on transfer learning compensates for this limitation, achieving
a 1.1~21.4% improvement from the second-best performance in those small-scale categories
like person, bicyclist, fence, pole, and traffic sign. The same conclusions can be drawn
from Figure 6 with fewer error points. For example, the white car/wall in the sunlight
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and objects in the shadow were misclassified by fusion-based methods, while our method
could accurately distinguish them.

4.4. Comparative Results and Discussion of RELLIS-3D

The models were also evaluated on RELLIS-3D and the comparison results on the test
set are shown in Table 3.

Table 3. Results and time of typical methods and our method on RELLIS-3D. * indicates results using
point clouds in camera field-of-view.
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RandLA-Net 62.1 76.7 42.8 0 34.8 6.3 82.9 10.2 69.8 72.8 54.3 17.6 8.5 1.7 38.6 769

Cylinder3D 64.9 76.5 63.8 0 50.3 5.5 87.0 11.8 71.8 80.4 80.5 33.0 10.6 2.3 45.6 149
SPVNAS 64.1 76.1 54.4 0 48.6 15.1 85.8 11.0 71.5 70.0 64.8 22.4 8.5 5.2 42.7 167

SalsaNext 65.3 79.6 44.3 0 26.6 22.2 84.4 13.5 73.6 77.9 63.7 26.0 11.6 6.6 42.5 25
GFNet 64.3 76.4 49.8 0 34.4 21.5 83.1 12.6 72.4 73.5 79.3 24.2 10.1 7.2 43.6 83

Our 3D Branch 66.1 80.3 50.4 0 32.4 24.6 85.7 15.2 72.4 73.8 78.3 24.6 10.4 9.2 44.5 71

RGBAL * 63.7 68.7 49.9 0 28.9 12.4 82.3 6.3 72.9 70.2 64.2 23.7 10.9 6.8 40.1 11
xMUDA * 64.4 71.6 54.3 0 23.3 15.1 82.7 6.0 73.3 70.8 64.2 24.4 11.2 5.4 40.5 29

PMF * 65.9 80.1 60.4 0 26.4 12.8 85.4 10.4 73.5 82.0 67.8 23.6 11.9 7.6 43.4 28

Ours 66.8 80.7 66.3 0 31.2 27.3 86.5 19.6 73.5 82.0 81.6 28.6 15.7 9.6 47.8 71

It is obvious that there were sharp decreases in the IoU and mIoU for the existing
methods due to the dataset’s complexity and the similarity of available feature information.
The reasons are as follows: When feature information in the dataset is highly similar, it
means that distinguishing characteristics among different objects or regions might be subtle.
If the features that define different categories are not well discriminated, the methods may
struggle to precisely delineate object boundaries, thus making it challenging for them to
accurately differentiate between categories, leading to lower IoU and mIoU scores.

However, our method still excelled in overall performance, benefitting from the
effectiveness of the proposed multi-modal collaborative learning approach in combining
comprehensive multi-modal features. Specifically, it outperformed the best LiDAR-only
method, Cylinder3D, by 3.2%, and the best fusion-based method, PMF, by 4.4%.

Furthermore, our method exhibited superior performance in 9 out of 14 classes, partic-
ularly excelling in small objects (e.g., pole, log, and fence) and classes with similar geometric
features (e.g., grass, concrete, mud, and rubble), where LiDAR point features are typically
insufficient. This conclusion is further supported by the qualitative comparison results
shown in Figure 7.

4.5. Comparative Results and Discussion of Our Test Set

To demonstrate the robustness and adaptivity of our method in various and com-
plex scenarios, especially with LiDAR faults, we performed extra experiments on our
unstructured test set with sparse LiDAR data inputs. We tested Cylinder3D (voxel-based),
SalsaNext (single-projection-based), and our 3D Branch (multi-projection-based) as repre-
sentative methods.

The results show that the models are most severely affected by sparse inputs; specifi-
cally, SalsaNext was the most affected because its predictions are mainly determined by the
size of dense range image inputs, while the impact to Cylinder3D was relatively low since
it is specially optimized for sparse point clouds. However, none of these methods could
extract accurate objects and continuous flats. In contrast, our method could accurately
classify the cars and performed better on drivable areas, e.g., the predicted drivable area in
these methods was either discontinuous or misclassified as vegetation (see the red circles
for each scenario in Figure 8). This validates that our method can effectively integrate the
advantages of both modalities and achieve the best performance in robustness evaluation.
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4.6. Ablation Study

We performed thorough ablation experiments to investigate the contribution of each
component of our method, including the effects of cross-modal knowledge distillation
module (“CMKD”) and the late fusion strategy (“LF”). We used the same parameters to
train these methods. The results are shown in Table 4.

Table 4. Results of ablation studies for network components on SemanticKITTI validity set.

Row

Module
mIoU

(%)3D Branch
CMKD

LF
FA F and D AM

1
√

63.0
2

√ √
62.8

3
√ √

D 63.7
4

√ √ √
65.4

5
√ √ √ √

66.0
6

√ √ √ √
E 66.6

7
√ √ √ √ √

67.1
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4.6.1. Effects of Cross-Modal Knowledge Distillation Module

Comparing the first two rows in Table 4, it is evident that the direct introduction of
image features after feature alignment (“FA”) had a negative impact on the overall perfor-
mance, resulting in a 0.2% decrease. This indicates that certain image features may interfere
with the 3D branch, providing further evidence of the necessity for knowledge distillation.

Comparing the first and fourth rows, a notable improvement of 2.4% was achieved
after employing fusion and distillation. This improvement primarily stemmed from the
knowledge provided by the more robust fusion prediction. Moreover, comparing the
third and fourth rows, the simple distillation (“D”) between two modalities without
the fusion approach led to a 1.7% mIoU decrease. This is attributed to the contamina-
tion between modalities resulting from straightforward distillation, akin to traditional
distillation methods.

Comparing the fourth and fifth rows, it is apparent that the attentional map (“AM”)
improved the mIoU by 0.6% through simple channel concatenation, which validates
its effectiveness.

4.6.2. Effects of Late Fusion Strategy

Comparing the fifth and seventh rows, the incorporation of the confidence-map-driven
late fusion strategy harnessed the strengths of both the image and point cloud for different
categories, resulting in a 1.1% improvement in the mIoU.

Furthermore, comparing the sixth and seventh rows, “LF” achieved a 0.5% higher
mIoU compared to the traditional equal weight-based late fusion method (“E”). This
improvement highlights the superiority of the “LF” method in autonomously addressing
and complementing the advantages and disadvantages of each modality branch.

5. Discussion

Despite the above advantages, there are still areas where our work can be improved.
The IoU of our method is not the best when it comes to segmenting some objects with richer
3D geometric information, such as cars, bicycles, motorcycles, and people. This is because
the projection-based method loses some of the 3D spatial information. Additionally, the
present method relies on high-end GPUs to achieve real-time performance. Therefore,
our future work will focus on further optimizing the segmentation accuracy of these
categories by introducing point-based or voxel-based branches, as well as optimizing
the proposed method from the perspective of model compression and single modality
knowledge distillation for applications in resource-constrained intelligent vehicles.

6. Conclusions

This paper introduces a robust 3D semantic segmentation method based on multi-
modal collaborative learning and addresses the challenges that impede the performance
of fusion-based 3D semantic segmentation methods. The proposed attention-based cross-
modal knowledge distillation module leverages attentional fusion to selectively integrate
multi-modal features and utilizes feature distillation to enrich 3D point cloud features
via 2D image priors. The confidence-map-driven late fusion strategy dynamically assigns
weights for both branches to accentuate the strengths of each modality. Through the inte-
gration of these modules, our method is capable of acquiring richer semantic and geometric
information from multi-modal data, thereby effectively enhancing the performance and
robustness of a pure LiDAR semantic segmentation network.

We evaluated our proposed method on three datasets: the urban dataset SemanticKITTI,
the off-road dataset RELLIS-3D, and our self-created unstructured test set. Extensive
experiments showed that the proposed method is competitive with state-of-the-art methods
in diverse scenarios and is more robust to sensor fault conditions. The ablation experiments
served to further validate the contributions of our designed modules.
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