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Abstract: The existing deep-learning-based hyperspectral anomaly detection methods detect anoma-
lies by reconstructing a clean background. However, these methods model the background of the
hyperspectral image (HSI) through global features, neglecting local features. In complex background
scenarios, these methods struggle to obtain accurate background priors for training constraints,
thereby limiting the anomaly detection performance. To enhance the capability of the network in
extracting local features and improve anomaly detection performance, a hyperspectral anomaly
detection method based on differential network is proposed. First, we posit that anomalous pix-
els are challenging to be reconstructed through the features of surrounding pixels. A differential
convolution method is introduced to extract local punctured neighborhood features in the HSI. The
differential convolution contains two types of kernels with different receptive fields. These kernels
are adopted to obtain the outer window features and inner window features. Second, to improve the
feature extraction capability of the network, a local detail attention and a local Transformer attention
are proposed. These attention modules enhance the inner window features. Third, the obtained
inner window features are subtracted from the outer window features to derive differential features,
which encapsulate local punctured neighborhood characteristics. The obtained differential features
are employed to reconstruct the background of the HSI. Finally, the anomaly detection results are
extracted from the difference between the input HSI and the reconstructed background of the HSI. In
the proposed method, for each receptive field kernel, the optimization objective is to reconstruct the
input HSI rather than the background HSI. This way circumvents problems where the background
constraint biases might affect detection performance. The proposed method offers researchers a
new and effective approach for applying deep learning in a local area to the field of hyperspec-
tral anomaly detection. The experiments are conducted with multiple metrics on five real-world
datasets. The proposed method outperforms eight state-of-the-art methods in both subjective and
objective evaluations.

Keywords: hyperspectral anomaly detection; differential convolution; local detail attention; local
transformer attention

1. Introduction

Hyperspectral images (HSIs) are 3D image matrices captured by remote sensing
imaging systems [1–3]. They encompass numerous narrow and approximately continuous
spectral bands, covering the ultraviolet, visible, and infrared ranges [4–6]. The abundance
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of spectral information is advantageous for discriminating targets of interest with distinct
spectral characteristics [7–9]. As a result, HSI has been applied in the field of target
detection [10–12].

Hyperspectral anomaly detection refers to the unsupervised detection of targets that
exhibit differences in both spatial and spectral characteristics from the surrounding back-
ground, without any prior information [13,14]. This technique has been applied in different
areas, such as environmental monitoring, resource exploration, and precision agricul-
ture [15,16]. Despite the unique advantages of hyperspectral anomaly detection, it faces
various challenges, including the absence of prior information, diverse background types,
and noise interference [17,18].

In past decades, plenty of hyperspectral anomaly detection methods have emerged to
solve various problems. The existing hyperspectral anomaly detection methods can be cate-
gorized into traditional methods and deep-learning-based methods [19,20]. The traditional
methods can be further classified into statistical-based methods and data-representation-
based methods [21,22]. The statistical-based methods aim to model the background dis-
tribution of the HSI and identify target locations through hypothesis testing [23,24]. In
the statistical-based methods, the Reed–Xiaoli (RX) method [25] is recognized as one of
the most representative methods. This method assumes that the background of HSI obeys
a multivariate Gaussian distribution. The anomalous targets are detected by calculating
the Mahalanobis distance between the test pixels and the background. However, in the
real HSI, the mean and covariance used by the RX method are susceptible to interference
from anomalies and noise when the background information is complex. This will impact
detection performance. To reduce the impact of anomalies and noise on detection results,
methods like local RX [26] and kernel RX [27,28] are proposed. To precisely model complex
backgrounds in situations with multipixel anomalies, the two-step generalized likelihood
ratio test (2S-GLRT) [29] has been introduced. This method is a generalization of the RX
method. It employs Gaussian hypothesis testing to detect anomalous targets by modeling
multipixel anomalies and background. Data-representation-based methods posit that back-
ground pixels can be reconstructed by some similar background pixels [30]. Among them,
the collaborative representation detector (CRD) [31] assumes that each background pixel
can be approximated by other pixels in its spatial neighborhood while anomalous pixels
cannot. This method uses background reconstruction errors to extract anomalies. Detectors
based on low-rank sparse representation [32,33] consider that the background is low-rank
and anomalies are sparse. These methods achieve low-rank and sparse representation
through the constructed background dictionary. For instance, Zhang et al. [34] propose a
hyperspectral anomaly detection method based on low-rank sparse matrix decomposition
and Mahalanobis distance. This method utilizes the constructed background dictionary
for low-rank and sparse decomposition and employs Mahalanobis distance for anomaly
detection. Wang et al. [35] introduce a hyperspectral anomaly detection method based on
principal component analysis and tensor low-rank and sparse representation (PCA-TLRSR).
In this method, a vector low-rank and sparse representation method is used instead of the
traditional 2D representation to preserve the 3D information of the HSI. A comprehensive
3D background dictionary is constructed for low-rank and sparse representation. The tradi-
tional methods have been successfully applied in practical applications due to the efficient
execution [36]. However, for complex HSI scenarios, statistical-based methods struggle to
acquire accurate background statistical features, which may affect detection performance.
The data-representation-based methods face challenges in establishing precise background
dictionaries, which reduces the accuracy of the obtained low-rank and sparse matrices.

Deep-learning-based methods can extract latent deep features from the HSI to achieve
precise mapping of complex scenes through outstanding nonlinear fitting capabilities.
The deep-learning-based methods can be categorized into supervised methods and unsu-
pervised methods depending on the availability of labels [37,38]. The supervised meth-
ods train classifiers under a plethora of labels to facilitate anomaly detection. However,
due to the absence of ground truth labels, these methods use other methods to generate
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pseudo-labels [39]. For instance, Li et al. [40] utilize reference data with labels to train a
convolutional neural network (CNN), extracting differentiating features between spectra.
Then, the trained CNN is employed for anomaly detection. Rao et al. [41] propose a
hyperspectral anomaly detection method based on a Siamese Transformer network. This
method utilizes a small set of prior spectral signatures and spectral unmixing to construct
pseudo-labels for training data. The Siamese network is then optimized for anomaly target
detection. The unsupervised methods extract deep features from the HSI in the absence
of labels. Currently, generative models have been applied in the field of hyperspectral
anomaly detection [38]. For example, Xiang et al. [42] introduce a method based on a
guided autoencoder network (GAED). This method acquires the guided image through
the spectral similarity. Then, the guided image is used to guide the training process of the
autoencoder. An anomaly detection result is obtained from the reconstruction error. Wang
et al. [43] propose an anomaly detection method based on the autonomous anomaly detec-
tion network (Auto-AD). The Auto-AD method reconstructed the background of the HSI
by training on random noise and utilized residuals for anomaly detection. Jiang et al. [44]
introduce a low-rank embedded network (LREN). In this method, a low-rank prior is
introduced into the autoencoder network to guide the network optimization towards the
lowest rank for background reconstruction. The anomaly detection result is extracted from
the residual image. Fu et al. [45] present a plug-and-play denoising regularization anomaly
detection method named DeCNNAD. This method introduces an effective CNN denoiser
into low-rank representations to reconstruct a clean background. The above deep-learning-
based methods globally model the HSI background as low-rank [8]. These methods have
yielded satisfactory results. However, these methods overlook the local features around
the anomalies, which are important features in hyperspectral anomaly detection. Training
only with global constraints makes it difficult to acquire a clean reconstructed background.
This limitation constrains the effectiveness of these methods in anomaly detection.

As analyzed above, the detection performance of the existing traditional methods
is limited by the finite feature descriptors and imprecise background statistical models.
Moreover, deep-learning-based methods are susceptible to neglecting the surrounding
local features of anomalies, which can lead to overfitting of the training. The reconstructed
background is then interfered with by anomalies. To solve these problems, motivated by
the CRD [31], a local prior is introduced into the deep leaning method. We extend the
assumption of the CRD from pixels to features. We posit that anomalous features in HSI
are difficult to be represented by local features in the surrounding neighborhoods. So, the
neighborhood features make it easy to reconstruct a clean background. To extract the local
punctured features, To solve these problems, a hyperspectral anomaly detection method
based on differential network is proposed. In the differential network, a novel differential
convolution is designed through the difference among two types of kernels. For each type
of kernel, the objective is to reconstruct the input HSI instead of the background HSI. Back-
ground HSI is estimated through the difference operation. This way avoids the problem
that the reconstructed background HSI receives interference from anomalies. Specifically,
in the proposed method, first, 5× 5 and 3× 3 convolutional kernels are employed to extract
outer window features and inner window features, respectively. Second, to enhance the
expression capability of internal window features for details and crucial information, outer
window features are utilized to guide inner window features, and two local guidance atten-
tion modules are proposed. Among them, local detail attention strengthens the ability of
inner window features to extract edge details, while local Transformer attention enhances
the focus ability of inner window features on salient information. Third, the obtained
inner window features are subtracted from the outer window features to derive differential
features. These differential features can be used to reconstruct a clean background of
the HSI. Fourth, by concatenating all differential features along the channel dimension
and applying a 1× 1 convolution for feature fusion, the reconstructed background HSI is
obtained. Finally, the anomaly detection result is derived from the residuals between the
input HSI and the reconstructed background HSI.
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The main contributions of this work are as follows:

(1) A differential convolutional network is proposed to extract the local punctured neigh-
borhood features for background reconstruction.

(2) To enhance the capability of the network to extract details, a local detail attention
module is proposed.

(3) To enhance the focusing ability of the network on important features, a local Trans-
former attention module is proposed.

This paper is organized as follows. In Section 2, the proposed method is introduced in
detail. In Section 3, the experimental details and results are shown, and the effectiveness of
the proposed method is discussed. In Section 4, we conclude this paper.

2. Proposed Method

The framework of the proposed method is shown in Figure 1. The 5× 5 and 3× 3
convolution are used to extract outer window features and inner window features. The
proposed local detail attention and local Transformer attention are added to the network
for enhancing the inner window features. The differential features are obtained by the dif-
ference between the outer window features and inner window features. All the differential
features are concatenated and fused to obtain the background HSI. The anomaly detection
result is obtained through the residual of the input HSI and background HSI.

In the following sections, we first describe the differential convolutional neural net-
work in detail in Section 2.1. Then, to improve the feature representation capabilities,
two local guidance attention modules named local detail attention and local Transformer
attention are introduced in Sections 2.2 and 2.3. In Section 2.4, the training loss of the
proposed method is described. In Section 2.5, the network prediction and anomaly target
extraction are explicated.
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Figure 1. The whole structure of the proposed DifferNet.

2.1. Differential Convolutional Neural Network

Recently, many anomaly detection methods based on CNNs and autoencoders have
been proposed to obtain satisfactory results. These methods reconstruct a clean background
and subsequently detect anomalies from residual images. CNN-based methods utilize
simple convolutional kernels to extract the spatial–spectral features of the target. The
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global low-rank constraints are adopted during network training. However, local features
around the anomalies are ignored. As training progresses, there is a possibility that the
network indiscriminately learns anomalous features, resulting in the contamination of
reconstruction background by anomalies. As such, this training process is uncontrollable.
On the other hand, the methods based on autoencoders usually employ autoencoder
networks for spectral reconstruction and add spatial features through other strategies. This,
to some extent, severs the spatial–spectral relationship in the HSI. To further exploit the
local features of anomalies, inspired by CRD, an anomaly detection method based on a
differential convolutional neural network (DifferNet) is proposed.

We represent the input HSI as Y = (y1, y2, . . . , yM·N) ∈ RM×N×B, where M and N
denote the spatial dimensions of the HSI, and B represents the spectral dimension. In
the input HSI, background pixels can be represented by other pixels within their local
neighborhood, while anomalous pixels cannot. Thus, in a local window, the objective
function can be expressed as

arg min
θ
‖yi − f (Xs(yi); θ)‖2

2 + α‖θ‖2
2, i = 1, 2, . . . , M · N (1)

where Xs(yi) represents the set of local punctured neighborhood of pixel yi, and Xs is the
set of local punctured neighborhoods at all the pixels. θ denotes the network parameters
to be optimized, f (·) is the mapping function from network input to output, and α is the
regularization parameter.

To extract the local punctured neighborhood pixels of the pixel to be tested, a differen-
tial convolution method is proposed. The general form of the proposed convolution can
be expressed

F = w ~ Xs + b (2)

where w is the convolution weights defined on the set Xs, b is the bias defined on the set
Xs, ~ denotes the convolution operation, and F denotes the convolution output feature. Xs
can be represented as

Xs = Xout 	 Xin (3)

where Xout and Xin are the sets of pixels in the local outer window and local inner window
centered by pixel yi, respectively. 	 denotes the set difference operation. It is worth
noting that the convolution weights w and bias b operate on the punctured neighborhood.
Therefore, their values are zero on the local inner window Xin. Thus, Equation (2) can be
expressed as

F = w ~ (Xout 	 Xin) + b

= wout ~ Xout − win ~ Xin + b

= F′ − F′′
(4)

w = wout − win (5)

F′ = wout ~ Xout + bout (6)

F′′ = win ~ Xin + bin (7)

where wout and win represent the weights of the convolution defined on Xout and Xin,
respectively. The weights wout and win have the same values on set Xin. Similarly, bout
and bin denote the biases of the convolution defined on Xout and Xin, respectively. Biases
bout and bin have the same values on set Xin. F′ and F′′ represent the convolution output
features on Xout and Xin, respectively.

Equation (4) indicates that we can obtain the estimated feature of the test pixel yi in
the local punctured neighborhood Xs by taking the difference of convolution features with
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different receptive field sizes. To implement such convolution operations, the most direct
approach is to extract smaller convolution kernels within a larger receptive field. However,
this approach completely neglects inner window pixels in the convolution operation,
potentially introducing artificial biases in the results. Therefore, we relax the constraints
on convolution kernels wout and win, allowing for different weights and biases on the set
Xin. Correspondingly, to enhance the effectiveness of the difference, learnable weighting
parameters λ are introduced to the differential operation. Thus, the proposed differential
convolution can be expressed as

g(Xout, Xin) = F′ − λ× F′′

= wout ~ Xout + bout − λ× (win ~ Xin + bin)
(8)

Specifically, the proposed DifferNet is structured as illustrated in Figure 1. We employ
convolution kernels of sizes 5× 5 and 3× 3 to construct the differential convolution. For the
j-th layer, with the outer window input features Fj−1

out and the inner window input features
Fj−1

in , the differential convolution produces three output features, including outer window

output feature Fj
out, inner window output feature Fj

in, and differential output feature Fj
di f .

This process can be represented as

Zj
out = wj

out ~ Fj−1
out + bj

out, j = 1, 2, . . . . (9)

Fj
out = max

(
αslope × Zj

out, Zj
out

)
, j = 1, 2, . . . . (10)

Zj
in = wj

in ~ Fj−1
in + bj

in, j = 1, 2, . . . . (11)

Fj
in = max

(
αslope × Zj

in, Zj
in

)
, j = 1, 2, . . . . (12)

Fj
di f = Fj

out − λj × Fj
in, j = 1, 2, . . . . (13)

where wj
out and bj

out represent the weights and biases of the j-th 5× 5 convolutional layer,
respectively. Similarly, wj

in and bj
in denote the weights and biases of the j-th 3× 3 convo-

lutional layer, respectively. Zj
out and Zj

in are the outputs of the 5× 5 convolutional layer
and the 3× 3 convolutional layer, respectively. λj is the weighting coefficient for the j-th
differential convolutional layer. Following each convolutional layer, the activation function
is the LeakyReLU function, as shown in Equation (10), where αslope is the slope of the
negative axis. The input features F0

out and F0
in are derived from the input HSI Y. The outer

window output feature and inner window output feature at the final level contribute to the
reconstruction of the HSI.

After all the differential features are obtained, they are concatenated along the channel
dimension to obtain the combined differential feature Fcombine. Subsequently, a 1 × 1
convolutional layer and LeakyReLU activation are employed to fuse all differential features.
The predicted background HSI B is obtained. This process can be described as

Fcombine = fConcat(F1
di f , F2

di f , F3
di f , F4

di f ) (14)

B = fLeakyReLU( fConv(Fcombine)) (15)

where fConcat(·) denotes the channel concatenation operation, fConv(·) represents the 1× 1
convolution operation, and fLeakyReLU(·) is the LeakyReLU activation function.

Due to the differences in receptive fields in the proposed differential convolution, the
5× 5 branch and the 3× 3 branch exhibit variations in their reconstructive capabilities for
HSI. Compared to the 3× 3 convolutional layer, the 5× 5 convolutional layer can capture
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information over a broader range, leading to better perception and localization of edge
details. Therefore, to enhance the expressive capability of the 3× 3 convolutional layer,
we propose two guidance attention modules, namely the local detail attention (LDA) and
the local Transformer attention (LTA). These modules leverage the features from the 5× 5
convolutional layer to guide the features of the 3× 3 convolutional layer. Then, the finely
detailed fusion features can be obtained. In the following two sections, we will provide a
detailed explanation of these two guidance attention modules.

2.2. Local Detail Attention

The proposed structure of differential network successfully divides the traditional
background reconstruction into two steps: comprehensive feature representation of input
HSI and background features extraction through difference operation. During the feature
representation step, the more comprehensive the features extracted by convolutional net-
works, the more beneficial it is for reconstructing the background. To enhance the capability
of network to extract details and acquire comprehensive feature representations of the input
HSI, a local detail attention is designed. Traditional convolutional operations typically
utilize the same convolution kernel across the entire image. However, this convolutional
approach lacks adaptive handling of variations in local details, resulting in a degree of
information loss. To effectively capture local details in the HSI, inspired by the work [46], a
local detail attention module is proposed.

The proposed local detail attention module is illustrated in Figure 2. Given the input
inner window feature Fin ∈ RM×N×C and the input outer window feature Fout ∈ RM×N×C,
where C is the number of feature channels, the local detail attention learns a set of base
convolutional kernels W = {Wi|i = 1, 2, . . . , nbase} ∈ Rnbase×C×cgroup×k×k from the input
outer window features Fout. These base convolutional kernels are associated with fusion
coefficients at different positions in the image. Utilizing these base convolutional kernels
and fusion coefficients, a fused convolutional kernel is calculated and applied to the image
for convolution. Then, the detail attention features are obtained. The obtained detail
attention features are added to the input inner window feature Fin, yielding the output
inner window feature Finda. Finda is used to replace Fin as the input for the next-level
differential convolution, introducing more detail attention into the inner window features.

The base convolutional kernels W consist of nbase group convolution kernels, each with
a size of C× cgroup × k× k. cgroup represents the number of channels per group in group
convolution, and the number of groups is C

cgroup
. k denotes the spatial dimension of the

convolutional kernel. The group convolution can balance the efficiency and effectiveness of
the module.

Specifically, first, to obtain the fusion coefficients for the base convolutional kernels, a
fusion attention module is introduced. This module integrates local information through
a 3× 3 convolution. Subsequently, a SimpleGate activation function [47] is employed for
further feature transformation. Following that, a 1× 1 convolution is used for feature
fusion and channel mapping to nbase. A residual connection containing a 1× 1 convolution
is utilized to supplement additional detail features.
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Figure 2. The proposed local detail attention.

Second, after the fusion attention module, the fusion coefficient map D ∈ RM×N×nbase

are obtained. Combining with the base convolutional kernels W, the fused convolutional
kernel K(i, j) ∈ RC×cgroup×k×k at position (i, j) can be calculated by

K(i, j) =
nbase

∑
t=1

(D(i, j, t)×Wt) (16)

where Wt ∈ RC×cgroup×k×k represents the t-th convolutional kernel in the base convolutional
kernels W, and D(i, j, t) denotes the t-th fusion coefficient at position (i, j) in the fusion
coefficient map D.

Third, the obtained fused convolutional kernel K(i, j) is utilized to compute the feature
FDA(i, j) ∈ R1×C at position (i, j) in the detail attention feature FDA ∈ RM×N×C.

FDA(i, j) = fGroupConv(Fout(i, j), K(i, j)) (17)

where fGroupConv(·) denotes the group convolution operation, and Fout(i, j) represents the
features in the receptive field at position (i, j) in the input outer window feature Fout.

Finally, the obtained detail attention features FDA are weighted summed with the
input inner window feature Fin to obtain the output inner window feature Finda.

Finda = Fin + γF × FDA (18)

where γF represents the learnable weighting parameter. The resulting Finda is used to
replace Fin as the input for the next-level differential convolution.

The pseudo-code table for the proposed local detail attention is shown in Algorithm 1.



Remote Sens. 2024, 16, 434 9 of 29

Algorithm 1 Pseudo-code of the proposed local detail attention.

Input:
Fout, input outer window feature with shape [1, C, M, N]
Fin, input inner window feature with shape [1, C, M, N]

Output: Finda, output inner window feature with shape [1, C, M, N]

Hyperparameters: nbase the number of base convolutional kernels

Operators:
FA, fusion attention model
Conv, Convolution

Fusion coefficients C = FA(Fout) with shape [1, nbase, M, N]
for i = 1 to M

for j = 1 to N
W = zeros([1, C, 5, 5])
for k = 1 to nbase do

W = W + C[i, j, k] ×W[K]
end for
FDA[i, j, :] = Conv(Fout[i − 2:i + 2, j − 2:j + 2, :], W)

end for
end for
Finda = Fin + γF × FDA

2.3. Local Transformer Attention

In recent years, Transformer module [48–50] has gained widespread attention and
research due to its outstanding performance. It is a global attention module capable of
establishing long-range dependencies across images, exhibiting strong feature extraction
capabilities. However, the computation of attention weights in Transformer involves ma-
trix multiplication over global pixels, resulting in significant computational and memory
requirements. This hinders its application in hyperspectral anomaly detection. Considering
that anomalous targets in hyperspectral anomaly detection typically occupy a few pixels
in spatial dimension, the establishment of global dependencies for feature extraction is
unnecessary. Compared to global information, nonlocal information is more useful for
anomaly detection. Therefore, to focus on nonlocal essential information, we modify the
way of calculating the attention coefficients and propose a local Transformer attention
(LTA) module. Through the LTA model, the network is capable of focusing on salient
regions in the scene, enhancing its ability to represent features in the input HSI. This con-
tributes to the comprehensiveness of feature representation, promoting the reconstruction
of background HSI.

The proposed local Transformer attention module is illustrated in Figure 3. First, given
the input inner window feature Fin ∈ RM×N×C and input outer window feature Fout ∈
RM×N×C, a query map Q ∈ RM×N×C is obtained by performing a 1× 1 convolution on Fout.
Second, two convolutional layers are employed to approximate the matrix multiplication
in Transformer, yielding the correlation map Fqv ∈ RM×N×r2

. Here, an r× r convolutional
layer is used to capture the nonlocal receptive field and map the feature channels to r2,
where r denotes the spatial size of the nonlocal receptive field. The LeakyReLU function
enhances the nonlinear representation capacity. Then, a 1 × 1 convolutional layer are
employed to merge channel features, establishing the correlation of attention coefficients
within the receptive field. Third, the correlation coefficients Fqv(i, j) at position (i, j) is
extracted and reshaped into r× r. Fourth, the Transformer attention feature FTA ∈ RM×N×C

at position (i, j) can be calculated by

FTA(i, j) = So f tmax(Fqv(i, j))~ Fr
out(i, j) (19)

where Fr
out(i, j) represents the nonlocal region of size r within Fout at position (i, j).
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Figure 3. The proposed local Transformer attention.

Fifth, the obtained Transformer attention feature is concatenated with Fin along the
channel dimension. Then, the integrated feature Ftac is obtained. It can be represented by

Ftac = fConcat(Fin, FTA) (20)

Finally, through a 1× 1 convolutional layer for feature fusion, the output inner window
feature Finta ∈ RM×N×C is obtained. The Finta is used to replace Fin as the input for the
next-level differential convolution.

The pseudo-code table for the proposed local Transformer attention is shown in
Algorithm 2.

Algorithm 2 Pseudo-code of the proposed local Transformer attention.

Input:
Fout, input outer window feature with shape [1, C, M, N]
Fin, input inner window feature with shape [1, C, M, N]

Output: Finta, output inner window feature with shape [1, C, M, N]

Hyperparameters: cgroup the number of group channels

Operators:
Conv(F, r), feature convolution on feature F with kernels size r
act, Leaky ReLU activation Cat, Concatenation

Generate query map Q = Conv(Fout, 1) with output shape [1, C, M, N]
Extract nonlocal features Fnl = act(Conv(Q, r)) with output shape [1, r2, M, N]
Map to coefficients Fqv = Conv(Fnl , 1) with output shape [1, r2, M, N]
for i = 1 to M

for j = 1 to N
FTA[i, j, :] = Fout[i−r:i+r, j−r:j+r, :]·Softmax(Fqv[i, j, :])

end for
end for
Ftac = Cat(Fin, FTA)
Finta = Conv(Ftac, 1)

2.4. Loss Function

In the proposed DifferNet, it is imperative to fully explore features in the HSI, en-
compassing both anomalous and background features. This approach differs from the
existing CNN-based methods, which focus on extracting background features while ig-
noring anomalous features. The proposed method avoids the problem of background
contamination caused by anomalies in traditional networks.
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For the outputs of the 5× 5 branch Y1 ∈ RM×N×B and the 3× 3 branch Y2 ∈ RM×N×B,
the loss function is defined as follows

Lreconstruct = SmoothL1(Y1, Y) + SmoothL1(Y2, Y) (21)

where SmoothL1(·) is the smooth L1 function [51]. It is calculated by

fSmoothL1(x, y) =

{
0.5(x− y)2, |x− y| < 1

|x− y| − 0.5, |x− y| > 1
(22)

For the predicted background HSI B of the differential network, as anomalies occupy
a small portion in the HSI, we choose the input HSI Y as the optimization target in consid-
eration of computational efficiency. The loss function of the background is formulated as

Lbackground = SmoothL1(B, Y) (23)

Therefore, the total loss function is

L =
1
2
(Lreconstruct + Lbackground) (24)

2.5. Anomaly Target Extraction

After the training completion of the proposed DifferNet, the HSI Y is fed into the
network to obtain the predicted background HSI B = (b1, b2, . . . , bM·N). The difference
between the input HSI and the predicted background HSI is calculated to obtain the
anomaly detection result. The anomaly detection result E can be represented as

Ei =
B

∑
j=1

(|yi(j)− bi(j)|)
T
≷
B

ξ, i = 1, 2, . . . , M · N (25)

where yi(j) is the j-th element of the input pixel yi, bi(j) is the j-th element of the predicted
background pixel bi, and Ei represents the value of the anomaly detection result E at
position i, ξ is the detection threshold to separate the targets T from the background B.

The pseudo-code table for the proposed method is shown in Algorithm 3.

Algorithm 3 Pseudo-code of the proposed method.

Input: Y, hyperspectral image with shape [1, B, M, N]

Output: E, anomaly detection result

Hyperparameters:
nbase the number of base convolutional kernels
cgroup, the number of group channels
pld, the position of local detail attention
plt, the position of local Transformer attention
lr, learning rate
βmax, maximum training epochs
βstep, the number of epochs at which learning rate decays
σdecay, factor by which learning rate decays

Operators:
DN, differential network with local detail attention and local Transformer attention
L, Loss function
norm1, Vector L1 norm
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Algorithm 3 cont.
Construct the network using parameters nbase, cgroup, pld, and plt.
for i = 1 to βmax do

Predicting process [Y1, Y2, Ydi f f er] = DN(Y)
Total loss is calculated by tloss = L(Y1, Y2, Ydi f f er;Y)
Weight gradients of back propagation G = ∂tloss

∂W
if i mod βstep is 0 do

lr = σdecay × lr
end if
Weights update by W = W − lr × G

end for
Background prediction [_, _, B]=DN(Y)
Anomaly detection E = norm1(Y−B, dim=1)

3. Results and Disscussion

In this section, different experiments are conducted to prove the superiority of the
proposed method. In the experiments, we use eight state-of-the-art methods as comparison
methods. The comparison methods include the RX [25], the CRD [31], the 2S-GLRT [29], the
PCA-TLRSR [35], the GAED [42], the Auto-AD [43], the LREN [44], and the DeCNNAD [45]
methods. Firstly, we introduce the experimental datasets and the evaluation metrics. Then,
the parameters of the proposed method and the comparison methods are analyzed. Next,
the experimental results of different methods are performed on five real-world datasets.
Finally, the structural effectiveness and the module effectiveness are discussed.

3.1. Experimental Datasets

(1) Bay Champagne: This dataset was collected at Bay Champagne, France, by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor [52] on 4 July 2010.
This HSI is 100× 100 in size with spatial resolution of 4.4 m, as shown in Figure 4a.
The HSI data have 188 bands. All the bands are used in the experiments. The ship in
the scene is regarded as an anomaly target.

(2) Pavia: This dataset was collected at Pavia, Italy, by Reflective Optics System Imaging
Spectrometer (ROSIS-03) sensor [52]. This HSI is 150× 150 in size with spatial resolu-
tion of 1.3 m, as shown in Figure 4b. The HSI has 102 bands. The cars on the bridge
are treated as anomaly targets.

(3) SpecTIR: This dataset was obtained from the SpecTIR hyperspectral aircraft Rochester
experiment [53]. This HSI is 180× 180 in size with spatial resolution of 1 m and 120
in bands with spectral resolution of 5 nm. In the experiments, we select a 100× 100
area with 120 bands as the experimental dataset, as shown in Figure 4c. The artificial-
colored square fabrics are regarded as the anomaly targets.

(4) WHU-Hi-River: This dataset was collected at a long river bank in Honghu, Hubei
Province of China on 21 March 2018 [54]. This HSI is 105× 168 in size with spatial
resolution of 6 cm, as shown in Figure 4d. The HSI has 135 bands ranging from 0.4 µm
to 1 µm. Two plastic plates and two gray panels are treated as anomaly targets.

(5) MUUFLGulfport: This dataset was collected at University of Southern Mississippi
Gulf Park Campus, Long Beach, Mississippi, in November 2010 [55,56]. This HSI is
325× 220 in size and 72 in bands with 10 nm spectral resolution ranging from 375 nm
to 1050 nm, as shown in Figure 5. In the experiments, 64 bands are selected by remov-
ing the noise bands. Four cloth panels in the scene are regarded as anomaly targets.
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(a) (b) (c) (d)

Figure 4. Pseudo-color image and the ground truth of four datasets: (a) Bay Champagne; (b) Pavia;
(c) SpecTIR; (d) WHU-Hi-River.

(a) (b)

Figure 5. Pseudo-color image and the ground truth of the MUUFLGulfport dataset: (a) pseudo-color
image; (b) ground truth.

3.2. Evaluation Metrics

In the experiments, three evaluation metrics are adopted, including three-dimensional
receiver operating characteristic curve (3D ROC) [57], two-dimensional ROC curve (2D
ROC), and area under the 2D ROC curve (AUC). The 3D ROC curve can illustrate the
relationships between the probability of detection (PD), the probability of false alarm (PF),
and the threshold (τ). The 3D ROC can be decomposed into three 2D curves: (PD, PF),
(PD,τ), and (PF,τ). They can show the detection performance and evaluate separation
between anomalies and the background. The AUC values of these three 2D curves are
donated by AUC(D,F), AUC(D,τ), and AUC(F,τ), respectively. The AUC(D,F) is used to
evaluate the overall performance of the detectors. The AUC(D,τ) is used to evaluate the
target detection performance of detectors. The AUC(F,τ) is used to evaluate the background
suppression performance of detectors. The larger the AUC(D,F) and AUC(D,τ), the better
the performance. The smaller the value of AUC(F,τ), the better the performance.

3.3. Parameter Analysis and Experimental Setup

In this section, the experimental parameters of the proposed method and the com-
parison methods are performed. The parameters of the eight state-of-the-art comparison
methods are set according to the suggestions of the authors or the performance in the
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AUC(D,F). Specifically, in the RX method, there are no additional parameters that need to
be set. In the CRD method, the sizes of the double window (wout, win) are set to (7, 5), (7, 5),
(25, 21), (9, 5), and (17, 5) on the five datasets of Bay Champagne, Pavia, MUUFLGulfport,
SpecTIR, and WHU-Hi-River, respectively. In the 2S-GLRT method, the double window
sizes are set to (17, 15), (21, 5), (25, 21), (9, 5), and (11, 7) on the five datasets. In the
PCA-TLRSR method, the numbers of principle components are set to 15, 9, 17, 11, and 13
on the five datasets. In the GAED method, the weights and bias are randomly initialized.
As suggested by the authors, on all five datasets, the window size c is set to 7, the learning
rate la is set to 0.4, the penalty coefficient β is set to 1, the number of iterations is set to 300,
and the dimension of the hidden layer is set to 25. In the Auto-AD methods, there are no
uncertain parameters that need to be set. In the LREN method, the weights and bias are
randomly initialized. The number of clusters and the size of hidden layer are set to 7 and 9
on all the datasets as suggested. The regularization parameters are set to 0.01, 0.01, 0.01, 1.0,
and 1.0 on the five datasets, respectively. In the DeCNNAD method, the number of clusters
is set to 9, 8, 8, 13, and 6 on the five datasets, respectively. The regularization parameters (β,
λ) are set to (0.01, 0.01), (0.01, 0.01), (0.0001, 0.0001), (0.001, 0.01), and (0.01, 0.01) on the five
datasets, respectively.

For the proposed method, before our experiments, the datasets are first normalized.
The weights and bias are randomly initialized. The hyperparameters include learning
rate lr, maximum training epochs βmax, the number of epochs at which learning rate
decays βstep, and the factor by which learning rate decays σdecay. In our experiments, on all
five datasets, lr = 0.001, βmax = 4000, βstep = 1000, σdecay = 0.5. The uncertain parameters
include the number of base convolutional kernels nbase and the number of group channels
in the group convolution cgroup. In addition, the position of the local detail attention and
local Transformer attention also influence the performance of the proposed method. Hence,
we analyze the positions pld and plt of these two modules, where pld represents the position
of the local detail attention and plt represents the position of the local Transformer attention.
To analyze the stability of these parameters, some parameters are conducted by varying
the parameters. Because the weights and bias are randomly initialized, the performance
of different experiments will randomly change. So, to reduce the influence of random
initialization, we fix the random seed on different datasets during the parameter analysis
experiments. This ensures that the performance of the proposed method with different
parameters is comparable.

We vary the value of the nbase in 2, 4, 8, 16, 32, 64, and 128. The value of the parameter
cgroup is varied in 1, 2, 4, and 8. The optimal results of the nbase and cgroup are shown in
Figure 6. To constrain the size of the network, only one module is adopted for both the local
detail attention and the local Transformer attention. We vary the values of the pld and plt in
1, 2, 3, which means that the position is after the first, second, or third convolution layer in
the network, respectively. The optimal results of the pld and plt are shown in Figure 7.

As shown in Figure 6, the performance on the datasets of MUUFLGulfport and WHU-
Hi-River is stable while changing the nbase and cgroup. The AUCD,F are concentrated above
0.9976 on these two datasets. The range of the AUCD,F is about 0.0008 and 0.0006 on the
datasets of MUUFLGulfport and WHU-Hi-River, respectively. On the datasets of Bay
Champagne, Pavia, and WHU-Hi-River, the performance is unstable while changing the
nbase and cgroup. The range of the AUCD,F is 0.0094, 0.0042, and 0.0110 on these three
datasets, respectively. However, most AUCD,F values of these three datasets are concen-
trated above 009935. According to the AUCD,F performance, the parameters (nbase, cgroup)
are set to (8, 1), (32, 8), (32, 1), (8, 4), and (64, 8) on the datasets of Bay Champagne, Pavia,
MUUFLGulfport, SpecTIR, and WHU-Hi-River, respectively.
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Figure 6. Effects of the number of base convolutional kernels nbase and the number of group channels
cgroup on the performance of the proposed method for different datasets: (a) Bay Champagne;
(b) Pavia; (c) MUUFLGulfport; (d) SpecTIR; (e) WHU-Hi-River.
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Figure 7. Effects of the local detail attention position pld and the local Transformer position plt
on the performance of the proposed method for different datasets: (a) Bay Champagne; (b) Pavia;
(c) MUUFLGulfport; (d) SpecTIR; (e) WHU-Hi-River.

As shown in Figure 7, the performance on the five datasets is stable while changing
the pld and plt. The AUCD,F are concentrated above 0.9930. The range of the AUCD,F
is 0.0027, 0.0038, 0.0008, 0.0048, and 0.0096 on the five datasets, respectively. According
to the AUCD,F performance, the parameters (pld, plt) are set to (1, 3), (3, 3), (3, 2), (1,
2), and (1, 3) on the datasets of Bay Champagne, Pavia, MUUFLGulfport, SpecTIR, and
WHU-Hi-River, respectively.
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3.4. Experimental Results

In this section, the detection performance of the proposed method is analyzed com-
pared with eight state-of-the-art methods, including the RX, the CRD, the 2S-GLRT, the
PCA-TLRSR, the GAED, the Auto-AD, the LREN, and the DeCNNAD. The detection results
of these methods are shown in Figure 8.

(a)(a)

(b)(b)

(c)(c)

(e)(e)

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

RX CRD 2S-GLRT PCA-TLRSR GAED Auto-AD LREN DeCNNAD DifferNet

(d)(d)

Figure 8. Detection performance of different methods on five datasets: (a) Bay Champagne; (b) Pavia;
(c) MUUFLGulfport; (d) SpecTIR; (e) WHU-Hi-River.

As shown in Figure 8, in the results of the RX method, the background is relatively
clean, but the anomaly targets are not completely detected. This is due to the common occur-
rence of spectral mixing in real datasets, resulting in spectral interference from background
pixels around the targets. Such interference can impact the overall detection performance.
Similar detection performance also exists in the results of CRD, GAED, and Auto-AD. In
the results of 2S-GLRT, the contour information of the anomalies is lost. This is attributed
to the fact that the features in the local inner window change slowly as the window slides
across the HSI, causing block effects. In the results of the PCA-TLRSR method, there
are some noises in the detection results. This is because that the low-rank and sparse
decomposition theory is adopted in the PCA-TLRSR. The sparse matrix contains both
anomalies and noises. As a result, it is hard for the PCA-TLRSR to distinguish the targets
and noises. In the results of the LREN method, the background is clear. This is because this
method constructs a global lowest rank dictionary. When the background is complex, the
constructed dictionary is not comprehensive enough for the background, resulting in the
inability to fully represent background components. This leads to insufficient background
suppression. In the results of the DeCNNAD method, the background is clear and there
are some noises in the results. This is because a denoiser is adopted in this method to
obtain the background dictionary. The quality of the constructed dictionary depends on
the performance of the denoiser. When the denoiser removes certain edges in the scene, the
reconstructed background also loses these edges, leaving some background edges in the
detection results. Furthermore, noises and anomalies are not distinguished in this method.
This leads to some noises existing in the detection results.

Specifically, for the Bay Champagne dataset, the anomaly targets in the detection
results of RX, GAED, Auto-AD, and LREN are not fully detected. The contours of the
anomaly targets in the detection result of 2S-GLRT are lost. The background in the result of
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PCA-TLRSR is clear. The detection results of CRD and proposed DifferNet are satisfactory.
For the Pavia dataset, the anomaly targets are not well separated from the background in
the results of RX, CRD, GAED, Auto-AD, and DeCNNAD. The shape of the targets is lost
in the result of 2S-GLRT. The distinctiveness between the anomalies and background is
not significant in the result of PCA-TLRSR. The background in the result of LREN is clear.
In the result of the proposed DifferNet, all the anomaly targets are highlighted compared
with the background. For the dataset of MUUFLGulfport, the Auto-AD method fails to
detect the anomaly targets. The background is suppressed in the results of the CRD and
2S-GLRT methods, but the anomaly targets are partially suppressed as well. In the results
of the RX and PCA-TLRSR methods, the roof at the top of the scene is enhanced incorrectly.
In the results of the GAED and DeCNNAD methods, the anomaly targets are not well
distinguished from the background. The background is clear in the result of LREN. In the
result of the proposed DifferNet method, the anomaly targets are well separated from the
background. For the dataset of SpecTIR, the small targets are submerged in the background
in the results of RX, CRD, 2S-GLRT, PCA-TLRSR, LREN, and DeCNNAD. There are some
noises in the results of PCA-TLRSR and DeCNNAD. In the results of PCA-TLRSR, GAED,
Auto-AD, LREN, and DeCNNAD, a square background in the middle of the scene is not
suppressed. In the result of the proposed method, the detection performance is satisfactory.
For the dataset of WHU-Hi-River, the anomaly targets are not well detected in the results
of CRD, GAED, and Auto-AD. In the results of RX, LREN, and DeCNNAD, the distinction
between the targets and background is not significant. The background is clear in the results
of PCA-TLRSR, LREN, and DeCNNAD. The shape of the anomaly targets is changed in the
result of 2S-GLRT. The proposed DifferNet obtains a satisfactory detection result. Overall,
the proposed method obtains superior results on the five datasets compared with other
state-of-the-art methods.

From the objective evaluation perspective, 3D ROC curves and AUC values are
adopted to evaluate the performance of the methods. The 3D ROC curves (PD, PF, τ)
on different datasets are shown in Figure 9. The curves of the proposed method marked
in red are higher than those of the other methods on the datasets of Bay Champagne and
WHU-Hi-River. On the other datasets, the curves of the proposed DifferNet are close to
those of the other methods.
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Figure 9. 3D ROC curves (PD, PF, τ) on the five datasets: (a) Bay Champagne; (b) Pavia; (c) MUU-
FLGulfport; (d) SpecTIR; (e) WHU-Hi-River.
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The 2D ROC curves (PD, PF) on different datasets are shown in Figure 10. The
corresponding AUC(D,F) values are shown in Table 1. As shown in Figure 10, the (PD, PF)
curves of the proposed DifferNet marked in red are higher than those of the other methods
on the datasets of Bay Champagne, Pavia, SpecTIR, and WHU-Hi-River. On the dataset of
MUUFLGulfport, the curves of the proposed method and comparison methods are mixed,
but the curve of the proposed method is at the upper part of all the curves. In Table 1,
the best AUC(D,F) values are in bold. The proposed method achieves the best AUC(D,F)
on all the datasets. This means that the proposed method achieves a high detection rate
at a low false alarm rate. Compared with the second-best values, the AUC(D,F) values of
the proposed method are higher by 0.0001, 0.0105, 0.0006, 0.0110, and 0.0005 on the five
datasets, respectively. Overall, the performance of the proposed method is excellent.
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Figure 10. 2D ROC curves (PD, PF) on the five datasets: (a) Bay Champagne; (b) Pavia; (c) MUU-
FLGulfport; (d) SpecTIR; (e) WHU-Hi-River.

Table 1. The values of AUC(D,F) for different methods on the five datasets, the best values are in blod.

Datasets
Methods

RX CRD 2S-GLRT PCA-TLRSR GAED Auto-AD LREN DeCNND DifferNet

Bay Champagne 0.9998 0.9998 0.9946 0.9985 0.9889 0.9276 0.9669 0.9938 0.9999
Pavia 0.9538 0.9453 0.9868 0.9664 0.9348 0.9767 0.9102 0.9601 0.9973
MUUFLGulfport 0.9980 0.9886 0.9878 0.9844 0.9760 0.8453 0.9849 0.9819 0.9986
SpecTIR 0.9748 0.9870 0.9844 0.9824 0.9664 0.9812 0.9716 0.9710 0.9980
WHU-Hi-River 0.9988 0.9802 0.9971 0.9988 0.9716 0.9954 0.9599 0.9899 0.9993

The 2D ROC curves (PD, τ) on different datasets are shown in Figure 11. The corre-
sponding AUC(D,τ) values are shown in Table 2. As shown in Figure 11, the (PD, τ) curves
of the proposed DifferNet marked in red are higher than those of the other methods on the
datasets of Bay Champagne, SpecTIR, and WHU-Hi-River. On the datasets of Pavia and
MUUFLGulfport, the curves of the proposed method are not at the top of all the curves.
However, the curves of the proposed method are at the upper part of all the curves. In
Table 2, the best AUC(D,τ) values are in bold. The proposed method achieves the best
AUC(D,τ) values on the datasets of Bay Champagne, SpecTIR, and WHU-Hi-River, which
are higher by 0.0108, 0.0425, and 0.1588 compared with the second-best values, respectively.
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On the datasets of Pavia and MUUFLGulfport, the CRD method and the LREN method
achieve the best values, respectively. The best values on the two datasets are higher by
0.0603 and 0.2393 than that of the proposed method, respectively. As a result, the proposed
DifferNet has a good detection rate compared with the other methods.

RX CRD 2S-GLRT PCA-TLRSR GAED Auto-AD LREN DeCNNAD DifferNetRX CRD 2S-GLRT PCA-TLRSR GAED Auto-AD LREN DeCNNAD DifferNet
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Figure 11. 2D ROC curves (PD, τ) on the five datasets: (a) Bay Champagne; (b) Pavia; (c) MUU-
FLGulfport; (d) SpecTIR; (e) WHU-Hi-River.

Table 2. The values of AUC(D,τ) for different methods on the five datasets, the best values are in bold.

Datasets
Methods

RX CRD 2S-GLRT PCA-TLRSR GAED Auto-AD LREN DeCNND DifferNet

Bay Champagne 0.5314 0.6854 0.3967 0.6848 0.3422 0.4743 0.5265 0.5642 0.6962
Pavia 0.1343 0.3479 0.1607 0.3197 0.0924 0.1018 0.3284 0.2254 0.2876
MUUFLGulfport 0.3481 0.2198 0.2804 0.5253 0.2403 0.0110 0.7499 0.4175 0.5106
SpecTIR 0.4263 0.2432 0.1815 0.4278 0.1374 0.1149 0.3928 0.4879 0.5304
WHU-Hi-River 0.1698 0.0642 0.4098 0.3862 0.1133 0.1049 0.2329 0.2894 0.5686

The 2D ROC curves (PF, τ) on different datasets are shown in Figure 12. The corre-
sponding AUC(F,τ) values are shown in Table 3. As shown in Figure 12, the (PF, τ) curves
of the proposed DifferNet marked in red are mixed with those of the comparison methods
on the five datasets, which are neither the highest nor the lowest. On the datasets of Bay
Champagne and MUUFLGulfport, the curve of the 2S-GLRT is the lowest one among
all the curves. On the datasets of Pavia and SpecTIR, the curve of the Auto-AD is lower
than the other 2D ROC curves. On the dataset of WHU-Hi-River, the curves of CRD and
Auto-AD are relatively lower than those of the other methods. In Table 3, the best AUC(F,τ)
values are in bold. On the datasets of Bay Champagne, MUUFLGulfport, and SpecTIR, the
2S-GLRT achieves the minimum AUC(F,τ) values of 0.0080, 0.0011, and 0.0052, which are
lower by 0.0839, 0.0706, and 0.0477 than those of the proposed method. On the datasets of
Pavia and WHU-Hi-River, the Auto-AD method achieves the minimum AUC(F,τ) values
of 0.0013 and 0.0008, which are lower by 0.0326 and 0.0496 than those of the proposed
method. The AUC(F,τ) values of the proposed method on the five datasets are between
the maximum value and the minimum value, respectively. This means that the proposed
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method has a certain background suppression capability. Overall, the proposed DifferNet
method obtains satisfactory and advanced detection results.
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Figure 12. 2D ROC curves (PF, τ) on the five datasets: (a) Bay Champagne; (b) Pavia; (c) MUUFLGulf-
port; (d) SpecTIR; (e) WHU-Hi-River.

Table 3. The values of AUC(F,τ) for different methods on the five datasets, the best values are in bold.

Datasets
Methods

RX CRD 2S-GLRT PCA-TLRSR GAED Auto-AD LREN DeCNND DifferNet

Bay Champagne 0.0259 0.0685 0.0080 0.0955 0.0160 0.1141 0.0754 0.0900 0.0919
Pavia 0.0233 0.1338 0.0186 0.0748 0.0085 0.0013 0.0750 0.0390 0.0339
MUUFLGulfport 0.0172 0.0025 0.0011 0.1665 0.0269 0.0034 0.2290 0.0959 0.0717
SpecTIR 0.0555 0.0453 0.0052 0.0915 0.0167 0.0053 0.0550 0.1140 0.0529
WHU-Hi-River 0.0150 0.0019 0.0064 0.0286 0.0061 0.0008 0.0388 0.0508 0.0504

To evaluate the execution efficiency of all the methods, the time consumption of all
the methods on the five datasets is evaluated. It is worth noting that Auto-AD, LREN,
and the proposed method are implemented by Python 3. The rest of the methods are
conducted using Matlab 2022b. All the methods are executed on a computer with an Intel
CoreTM i9-12900H produced by Intel the United States, 16 GB RAM produced by Samsung
South Korea, and NVDIA GeForce RTX 3060 Laptop GPU produced by Lenovo China. We
measure the speed of the methods both with and without GPU acceleration separately. The
time consumption results are shown in Table 4, and the best values are in bold. The results
show that the RX method has the fastest processing speed without GPU acceleration. With
the acceleration of GPU, the DeCNNAD method achieves the best time performance on the
dataset of MUUFLGulfport, and the Auto-AD method achieves the best time performance
on the rest of the datasets. The time consumption is relatively high compared with other
methods without GPU acceleration, and it has an acceptable running speed with GPU
acceleration. In the future, we need to further optimize the DifferNet to improve efficiency
and detection performance.
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Table 4. Time consumptions of different methods on the five datasets, the best values are in bold.

Datasets GPU
Time(s)

RX CRD 2S-GLRT PCA-TLRSR GAED Auto-AD LREN DeCNND DifferNet

Bay Champagne
% 0.0437 2.7322 173.9472 6.4567 449.0402 58.2303 118.0271 - 626.4889
X - - - - - 8.3890 56.2896 21.5019 36.6918

Pavia % 0.0387 5.5085 33.5038 8.2466 502.2639 291.2721 231.4080 - 1913.1071
X - - - - - 23.0904 116.5415 26.7872 91.4145

MUUFLGulfport % 0.1687 366.6264 4602.1543 40.7141 163.3412 1201.6475 638.6995 - 3479.0125
X - - - - - 61.2890 315.9486 51.3641 251.3833

SpecTIR % 0.0344 4.3991 16.0232 3.8254 270.6453 41.9761 109.0282 - 704.3134
X - - - - - 2.9343 52.4552 23.9450 31.9733

WHU-Hi-River
% 0.0780 117.1494 38.8183 11.0424 346.9338 110.9527 189.1533 - 1606.3941
X - - - - - 8.1995 91.7981 25.3940 78.3617

The initialization of weights and bias in the CNN directly affects the detection perfor-
mance. To investigate the stability of the proposed method under different initialization
conditions, we remove the fixed random seed and conduct 20 repeated experiments. We
record the range of AUC(D,F) values obtained, and the statistical results are shown in
Table 5.

Table 5. Stability of the proposed method with random initialization.

Datasets
AUC(D,F)

Maxmum Minimum Mean Variance Range

Bay Champagne 0.9999 0.9961 0.9990 1.00× 10−6 3.80× 10−3

Pavia 0.9973 0.9928 0.9944 9.26× 10−7 4.50× 10−3

MUUFLGulfport 0.9986 0.9949 0.9979 6.11× 10−7 3.70× 10−3

SpecTIR 0.9980 0.9908 0.9965 2.55× 10−6 7.20× 10−3

WHU-Hi-River 0.9993 0.9838 0.9981 1.21× 10−5 1.56× 10−2

As shown in Table 5, the proposed method exhibits relatively low variance and range
across 20 experiments. This means that the proposed method has good parameter stability.

To demonstrate the noise robustness of the proposed method, we conduct experiments
by adding various types of noise to the original dataset. The added noises are the Gaussian
noise with mean 0 and variance 0.01, salt and pepper noise with density 0.01, and uniform
multiplicative noise with mean 0 and variance 0.01. The detection results are shown in
Figure 13 and Table 6. To further illustrate the false alarm rates of these methods, we also
calculate the false positive rate (FPR), while the detection rate is 0.9. The results are shown
in Table 7.

Table 6. The values of AUC(D,F) on the five datasets with different noises, the best values are in bold.

Noises
Datasets

Bay Champagne Pavia MUUFLGulfport SpecTIR WHU-Hi-River

no noise 0.9999 0.9973 0.9986 0.9980 0.9993
Gaussian 0.9535 0.9530 0.9774 0.8907 0.9889

Salt & pepper 0.9943 0.9648 0.9867 0.9439 0.9889
Multiplicative noise 0.9925 0.9280 0.9914 0.9866 0.9921
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Figure 13. Detection performance on five datasets with different noises: (a) without noise; (b) with
Gaussian noise; (c) with salt and pepper noise; (d) with uniform multiplicative noise.

Table 7. The values of FPR on the five datasets with different noises, the best values are in bold.

Noises
Datasets

Bay Champagne Pavia MUUFLGulfport SpecTIR WHU-Hi-River

no noise 2.00× 10−4 0.0089 0.0026 0.0086 0.0023
Gaussian 0.0162 0.2046 0.0332 0.3867 0.0293

Salt & pepper 0.0159 0.0638 0.0352 0.0759 0.0336
Multiplicative noise 0.0206 0.1479 0.0129 0.0263 0.0318

As shown in Figure 13, the results of input without noises are the best detection results.
When the Gaussian noises are added to the input datasets, the detection performance
decreases. When the salt and pepper noises are added to the inputs, the detection results
are slightly better than those of inputs with Gaussian noises. When the multiplicative
noises are added to the inputs, the detection results are better than those of inputs with
salt and pepper noises. Despite the interference of noises with the detection results, the
anomaly targets can still be detected. In Table 6, on the datasets of Bay Champagne, Pavia,
and WHU-Hi-River, the performance of inputs with salt and pepper noises is better than
inputs with the rest of the noises. On the datasets of MUUFLGulfport and SpecTIR, the
performance of inputs with multiplicative noises is better than inputs with rest of the noises.
The Gaussian noises have the greatest impact on the detection performance. In Table 7,
the FPR values of inputs without noise are low. With Gaussian noises, the FPR values
increase significantly compared with other noises. The impact of salt and pepper noises
and multiplicative noises on the FPR values is similar. As a result, Gaussian noise has a
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significant impact on the performance of the proposed method, while salt and pepper noise
and multiplicative noise have relatively minor effects on the proposed method. The noise
robustness of the proposed method is acceptable.

3.5. Ablation Analysis

In this section, the attention module effectiveness and the structure effectiveness
are discussed.

To investigate the effectiveness of the attention module, the DifferNet without any
attention and DifferNet with only one type of attention in different positions are com-
pared with the proposed DifferNet. The AUC(D,F) is adopted to evaluate the detection
performance. The detection results of these methods are shown in Figure 14. In Figure 14,
LTAi, i = 1, 2, 3 denotes that the local Transformer attention (LTA) is added after the i-th
convolutional layer, and LDAi, i = 1, 2, 3 denotes that the local detail attention (LDA) is
added after the i-th convolutional layer. Although the results of these methods are close
to each other, background edges still remain in the results of DifferNet without attention
and DifferNet with LTA. This means that the LDA module can preserve the background
edges well so that the residual map contains few background edges. In addition, the
anomaly targets are not complete and prominent in the results of DifferNet with LDA. This
demonstrates that the LTA is capable of effectively focusing on the primary information
within the local window. It can enhance the expressive ability of CNN, making our Dif-
ferNet model the background accurately. The corresponding AUC(D,F) values are shown
in Table 8. The DifferNet with both LTA and LDA achieves the best values on the five
datasets. The experimental results show that the LTA can improve the expressive ability of
CNN and facilitate precise modeling of the background. The LDA can enhance the ability
of the network to represent background edges. Both attention modules are effective in
anomaly detection.

No Attention With LTA1 With LTA2 With LTA3 With LDA1 With LDA2 With LDA3 DifferNet

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

(a)(a)

(b)(b)

(c)(c)

(d)(d)

(e)(e)

Figure 14. Detection results of the proposed method with different attentions on the five datasets:
(a) Bay Champagne; (b) Pavia; (c) MUUFLGulfport; (d) SpecTIR; (e) WHU-Hi-River.
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Table 8. AUC(D,F) values of the proposed method with different attentions on the five datasets, the
best values are in bold.

Versions
Datasets

Bay Champagne Pavia MUUFLGulfport SpecTIR WHU-Hi-River

No Attention 0.9991 0.9943 0.9977 0.9959 0.9990
With LTA1 0.9989 0.9944 0.9982 0.9946 0.9923
With LTA2 0.9996 0.9936 0.9982 0.9947 0.9990
With LTA3 0.9995 0.9943 0.9980 0.9942 0.9988
With LDA1 0.9958 0.9930 0.9982 0.9960 0.9990
With LDA2 0.9995 0.9941 0.9983 0.9960 0.9990
With LDA3 0.9994 0.9943 0.9982 0.9959 0.9992
DifferNet 0.9999 0.9973 0.9986 0.9980 0.9993

To further demonstrate the efficiency of the proposed LTA module, we assess the
time consumption and storage occupancy in comparison to the traditional Transformer
model. The evaluation is conducted on inputs with spatial sizes of 100× 100 and 150× 150.
The results are shown in Table 9. The results show that the proposed LTA exhibits sig-
nificant advantages over traditional Transformer in terms of both time consumption and
spatial occupancy.

Table 9. Time consumption and storage occupancy of LTA and Transformer, the best values are in bold.

Input Size Methods Storage (Byte)
Time(s)

CPU GPU

100 × 100
Transformer 1549.28 M 0.2829 0.0012

LTA 372.52 M 0.0427 0.0009

150 × 150
Transformer 3919.28 M 1.4296 0.2428

LTA 2488.64 M 0.1513 0.0012

To investigate the effectiveness of the differential structure of the DifferNet, the net-
work only with 3× 3 convolution kernels and the network only with 5× 5 convolution
kernels are compared with the DifferNet without attention. The loss functions of these
methods include a smooth L1 function. The AUC(D,F) is adopted as the evaluation indi-
cator. The detection results are shown in Figure 15. The anomaly targets in the results of
3× 3 convolution and 5× 5 convolution are not prominent compared with the differential
convolution. This means that the differential convolution is effective in preserving anomaly
information. The AUC(D,F) values are shown in Table 10. The differential convolution
achieves the best detection performance compared with standard 3× 3 and 5× 5 convo-
lution. As such, the framework of the proposed method is effective and excellent in the
anomaly detection field.

Table 10. AUC(D,F) values of the differential convolution and standard convolution on the five
datasets, the best values are in bold.

Datasets
Versions

5 × 5 Conv 3 × 3 Conv Differ Conv

Bay Champagne 0.9962 0.9981 0.9991
Pavia 0.9918 0.9923 0.9943
MUUFLGulfport 0.9899 0.9946 0.9977
SpecTIR 0.9877 0.9884 0.9959
WHU-Hi-River 0.9976 0.9980 0.9990
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Bay Champagne Pavia MUUFLGulfport SpecTIR WHU-Hi-River

out in diff

(a)

(b)
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0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

Figure 15. Detection results of the differential convolution and standard convolution on the five
datasets: (a) 5× 5 convolution; (b) 3× 3 convolution; (c) differential convolution.

To further illustrate the effectiveness of differential convolution for anomaly detection,
we apply the differential convolution (DC) to the Auto-AD method. Specifically, all the 3× 3
convolutions are replaced by 3× 3 and 5× 5 convolutions, and the difference operation
is adopted in the decoder part of the Auto-AD. The experimental results are shown in
Figure 16. The corresponding AUC(D,F) values are shown in Table 11.

Bay Champagne Pavia MUUFLGulfport SpecTIR WHU-Hi-River

(a)

(b)

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

Figure 16. Detection results of the Auto-AD with and without differential convolution on the five
datasets: (a) results of Auto-AD; (b) results of Auto-AD with differential convolution.

As shown in Figure 16, the background in the results of Auto-AD with DC is sup-
pressed. The anomaly targets are highlighted on the five datasets. The performance of
the Auto-AD with DC is better than that of Auto-AD. The AUC values in Table 11 show
that the differential convolution can improve the performance of Auto-AD on most of the
datasets. These experiments demonstrate that the differential convolution is effective.
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Table 11. AUC(D,F) values of the Auto-AD with and without differential convolution on the five
datasets, the best values are in bold.

Auto-AD
Datasets

Bay Champagne Pavia MUUFLGulfport SpecTIR WHU-Hi-River

with DC 0.9276 0.9767 0.8453 0.9812 0.9954
without DC 0.9997 0.9873 0.9980 0.9934 0.9911

4. Conclusions

In this work, a hyperspectral anomaly detection method based on differential net-
work is proposed. Firstly, 5× 5 and 3× 3 convolutional kernels are employed separately
to extract outer window features and inner window features. Secondly, to enhance the
expression capability of internal window features for details and important information,
outer window features are utilized to guide inner window features, and two local guid-
ance attention modules are introduced. Specifically, the local detail attention module
enhances the extraction capability of inner window features for edge details, while the
local Transformer attention module boosts the focusing ability of inner window features on
salient information. Thirdly, weighted difference is applied to the obtained outer and inner
window features to derive differential features. These differential features represent local
punctured neighborhood characteristics in the HSI, facilitating the reconstruction of a clean
background. Fourthly, by concatenating all differential features along the channel dimen-
sion and applying a 1× 1 convolution for feature fusion, the background HSI is obtained.
Finally, anomaly detection results are obtained from the residuals between the input HSI
and the background HSI. Comparative experiments with eight state-of-the-art methods
are conducted on five real-world datasets. The experimental results demonstrate that
the proposed method enhances anomalies while suppressing background. The proposed
method achieves superior performance in terms of the detection results, including ROC
curves and AUC values. Ablation studies indicate that each part of the proposed method
contributes positively to detection performance. The proposed method provides a novel
differential structure and decomposes the background reconstruction task into two steps
for the first time, including comprehensive feature representation and background feature
extraction. It can avoid the problem that anomaly features interfere with the background
reconstruction. Furthermore, the two proposed guidance attention modules can ensure the
completeness of feature extraction. These methods can provide researchers with inspiring
ideas and drive the development in the field of hyperspectral anomaly detection. However,
the proposed method performs poorly in terms of execution efficiency, affecting its practical
applicability in engineering. In our future work, we plan to conduct further research on
network architecture, streamline the structure, and enhance the efficiency of the method
while maintaining detection effectiveness.
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