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Abstract: Water area segmentation in remote sensing is of great importance for flood monitoring. To
overcome some challenges in this task, we construct the Water Index and Polarization Information
(WIPI) multi-modality dataset and propose a multi-Modality Fusion and Gated multi-Filter U-Net
(MFGF-UNet) convolutional neural network. The WIPI dataset can enhance the water information
while reducing the data dimensionality: specifically, the Cloud-Free Label provided in the dataset
can effectively alleviate the problem of labeled sample scarcity. Since a single form or uniform kernel
size cannot handle the variety of sizes and shapes of water bodies, we propose the Gated Multi-Filter
Inception (GMF-Inception) module in our MFGF-UNet. Moreover, we utilize an attention mechanism
by introducing a Gated Channel Transform (GCT) skip connection and integrating GCT into GMF-
Inception to further improve model performance. Extensive experiments on three benchmarks,
including the WIPI, Chengdu and GF2020 datasets, demonstrate that our method achieves favorable
performance with lower complexity and better robustness against six competing approaches. For
example, on the WIPI, Chengdu and GF2020 datasets, the proposed MFGF-UNet model achieves F1
scores of 0.9191, 0.7410 and 0.8421, respectively, with the average F1 score on the three datasets 0.0045
higher than that of the U-Net model; likewise, GFLOPS were reduced by 62% on average. The new
WIPI dataset, the code and the trained models have been released on GitHub.

Keywords: water area segmentation; multi-modality fusion; multi-filter inception; attention mechanism;
remote sensing

1. Introduction

Detection of surface water area is essential for water resource management, flood
identification, and ecological protection [1]. Satellite remote sensing images have the
advantages of large coverage, low cost and a short data acquisition period and are often
used in water area analysis [2–4]. The key to accurately segmenting water areas from
complex ground features and creating water area maps lies in effectively highlighting
water bodies.

Spectral data are the first choice for creating water area maps in cloudless conditions.
They can provide multi-band remote sensing images with high resolution and less noise.
The disadvantage of spectral imaging is that a spectral imager is a passive imaging instru-
ment that needs sunlight to provide a light source, so it cannot provide satellite image all
day long, and the acquired image has information loss due to the light being blocked by
clouds. Synthetic Aperture Radar (SAR), which is based on the imaging of backscattered
polarization information, can detect water areas without cloud interference and take images
of the ground all day long. However, polarization information in SAR images cannot distin-
guish water, water-like surfaces and noise-like spots well [5]. These defects may limit the
application of polarization information in water segmentation. Therefore, the combination
of spectral data and SAR helps to improve the effect of automatic water segmentation.
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In early studies, water area segmentation was limited by remote sensing technology
and image quality [6]. In low-resolution remote sensing images, threshold filtering can only
be carried out by the different radiation intensities of water in different bands. However,
when threshold filtering is applied directly to the original imaging data, an accurate
segmentation map cannot be obtained in most cases. Therefore, a water index method has
been developed. Water-index-based methods make use of the intrinsic nature that water
bodies have different reflectance under different wavelengths. Thereby, we can choose
multiple bands from spectral imaging data and combine them to highlight water bodies
and to inhibit other ground objects [7]. And then, a threshold method is used to filter the
calculated water index to extract the water areas. However, for the threshold method, it is
difficult to determine an appropriate threshold value that can adapt to any complex ground
environment. For different water indexes from different scenarios, the threshold value is
not uniform. In order to solve the above issues, some researchers have started to establish
water segmentation algorithms based on machine learning to reduce the dependence on
the threshold; examples include the use of Random Forest (RF) [8], Support Vector Machine
(SVM) [9], Decision Tree (DT) and Deep Neural Networks (DNNs) [10,11].

Compared with other machine learning methods, DNN based on deep learning has
a strong ability for automatic feature extraction and is able to learn semantic, high-level
and deeper features. Therefore, deep-learning-based automatic segmentation methods
have been widely applied across various fields, especially with the emergence of numerous
approaches based on Convolutional Neural Networks (CNNs). Long et al. [12] proposed
a Fully Convolutional Network (FCN) for natural image semantic segmentation for the
first time. FCN replaces the fully connected layers of a pre-trained convolutional neural
network, such as VGG16 [13], with fully convolutional layers. It allows the network to
accept input images of arbitrary size and uses upsampling to restore the size of the output,
thus achieving end-to-end mapping from the input image to the output segmentation map.
A U-shaped convolutional Network (U-Net) is an improvement on the FCN architecture by
Ronneberger et al. [14] in 2015 and has been applied to medical image segmentation. U-Net
consists of an encoder (down-sampling path) and a decoder (up-sampling path) connected
by skip connections. Due to its simple structure, U-Net can achieve high accuracy with
limited training samples, which makes it and its series of extensions widely used in various
image segmentation tasks, including remote sensing image segmentation [15,16]. DeepLab
series [17–19] are another series of CNN-based models for image semantic segmentation
that have been proposed and iteratively improved by the Google team. Among them,
Deeplabv3+ [19] is the latest version, in which the model performs convolution operations
by employing parallel atrous convolutions at various rates to capture contextual features
at multiple scales. Boundary-Aware Salient object detection Network (BASNet) [20] was
proposed by Qin et al. in 2019 for salient detection and water segmentation tasks. BASNet
generates coarse prediction maps using the encoder–decoder network and then refines
the coarse prediction maps with the ResNet34 [21] refinement module to improve the
performance. For solving some difficulties existing in water areas segmentation, such as
complex backgrounds, huge scales, water connectivity, and rough edges, Liu et al. [1]
proposed Dense U-net Plus Network (DUPNet) in 2022, which is also based on the U-Net
architecture. DUPNet integrates dense block modules from DenseNet [22] and Multi-scale
Spatial Pyramid Pooling (MSPP) modules from DeeplabV3+. Dense blocks are employed as
the feature extraction module for both the encoder and decoder, while MSPP is utilized for
skip connections. In recent years, models based on self-attention mechanisms have made
significant progress in computer vision tasks, particularly with the emergence of Vision
Transformer (ViT) [23]. However, ViT-based architectures are generally parameter-heavy
and require more labeled samples and computing resources. SegNeXt [24] is a popular
convolutional attention network for semantic segmentation proposed by Guo et al. in 2022.
SegNeXt designs a convolutional attention module that encodes contextual information
more efficiently than self-attention in transformers.
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Among the different methods above, improved methods based on U-Net have received
more attention from researchers for water segmentation tasks. In the U-Net framework,
the encoder module obtains high-level semantic information by extracting features from
images layer by layer, while the decoder module collects different levels of semantic
information and gradually recovers spatial information of features. Based on this simple
and effective encoder–decoder network, Goutam Konapala et al. [2] successfully drew a
flood inundation map. They used the inundation data of 11 global flood events as samples
to conduct training on the U-shaped convolutional network. Peri Akiva et al. [25] proposed
a self-supervised flood segmentation model via adversarial domain adaptation and label
refinement. In this model, a refiner is added to refine the rough mask obtained by the
threshold method on the improved normalized differential water index to finally improve
the accuracy of flood segmentation.

Although the emergence of deep learning technology has greatly improved the ac-
curacy and efficiency of water area segmentation, there are still the following challenges:
(1) Remote sensing images usually include a wide range of ground types, so the region
of non-water contains complex and diverse ground object information and occupies a
relatively large proportion, while the water area is generally small. This is a typical class
imbalance problem. (2) Usually, there are water bodies of different sizes and shapes in
remote sensing images, including from thousands of pixels to just a few pixels. In this
case, using a single form or uniform kernel size in the convolution operation cannot obtain
good segmentation results. (3) Compared with natural images, remote sensing images have
more interference and noise, which affect the accuracy of water segmentation. Meanwhile,
in the case of high-altitude shooting, the water area under the cloud shadow cannot be
effectively separated by multispectral imaging, so it is necessary to utilize multi-modality
data to obtain complementary information. (4) In existing multi-modality methods for
water segmentation, direct superposition of original data or features is generally adopted
for the use of multi-modality data. This simple superposition method cannot effectively
extract the complementary features between different modalities, but it does produce many
redundant features, which affects the final segmentation results.

To overcome the aforementioned challenges, we construct the Water Index and Polar-
ization Information (WIPI) multi-modality dataset and propose a multi-Modality Fusion
and Gated multi-Filter U-Net (MFGF-UNet) convolutional neural network for water area
segmentation in remote sensing. Water indexes are initially used in threshold-based unsu-
pervised methods for water body extraction. The water index is calculated by combining
imaging information from different bands utilizing the strong absorption and low radiation
of water in the wavelength range from visible light to infrared. After calculation, the pixel
value of the combined band shows a relatively obvious difference between water and
non-water materials, which can be used to segment water bodies by setting an appropri-
ate threshold. After years of development, various water indexes have been proposed.
McFeeters et. al. [26] proposed a Normalized Difference Water Index (NDWI) and used it
for water body segmentation of multispectral images. Xu et al. [27] proposed a modified
NDWI (MNDWI) by replacing the near-infrared band with the short-wave infrared band.
Previous studies have shown that MNDWI is more suitable for enhancing water informa-
tion and can extract water bodies more accurately than NDWI. In addition to the above two
water indices, many researchers have proposed water indexes for other scenarios. In this
work, to enhance water information while reducing the channel dimensionality of data, we
analyze the characteristics of the water index and extract 7 water indexes from 13 bands
of raw multispectral images. However, multispectral images have large areas covered by
clouds, which are defined as invalid areas and cannot participate in training. Therefore,
based on the extracted water index, we fuse SAR polarization information for constructing
the WIPI multi-modality dataset. Moreover, we propose a Multi-Model Decision Fusion
(MMDF) method to automatically obtain Cloud-Free Labels to alleviate the problem of
labeled sample scarcity and class imbalance in water segmentation.
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Meanwhile, another promising advancement in the computer vision field is attention
mechanisms, in which networks can allocate more resources to important regions in an
image. Currently, attention mechanisms have been widely applied in many visual tasks,
such as image classification [28,29], object detection [30,31], semantic segmentation [32,33],
medical image processing [34,35], 3D vision [36] and multimodal tasks [37,38]. Gated
Channel Transformation (GCT) [21] is a type of channel attention mechanism that explicitly
models the relationships between channels in feature maps using learnable variables. These
learnable variables can determine the competitive or cooperative behavior of neurons.
Compared to Squeeze-and-Excitation (SE) networks [28], GCT greatly reduces the number
of parameters and computational complexity by introducing channel normalization layers.
Thereby, in our MFGF-UNet model, we replace the direct skip connection of UNet with
the GCT skip connection for adaptively focusing on more meaningful channel information
and enhancing inter-channel feature extraction. Furthermore, since water bodies vary
significantly in size and shape, to avoid the limitations brought by the single convolution
form and uniform kernel size as well as to fully utilize the multi-modal information of the
constructed WIPI dataset, we design a gated multi-filter inception module between the
input and the U-shaped backbone.

Finally, our MFGF-UNet model is compared to six other methods on three water
segmentation datasets, including our constructed WIPI dataset, the Chengdu dataset and
the GF2020 dataset. These datasets contain multispectral, SAR and optical multi-modality
images, cover different regions and are captured at different times. Extensive experiments
of performance and complexity analysis show that our MFGF-UNet outperforms various
competing methods.

To sum up, the main contributions of this paper are as follows:

• We release the Water Index and Polarization Information multi-modality dataset for
water area segmentation in remote sensing. The proposed datasets are the first ever to
provide both the water index modal and the corresponding polarization information
modal. Specifically, the dataset contains the Cloud-Free Labels automatically ob-
tained by the proposed Multi-Model Decision Fusion algorithm, which can effectively
alleviate the problem of labeled sample scarcity.

• We propose a multi-modality fusion and gated multi-filter U-shaped convolutional
neural network that introduces the GCT skip connection for adaptively focusing
on more meaningful channels and that incorporates the proposed gated multi-filter
inception module for fully utilizing the multi-modality information and handling the
challenge due to the variety of water body sizes and shapes.

• Extensive experiments on three benchmarks, including WIPI (water index and SAR
images), Chengdu (multispectral images) and GF2020 (optical images) datasets demon-
strated that our MFGF-UNet model achieves favorable performance with lower com-
plexity and better robustness against six competing approaches.

2. WIPI Multi-Modality Dataset Construction
2.1. Original Sen1Floods11 Dataset

The original data used to construct the Water Index and Polarization Information
(WIPI) multi-modality dataset are derived from the Sen1Floods11 (https://github.com/
cloudtostreet/Sen1Floods11 (accessed on 12 December 2023)) [39] dataset, which consists of
raw Sentinel-1 SAR images (Sen1-SAR) and raw Sentinel-2 multispectral images (Sen2-MS),
where Sen1-SAR includes the two VV and VH bands, and Sen2-MS includes 13 bands (1–8,
8A, 9–12) across all spectra. The format and description of the bands for Sen1Floods11
is shown in Appendix A, Table A1. The Sen1Floods11 dataset is a surface water dataset
covering 120,406 km2 and 6 continents of the world across 11 flood events. Events are
selected by the requirements that the flood event had coverage from Sentinel-1 as well as
coincident Sentinel-2 imaging on the same day or within 2 days of the Sentinel-1 image.
In addition to images, Sen1-SAR provides automated labels based on the Otsu threshold
method (Otsu Label-SAR) that includes two classes: water (label ‘1’) and non-water (label

https://github.com/cloudtostreet/Sen1Floods11
https://github.com/cloudtostreet/Sen1Floods11
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‘0’), and Sen2-MS provides manual labels (Manual Label-MS) that include three classes:
water (label ‘1’), non-water (label ‘0’) and cloud and invalid region (label ‘−1’). A set of
sample images and masks from the Sen1Floods11 dataset is shown in Figure 1.

(a) (b) (c) (d)

Figure 1. A set of sample images and masks from the Sen1Floods11 dataset. (a) Sen1-SAR image
(band VV), (b) Otsu Label-SAR, (c) Sen2-MS image (Band 8) and (d) Manual Label-MS.

2.2. Water Index Extraction

In this work, instead of directly superimposing the SAR and multispectral images,
we first analyze the characteristics of the water index and extract 7 water indexes from
13 bands of raw MSI to enhance water information while reducing the channel dimen-
sionality of the data. The seven extracted water indexes are: (1) Normalized Difference
Vegetation Index (NDVI) [40], (2) Normalized Difference Moisture Index (NDMI) [41],
(3) Normalized Difference Water Index (NDWI) [26], (4) Modified Normalized Differ-
ence Water Index (MNDWI) [27], (5) Automated Water Extraction Index Non-Shadow
(AWEINS) [42], (6) Automated Water Extraction Index Shadow (AWEIS) [42] and (7) Linear
Discriminant Analysis Water Index (LDAWI) [43]. The calculation formula for each water
index is shown in Appendix A, Table A2.

2.3. Obtaining Cloud-Free Labels

As can be seen from Figure 1, although the SAR image is not interfered with by
clouds, the corresponding image only has coarse labels obtained by the unsupervised Otsu
threshold method. Meanwhile, multispectral images have fine manual labels but have large
areas covered by clouds, which are defined as invalid areas. Even for SAR images without
cloud obstruction, these invalid regions cannot participate in training; this exacerbates the
problem of labeled sample scarcity and class imbalance in water segmentation. Therefore,
we propose a Multi-Model Decision Fusion (MMDF) method to automatically obtain Cloud-
Free Labels based on the fine manual labels of multispectral images. The framework of
MMDF is shown in Figure 2.

Since clouds and invalid regions have the same label in Manual Label-MS, first, we
use the VV band of the SAR image to extract the invalid region, and then we remove the
invalid region from Manual Label-MS to get the Cloud Label with only the cloud part.
Specifically, this process leverages the characteristic of ‘NaN’ (Not a Number) values in the
VV (Vertical Vertical) band and uses it to identify the locations of invalid regions. In Manual
Label-MS, both clouds and invalid regions are labeled as ‘−1’. By computing the difference
set between the ‘−1’ region and the ‘NaN’ region, we can obtain the Cloud Label. On the
other hand, seven extracted water indexes from multispectral images and the VV and VH
from SAR images are concatenated as the input to train the semantic segmentation models.
In training, Manual Label-MS is used to calculate the loss function. Two state-of-the-art
models of SegNeXt [24] and DeeplabV3+ [19] are trained to get Predicted Label 1 and
Predicted Label 2, respectively. Next, based on the Cloud Label, we use Otsu Label-SAR,
Predicted Label 1, and Predicted Label 2 to vote on the suspected cloud region. Finally,
we replace the label ‘−1’ (cloud region) of Manual Label-MS with the voting results label
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‘0’ (non-water) or ‘1’ (water). In this way, the construction of the whole Water Index and
Polarization Information (WIPI) dataset is completed. The WIPI dataset includes multi-
modality images from nine channels (seven water indexes + VV + VH) and the Cloud-Free
Label automatically obtained by our proposed MMDF algorithm. Example instances from
the nine channels and the corresponding ground truths (Cloud-Free Labels) are shown in
Figure 3.

Model Training

Multispectral 

Images

SAR

Images

……

AWEI-SAWEI-S

AWEI-NSAWEI-NS

MNDWIMNDWI

NDWINDWI

NDMI NDMI 

NDVI NDVI 

Seven 

Water Indexes

VVVV

VHVH

VV

VH

VV

VH

Cloud 

Extraction

SegNeXt

DeeplabV3+

Predicted Label 1Predicted Label 1

Predicted Label 2Predicted Label 2

Manual Label-MS

Cloud Label

Otsu Label-SAROtsu Label-SAR

Cloud-Free Label

Vote 

Counter
Water Index 

Extraction

WIPI

Existing Data (Input)Existing Data (Input) Generated DataGenerated Data

Final WIPI Data (Output)Final WIPI Data (Output)

Cover

and

Replace 

LDAWI

Figure 2. The framework of MMDF to automatically obtain Cloud-Free Labels.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. Example instances from the nine channels and the ground truth (Cloud-Free Label) of WIPI
dataset: (a) NDVI, (b) NDMI, (c) NDWI, (d) MNDWI, (e) AWEINS, (f) AWEIS, (g) LDAWI, (h) VV, (i) VH
and (j) GT.

3. Methodology

The framework of our proposed multi-Modality Fusion and Gated multi-Filter U-Net
(MFGF-UNet) is shown in Figure 4. MFGF-UNet is an end-to-end U-shaped network that
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mainly consists of four parts: (1) WIPI multi-modality data construction, (2) U-shaped
encoder–decoder, (3) skip connection with channel attention and (4) gated multi-filter
inception module. The first part was introduced in detail in Section 2, and the details of the
remaining three parts are described in the following.
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GCT 

(64, 64, 288)

(128, 128, 144)
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Strip Conv
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Strip Conv

9×1, Stride 1

LDAWI

Figure 4. Illustration of the proposed MFGF-UNet framework.

3.1. U-Shaped Encoder-Decoder

Due to the existence of relatively few labeled samples for water segmentation, we
adopt a simple and efficient U-shaped encoder–decoder as the base architecture. In the
encoder path, we design four layers comprising max-pooling and ConvBR blocks, which
repeatedly perform the following operations:

x̃(h/2,w/2,c) = maxPool(x(h,w,c)
l ) (1)

x(h/2,w/2,2c)
l+1 = ReLU(BN(Conv3×3(x̃(h/2,w/2,c)))) (2)
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where x(h,w,c)
l indicates the feature map, the subscript l denotes the current layer, and

the superscript (h, w, c) denotes the resolution and number of channels under the corre-
sponding layer. The function maxPool(·) denotes 2 × 2 max-pooling with stride = 2 for
down-sampling the feature map of the l-th layer; Conv3×3(·) denotes 3 × 3 convolution
with stride = 1, and the number of output channels is twice that of the input channels; BN(·)
and ReLU(·) denote Batch Normalization [44] and Rectified Linear Units [45], respectively.

The decoder path also consists of four layers of up-convolution and a ConvBR block,
which can be expressed as:

ỹ(h,w,c/2) = upConv(y(h/2,w/2,c)
l+1 ) (3)

y(h,w,c/2)
l = ReLU(BN(Conv3×3(Cont(x̂(h,w,c/2)

l , ỹ(h,w,c/2))))) (4)

where upConv(·) denotes 2 × 2 up-convolution with stride = 2; it up-samples the input
feature map to double its size while reducing the channel number by half. The ConvBR
block of Equation (4) is similar to Equation (2) except that the output channel of Conv3×3(·)
is half the input channel number. The output of the up-convolution ỹ(h,w,c/2) and the
skip connections x̂(h,w,c/2)

l are concatenated along the channel dimension by the Cont(·)
(concatenating operation) as the input of the ConvBR block. The last layer of the decoder
is a 1 × 1 convolution layer that maps the number of feature channels to the number of
classes and produces the final segmentation map.

3.2. Skip Connections with Channel Attention

As shown in Figure 4, we introduce the Gated Channel Transform (GCT) [46] module
for skip connections to fuse shallow features from the encoder with deep features from the
decoder. Compared to traditional skip connections, adding the GCT module can adaptively
adjust the weight of each channel and improve the performance of the whole network.
GCT consists of three parts: Global Context Embedding, Channel Normalization, and
Gating Adaptation, where Channel Normalization is a parameter-free operation. GCT
places the learnable parameters in the Global Context Embedding and Gating Adaptation
operations. The former collects global information via the L2 norm and assigns a learnable
weight control parameter for each channel. The latter introduces a competitive mechanism
between channels via channel normalization and assigns a learnable gating parameter and
bias for each channel. The last stage of GCT uses tanh to activate the attention vector and
get enhanced features.

Let x(h,w,c)
l be the input feature of GCT of the current layer l and α, γ and β be the

trainable parameters. The calculation process of GCT is as follows:

GCE = α × L2(x
(h,w,c)
l ) (5)

CN =
L2(GCE)

GCE ×
√

c
(6)

x̂(h,w,c)
l = tanh(γ × CN + β)× x(h,w,c)

l + x(h,w,c)
l (7)

where L2(·) denotes the L2 norm, GCE denotes Global Context Embedding, CN denotes
Channel Normalization, c is the number of channels and x̂(h,w,c)

l denotes the output feature
of GCT.

3.3. Gated Multi-Filter Inception Module

For the gated multi-filter inception module upwards of the U-shaped backbone, we de-
sign five different forms of filters with different kernel sizes, including the 1 × 1 convolution,
the stacking of max pooling and a 1 × 1 convolution, the stacking of a 1 × 1 and two 3 × 3
convolutions, and two strip convolutions respective of the 1 × 9 and 9 × 1 kernel size. The
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receptive fields of the five filters cover multi-scales of small, medium and large, which
aligns with the intuition that water bodies should be processed at various scales. The
number of output channels for each filter is increased to five times that of the input chan-
nels, and then the outputs of all filters are concatenated. Instead of directly using the
concatenated feature as the output of the inception module, we introduce a GCT module
and 1 × 1 dimensionality reduction convolution for adaptively aggregating features by
attention and gated mechanisms so that the next stage can better abstract features from
different scales simultaneously.

The details of the inception module are depicted in the light-yellow background part
of Figure 4; the inception module performs the following operations:

x̃(128,128,360)
in = Cont(F1(xin), F2(xin), F3(xin), F4(xin), F5(xin)) (8)

x(128,128,72)
l=1 = ReLU(BN(Conv1×1(GCT(x̃(128,128,360)

in )))) (9)

where xin ∈ R128×128×9 denotes WIPI data, Fi=1,...,5(·), respectively, denote the five de-
signed filters, and GCT(·) denotes the Gated Channel Transform, for which the specific
implementation is shown in Equations (5)–(7). The function Conv1×1(·) denotes a 1 × 1
convolution with stride = 1 and a number of output channels equal to one fifth that of the
input channels.

4. Experiments
4.1. Dataset and Pre-Processing

WIPI multi-modality dataset: In this work, we use three datasets to comprehensively
verify the performance of the proposed MFGF-UNet method. Among them, our constructed
Water Index and Polarization Information (WIPI) dataset is used as the main dataset, and ab-
lation experiments and comparison experiments are performed on WIPI. The WIPI dataset
consists of seven water indexes based on multispectral images, two sets of polarization
information from SAR images and the Cloud-Free Label automatically obtained by our pro-
posed algorithm. The construction details of WIPI are given in the aforementioned Section 2.
We have released the WIPI dataset (https://github.com/Dataset-RFGroup/WIPI-Dataset
(accessed on 12 December 2023)).

Chengdu dataset: The Chengdu dataset (https://github.com/SCoulY/Sentinel-2-
Water-Segmentation (accessed on 12 December 2023)) [47] is a remote sensing multispectral
image set captured by the Sentinel-2 satellite in April 2018 covering Chengdu city in China
and its surrounding area (over 15,000 km2). The dataset consists of images with five bands
sensitive to water reflection and corresponding ground-truth labels. The five bands are:
bands 2–4 (Blue–Green–Red (BGR)), band 8 (near-infrared (NIR)) and band 12 (short-wave
infrared (SWIR)).

GF2020 dataset: The GF2020 dataset (https://drive.google.com/file/d/1oHyzNfHe_
F3MeeUQUoni9dh1LFI_N6RS/view?usp=sharing (accessed on 12 December 2023)) [48] is
a high-resolution optical dataset from the GF-2 satellite for Track 5 (automatic water-body
segmentation in optical satellite images) from the 2020 Gaofen Challenge. The dataset
consists of images with three RGB channels and corresponding ground-truth labels.

An example instance from the WIPI dataset is shown in the aforementioned
Figure 3. Figures 5 and 6 are example instances from the Chengdu and GF2020
datasets, respectively.

https://github.com/Dataset-RFGroup/WIPI-Dataset
https://github.com/SCoulY/Sentinel-2-Water-Segmentation
https://github.com/SCoulY/Sentinel-2-Water-Segmentation
https://drive.google.com/file/d/1oHyzNfHe_F3MeeUQUoni9dh1LFI_N6RS/view?usp=sharing
https://drive.google.com/file/d/1oHyzNfHe_F3MeeUQUoni9dh1LFI_N6RS/view?usp=sharing
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(a) (b) (c) (d) (e) (f)

Figure 5. Example instances of the five channels and ground truth from Chengdu dataset: (a) R, (b) G,
(c) B, (d) NIR, (e) SWIR and (f) GT.

(a) (b)

Figure 6. Example instances of optical RGB image and ground truth from GF2020 dataset: (a) RGB and
(b) GT.

The image size in each of the three datasets as well as the number of training, validation
and test samples are shown in Table 1.

Table 1. Basic information about the three datasets.

Dataset Image Size
Number of Images in Dataset

Total Train Set Val Set Test Set

WIPI (512, 512, 9) 446 221 85 140
Chengdu (512, 512, 5) 1681 1008 336 337
GF2020 (492, 492, 3) 1000 600 200 200

“Image size” is in the form of (height, width, channel).

Pre-processing: The pre-processing steps for the three datasets mainly include two key
stages: (1) normalization and standardization. We calculate the minimum and maximum
values for each dataset and normalize the pixel values by min–max normalization to [0, 1].
And then, we standardize the pixel values by subtracting the mean and then dividing by
the standard deviation to ensure a consistent value distribution across the entire dataset.
(2) Sample Cropping: In this stage, we used a sliding approach to crop a single image into
multiple patches of 128 × 128 with an overlap of 32 between adjacent patches. For the
GF2020 dataset, since its height and width are 492 × 492, when cropping to 128 × 128 size,
the patches at the rightmost and bottom edges have an overlap greater than 32 pixels.
During testing, after the predictions are complete, all patches from a single image are
reassembled to the original image size for evaluation.
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4.2. Experimental Setup and Evaluation Metrics

For MFGF-UNet, we set the epochs as 200 and the batch size as 32. The initial learning
rate lr = 1e-4, and then lr is decayed to 0.99× lr every 5 epochs. A cross-entropy loss function
is employed. The model is trained with the Adam optimizer with momentum 0.99 and weight
decay 5e-4. All experiments are conducted on an Ubuntu system with Python 3.7, PyTorch
1.11.0, CUDA 11.3, and an NVIDIA RTX 3090 Ti GPU with 24 GB of memory. The code and
trained models are available at GitHub (https://github.com/Code-RFGroup/MFGF-UNet
(accessed on 12 December 2023)).

Three widely used measures, accuracy (ACC), F1 score (F1), and Mean Intersection
over Union (MIoU), are adopted as criteria to quantitatively evaluate the performance of
the different methods; they are calculated as follows:

Accuracy =
TP + TN

TP + TN + FN + FP
(10)

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

F1 =
2 × Recall × Precision

Recall + Precision
(13)

MIoU =
1

k + 1

k

∑
i=0

TP
TP + FP + FN

(14)

where k indicates the number of classes. The confusion matrix between the predicted result
and a given ground truth is calculated and consists of true positives (TPs), true negatives
(TNs), false positives (FPs) and false negatives (FNs). Positive and negative represent
water and non-water, respectively. For ACC, MIoU and F1, a higher score means better
performance. For all experiments, each algorithm runs three times independently, and the
average results are given. In addition to ACC, MIoU and F1 to evaluate the performance,
we measure the complexity of different models using the number of parameters (Param)
and one billion floating-point operations (GFLOPs).

4.3. Ablation Studies

In order to explore the influence of different factors on MFGF-UNet’s performance,
we conduct ablation studies on the WIPI dataset and discuss four factors below.

AS1—Effect of U-shaped encoder–decoder (Enc-Dec): In the model with Enc-Dec,
we replaced the GCT skip connection with a direct skip connection and removed the gated
multi-filter inception module. Only the U-shaped encoder–decoder part is retained, and
the input of the encoder is nine channels of WIPI data.

AS2—Effect of GCT skip connection (GCT): In the model with Enc-Dec and GCT,
we only removed the gated multi-filter inception module.

AS3—Effect of gated multi-filter inception (Inception): In the model with Enc-Dec
and Inception, we only replaced the GCT skip connection with a direct skip connection.

Table 2 shows that the above three factors influence both the segmentation results and
the complexity. In AS1, which removes both improvement modules, the F1 score reaches
91.26%, which is a decrease of 0.65% compared to MFGF-UNet. This result shows that our
improvements are effective. In AS2 and AS3, where the GCT or the Inception module are
individually removed, there is a decrease of 0.12% or 0.48%, respectively. This indicates the
proposed Inception module contributes more than the GCT module.

https://github.com/Code-RFGroup/MFGF-UNet
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Table 2. Ablation studies of three factors on WIPI dataset.

Method Enc-Dec Inception GCT ACC (%) MIoU (%) F1 (%) Param
(M) GFLOPs

AS1 ! 98.09 (±0.04) 83.92 (±0.31) 91.26 (±0.18) (↓0.65) 27.36 15.74
AS2 ! ! 98.21 (±0.01) 84.82 (±0.15) 91.79 (±0.08) (↓0.12) 27.53 21.04
AS3 ! ! 98.13 (±0.03) 84.21 (±0.28) 91.43 (±0.16) (↓0.48) 27.37 15.75

MFGF-UNet ! ! ! 98.22 (±0.01) 85.03 (±0.18) 91.91 (±0.11) 27.53 21.05

↓: The degree of F1 decrease is based on comparison to MFGF-UNet.

AS4—Effect of different modalities: To analyze the impact of the different modal-
ities on MFGF-UNet’s performance, we modified MFGF-UNet by using the different
modality data as input while keeping the other parts the same. There are a total of four
modalities: SAR, MSI, WI and WIPI, where SAR denotes the polarization information
of VV and VH from SAR, MSI denotes the spectrum of 13 bands from MSI, WI denotes
the seven extracted water indexes from raw MSI, and WIPI denotes the water index
and polarization information, which includes VV, VH and the seven water indexes. For
input images of all modalities, Cloud-Free Label is used as the ground truth to eliminate
the impact of different labels. From the results given in Table 3, it can be seen that the
segmentation performance of SAR is relatively poor, with ACC, MIoU and F1 scores
reaching only 95.22%, 63.18% and 77.68%, respectively. The segmentation results using
MSI data are far better than those of SAR. However, given that MSI data have the largest
band dimension, the model requires the highest amount of parameters and calculations,
in which Param and GFLOPs reached 57.43 and 43.79, respectively. It is worth noting
that the results using WI extracted from MSI data are better than those using original
MSI data. The improvement of WI on average ACC, MIoU and F1 are 0.24%, 1.59% and
0.97%, respectively. Additionally, using WI reduces the dimensions of the original data,
which results in a significant decrease in both Param and GFLOPs. Our WIPI data not
only leverage the extracted water index but also fuse the multi-modality of hyperspectral
and SAR data, thereby achieving superior results, with the average ACC, MIoU and F1
reaching 98.22%, 85.03% and 91.91%, respectively.

Table 3. Ablation studies of different modalities on WIPI dataset.

Method Modality Channel No. ACC (%) MIoU (%) F1 (%) Param (M) GFLOPs

MFGF-UNet

SAR 2 95.52 (±0.06) 63.18 (±0.60) 77.68 (±0.79) (↓14.23) 1.36 1.04
MSI 13 97.55 (±0.04) 79.79 (±0.29) 88.76 (±0.18) (↓3.15) 57.43 43.79
WI 7 97.79 (±0.05) 81.38 (±0.39) 89.73 (±0.24) (↓2.18) 16.65 12.71

WIPI 9 98.22 (±0.01) 85.03 (±0.18) 91.91 (±0.11) 27.53 21.04

↓: The degree of F1 decrease is in comparison to WIPI.

Moreover, visual comparisons between the different modalities are shown in Figure 7,
with significant differences highlighted by red lines. It can be seen that if only single-
modal SAR or MSI data are used, it is easy to lose the details of water bodies such as
slender rivers. At the same time, using only WI data may lead to false detections with an
extended range. Conversely, our WIPI can segment water bodies in a more consistent
and complete manner.
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(a) (b) (c) (d) (e)

Figure 7. Visual comparisons between different modalities: (a) GT, (b) SAR, (c) MSI, (d) WI and
(e) WIPI.

4.4. Comprehensive Comparison with Other Methods

The proposed MFGF-UNet is compared with six other state-of-the-art approaches:
FCN-8s [12], U-Net [14], DeepLabV3+ [19], BASNet [20], DUPNet [1] and SegNeXt [24]. For
all the other comparison methods, the parameters are set according to the corresponding
original work. All methods take 128 × 128 ×C as the input size, where C is the number of
channels corresponding to different datasets.

To verify the effectiveness of the constructed WIPI dataset and the proposed MFGF-
UNet model, we trained the seven models above on the two datasets Sen1Floods11
and WIPI. The Sen1Floods11 dataset consists of images with 15 channels (VV, VH and
13 multispectral bands) and Manual Label-MS. The WIPI dataset consists of images with
nine channels (VV, VH and seven water indexes) and the Cloud-Free Label. Along with
ACC, MIoU and F1 performance, we measure the complexity of different models using
Param and GFLOPs. All results on the two datasets are summarized in Table 4.
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Table 4. Segmentation quantitative results and complexity of seven approaches on Sen1Floods11 and
WIPI datasets.

Method Dataset Channel
No. ACC (%) MIoU (%) F1 (%) Param

(M) GFLOPs

FCN-8s [12] Sen1Floods11 15 96.04 (±0.28) 68.12 (±1.91) 81.02 (±1.36) 46.25 2.01
WIPI 9 96.83 (±0.06) 73.95 (±0.62) 85.02 (±0.41) (↑4.00) 46.24 1.98

U-Net [14] Sen1Floods11 15 96.53 (±0.46) 72.84 (±2.47) 84.26 (±1.64) 49.89 26.91
WIPI 9 98.09 (±0.04) 84.07 (±0.21) 91.35 (±0.12 (↑7.09)) 49.89 26.69

DeepLabv3+ [19] Sen1Floods11 15 96.43 (±0.34) 71.88 (±1.91) 83.62 (±1.28) 6.43 2.10
WIPI 9 97.37 (±0.03) 78.22 (±0.33) 87.78 (±0.21) (↑4.16) 6.43 2.09

BASNet [20] Sen1Floods11 15 97.30 (±0.06) 78.14 (±0.17) 87.73 (±0.10) 87.08 31.99
WIPI 9 97.91 (±0.07) 82.92 (±0.45) 90.66 (±0.27) (↑2.93) 87.07 31.93

DUPNet [1] Sen1Floods11 15 95.16 (±0.24) 66.06 (±1.18) 79.55 (±0.86) 49.87 69.20

WIPI 9 98.01 (±0.07) 83.23 (±0.66) 90.85 (±0.40)
(↑11.30) 49.86 69.17

SegNeXt [24] Sen1Floods11 15 96.67 (±0.10) 72.15 (±1.08) 83.81 (±0.73) 27.54 2.02
WIPI 9 97.11 (±0.17) 76.38 (±1.21) 86.60 (±0.78) (↑2.79) 27.54 2.01

MFGF-UNet (ours) Sen1Floods11 15 96.11 (±0.53) 70.52 (±2.64) 82.68 (±1.84) 76.46 58.37
WIPI 9 98.22 (±0.01) 85.03 (±0.18) 91.91 (±0.11) (↑9.23) 27.53 21.05

↑: The degree of F1 increase is in comparison to the corresponding method on Sen1Floods11.

The experimental results in Table 4 show that when Sen1Floods11 is replaced with our
WIPI, the segmentation performance of all seven approaches significantly improves, among
which, the top three highest improvements are DUPNet, our MFGF-UNet and UNet, for
which the average F1 scores increased by 11.30%, 9.23% and 7.09%, respectively. Meanwhile,
given that the channel dimension is reduced from 15 to 7, the amount of parameters and
calculations for all models have been reduced. Specifically for our MFGF-UNet, using the
WIPI dataset can reduce Param and GFLOPs by 48.93 and 37.32, respectively.

To further compare the advantages of WIPI over Sen1Floods11, we visualize the
ground truth of the two datasets and the predicted results of U-Net, DUPNet, SegNeXt
and our MFGF-UNet in Figure 8. Among the six comparison methods, DUPNet and UNet
achieve the second and third best results after our method, and SegNeXt is the latest method.
It can be observed that utilizing the WIPI dataset helps to eliminate some of the interference
in the Sen1Floods11 dataset, such as shadows and cloud cover, and thereby provide better
segmentation results, especially for blocky, stripe-like, or patchy water bodies.

In addition to the improvement brought by the constructed WIPI dataset, the results
in Table 4 also demonstrate that our method achieves the best performance against six
state-of-the-art approaches, with an ACC, MIoU and F1 of 98.22%, 85.03% and 91.91%,
respectively. U-Net achieves an F1 score of 91.35% on the WIPI dataset—second only to
our MFGF-UNet—but Param and GFLOPs of U-Net are 22.36 and 5.64 higher, respectively,
than for our method. Although Deeplabv3+ has the smallest model size, its segmentation
performance on the WIPI dataset is much lower than MFGF-UNet, with a 4.13% drop in
F1 score.

Figure 9 shows the segmentation results and corresponding zoom-in details on the
WIPI dataset using MFGF-UNet and the six comparison methods. For the BASNet and
DUPNet methods, many details, such as slender rivers, are missed, indicating that these
models can only generate high-confidence predictions for large water areas. The seg-
mentation results of SegNeXt are not precise enough because many small water bodies,
particularly those exhibiting jagged edges, are missed. Compared to other models, our
method produces clearer and more accurate prediction maps for large water bodies as well
as for slender rivers.
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(a) (b) (c) (d) (e)

Figure 8. Visual comparisons of segmentation results from four approaches on Sen1Floods11 and
WIPI datasets: (a) GT, (b) U-Net, (c) DUPNet, (d) SegNeXt and (e) MFGF-UNet.
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(a) (b)

Figure 9. Visual comparisons of segmentation results and corresponding zoom-in details from seven
approaches on WIPI dataset: (a) Test Sample A and (b) Test Sample B.

4.5. Evaluation of Model Robustness

Compared with the WIPI dataset, the Chengdu and GF2020 datasets have different
modalities: the former provides five-channel multispectral images, and the latter provides
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high-resolution optical images. Moreover, these two datasets were captured from different
sensors at different times while covering different ground ranges. Therefore, we conducted
experiments of all methods on Chengdu and GF2020 to evaluate the robustness of the
proposed MFGF-UNet model. The experimental results are shown in Table 5. It can be
observed that on both the Chengdu and GF2020 datasets, MFGF-UNet outperforms the
FCN, UNet, Deeplabv3+ and SegNeXt models in performance. Although on the Chengdu
dataset, MFGF-UNet has a 0.66% lower F1 score than BASNet and on the GF2020 dataset,
it has 0.91% and 1.02% lower F1 scores than BASNet and DUPNet, respectively, MFGF-
UNet exhibits obvious lower complexity than BASNet and DUPNet. It is noteworthy that
DUPNet only performs well on the GF2020 dataset, and the results on the Chengdu dataset
are not very good.

Table 5. Segmentation quantitative results and complexities of seven approaches on Chengdu and
GF2020 datasets.

Method Dataset ACC (%) MIoU (%) F1 (%) Params (M) GFLOPs

FCN-8s [12]
Chengdu 98.56 (±0.01) 45.78 (±0.76) 62.71 (±0.64) 46.25 1.96

GF2020 93.12 (±0.01) 70.83 (±0.22) 82.93 (±0.15) 46.25 1.95

U-Net [14]
Chengdu 98.91 (±0.01) 58.02 (±0.61) 73.42 (±0.49) 49.88 26.54

GF2020 93.69 (±0.11) 72.72 (±0.77) 84.10 (±0.51) 49.88 26.46

DeepLabv3+ [19]
Chengdu 98.86 (±0.01) 55.96 (±0.50) 71.76 (±0.41) 6.43 2.09

GF2020 92.56 (±0.16) 68.86 (±0.90) 81.55 (±0.63) 6.43 2.09

BASNet [20]
Chengdu 98.90 (±0.01) 59.69 (±0.12) 74.75 (±0.09) 87.07 31.89

GF2020 93.45 (±0.16) 74.11 (±0.35) 85.13 (±0.23) 87.07 31.87

DUPNet [1]
Chengdu 98.87 (±0.01) 56.87 (±0.72) 72.50 (±0.58) 49.86 69.16

GF2020 93.79 (±0.06) 74.27 (±0.09) 85.23 (±0.06) 49.86 69.15

SegNeXt [24]
Chengdu 98.84 (±0.01) 55.29 (±0.13) 71.21 (±0.11) 27.54 2.01

GF2020 93.06 (±0.09) 72.03 (±0.26) 83.74 (±0.17) 27.54 2.01

MFGF-UNet
Chengdu 98.91 (±0.01) 58.85 (±0.10) 74.09 (±0.08) 8.50 6.49

GF2020 93.63 (±0.09) 72.73 (±0.45) 84.21 (±0.30) 3.06 2.36

Figures 10 and 11 show the segmentation results and corresponding zoom-in details
for the Chengdu and GF2020 datasets using MFGF-UNet and six comparison methods.
The Chengdu dataset comprises a greater number of slender water areas, while the GF2020
dataset includes more extensive and continuous water areas. The DUPNet method achieved
the highest F1 score on the GF2020 dataset but exhibited relatively lower performance
on the Chengdu dataset. This result can be reasonably explained by the fact that, as seen
in the figures, DUPNet is not very good at detecting small water bodies but has better
performance on large water areas. The visualized results further illustrate that our proposed
MFGF-UNet excels at the segmentation of small water bodies and simultaneously proves
effective at segmenting large water areas.

The comprehensive comparison of the segmentation performance and complexity of
the seven models on the three datasets is shown in Figure 12, where the x-axis represents
GFLOPs, the y-axis represents F1, and the radius of the circle represents the parameter size
of each model. Being closer to the upper left corner and having a smaller radius indicate
better effectiveness and efficiency of the algorithm. The above results and analysis illustrate
that our MFGF-UNet has achieved favorable performance with lower complexity and better
robustness on the three datasets.
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(a)

(b)

Figure 10. Visual comparisons of segmentation results and corresponding zoom-in detail from seven
approaches on Chengdu dataset: (a) Test Sample A and (b) Test Sample B.

(a)

(b)

Figure 11. Visual comparisons of segmentation results and corresponding zoom-in detail from seven
approaches on GF2020 dataset: (a) Test Sample A and (b) Test Sample B.
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(a) (b) (c)

Figure 12. Param and GFLOPs vs. F1 of seven approaches on WIPI, Chengdu and GF2020 datasets:
(a) WIPI, (b) Chengdu and (c) GF2020.

5. Discussion

As shown in the experiments in this work, the use of different modalities or different
ways of using the modalities has a great impact on water segmentation. For example, in
Table 3, for the same ground region and the same model, the F1 from lowest to highest
is SAR, MSI, WI and WIPI at 77.68%, 88.76%, 89.73% and 91.91%, respectively. Since
the polarization information of SAR images cannot distinguish water, water-like surfaces
and noise-like spots well, its F1 is the lowest. MSI provides 13 band of information with
high resolution and less noise, so its F1 is 11.08% higher than that of SAR. As expected,
multi-modal WIPI achieves the best results. For all seven methods, the average F1 on WIPI
is 89.17%, as seen in Table 4. In Table 5, the average F1 scores on Chengdu (multispectral
images with five bands) and GF2020 (high-resolution optical images) are 71.49% and 83.84%,
respectively. Even if the differences in the regions and the sizes of the datasets are put aside,
it also can be found that our constructed WIPI dataset performs best. It is worth noting
that the F1 of MSI is 0.97% lower than that of WI, as seen in Table 3. At the same time, as
seen in Table 4, the average F1 on Sen1Floods11 is 83.24%, which is 5.93% lower than that
of WIPI. Even though the raw data for MSI and WI are both multispectral images with 13
bands and the raw data for Sen1Floods11 and WIPI are the same multispectral and SAR
images, how different modalities are analytically utilized changes the performance of the
model. The above results also verify the effectiveness of the water index we extracted.

Another reason for the lower performance on Sen1Floods11 is that Manual Label-MS
contains a large number of invalid areas, resulting in multi-modality results that are lower
than those of single-modality using the Cloud-Free Label: for examples, for the MFGF-UNet
model, the F1 scores of single-modal MSI and WI are 88.76% and 89.73%; however, the F1
score of multi-modal Sen1Floods11 is only 82.68%.

Utilization of the water index not only enhances the water information but also reduces
the data dimensionality: thus decreasing the overall complexity of the model. For example,
on the WIPI (nine channels), Chengdu (five channels) and GF2020 (three channels) datasets,
the proposed MFGF-UNet model achieves F1 scores of 91.91%, 74.10% and 84.21% with
GFLOPs of 21.05, 6.49 and 2.36, respectively. As the input data dimensions are reduced,
our model complexity is significantly reduced. This trend emanates from the meticulous
design of our encoder, wherein the output feature channel count of the first network layer
is eight times that of the input feature channels, and the subsequent network layers have
an output channel count twice those of the input channels. It is evident that our model
can dynamically adjust with a high degree of adaptability to accommodate varying scales
of input data. Compared with the U-Net, which has better performance, F1 scores reach
91.35%, 73.42% and 84.10% with GFLOPs of 26.69, 26.54 and 26.46, respectively. As the
input data’s dimensions are reduced, the complexity of the U-Net model also decreases
(note that the unit of measurement is one billion). Even while the GFLOPs are only 24% and
9% of those of U-Net, our MFGF-UNet achieves slightly better segmentation performance
on the Chengdu and GF2020 datasets, respectively. These results illustrate that, besides
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the design of the architecture, focusing on the data level can also reduce the computational
cost of the model.

6. Conclusions

In this work, we proposed an effective and efficient MFGF-UNet model for water area
segmentation in remote sensing. We first analyzed the task’s current challenges and then
designed corresponding strategies to address these issues. Concretely, we constructed a
WIPI multi-modality dataset to overcome the shortcomings of single-modal data and to
enhance water information while reducing the channel dimensionality of the data, the
Cloud-Free Label provided in the dataset can also effectively alleviate the problem of labeled
sample scarcity. For the issue that a single form or uniform kernel size cannot handle the
variety of sizes and shapes of water bodies, we proposed the gated multi-filter inception
(GMF-Inception) module. Moreover, we utilized the attention mechanism by introducing
the GCT skip connection and integrating GCT into GMF-Inception to further improve
model performance. Extensive experiments on three various benchmarks, including the
WIPI (water index and SAR images), Chengdu (multispectral images) and GF2020 (optical
images) datasets demonstrated that our MFGF-UNet model achieves favorable performance
with lower complexity and better robustness against six competing approaches.

Based on these improvements, in the future, we or other researchers can conduct
in-depth research from the following aspects: Firstly, consider the use of convolutional
kernels with different scales or shapes for feature extraction based on the size or shape of the
target objects. Secondly, despite the automatic feature extraction capability of convolutional
neural networks, effectively leveraging prior knowledge for data pre-processing and early
fusion can help reduce redundancy and misleading information: thereby improving the
robustness of the model. Meanwhile, we hope the release of a new dataset can help
researchers to develop and verify their frameworks for water area segmentation and
facilitate more breakthroughs in this field.
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Appendix A

Appendix A.1. Description of Sen1Floods11 Dataset

The Sen1Floods11 dataset consists of raw Sentinel-1 SAR images (Sen1-SAR) and
raw Sentinel-2 multispectral images (Sen2-MS), where Sen1-SAR includes the two VV and
VH bands, and Sen2-MS includes 13 bands (1–8, 8A, 9–12) across all spectra. The values,
formats and band descriptions for Sen1Floods11 are shown in Appendix A, Table A1.

https://github.com/Dataset-RFGroup/WIPI-Dataset
https://github.com/Dataset-RFGroup/WIPI-Dataset
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Table A1. Sen1Floods11 dataset description.

Modality Value Format Bands

SAR Unit:dB
GeoTIFF
512 × 512
2 bands
Float32

0:VV
1:VH

MSI Unit: TOA reflectance
(scaled by 10,000)

GeoTIFF
512 × 512
13 bands
UInt16

0: B1 (Coastal) 7: B8 (NIR)
1: B2 (Blue) 8: B8A (Narrow NIR)
2: B3 (Green) 9: B9 (Water Vapor)
3: B4 (Red) 10: B10 (Cirrus)
4: B5 (RedEdge-1) 11: B11 (SWIR-1)
5: B6 (RedEdge-2) 12: B12 (SWIR-2)
6: B7 (RedEdge-3)

Appendix A.2. Description of the Seven Water Indexes Used

In this work, we analyze the characteristics of the water index and extract seven
different water indexes from 13 bands of raw MSI data for constructing our WIPI dataset.
The formulas and descriptions of the seven extracted water indexes are shown in Table A2.

Table A2. The formulas and descriptions of the seven water indexes.

Index Name Formula Description

1 Normalized Difference
Vegetation Index (NDVI) [40]

(B8 − B4)/(B8 + B4) High values indicate dense tree canopies, while low or
negative values indicate urban areas or water bodies.

2 Normalized Difference Moisture
Index (NDMI) [41]

(B8A − B11)/(B8A + B11) Vegetation with higher values is relatively moist.

3 Normalized Difference
Water Index (NDWI) [26]

(B3 − B8)/(B3 + B8) Highlights water bodies, suppresses vegetation information;
susceptible to the influence of object shadows.

4 Modified Normalized Difference
Water Index (MNDWI) [27]

(B3 − B11)/(B3 + B11) Eliminates the influence of buildings and land, highlights
water bodies; easily affected by shadows of objects.

5 Automated Water Extraction
Index (Non-Shadow, AWEINS) [42]

(4B3 − 4B11)/(0.25B8 + 2.75B12) Removes black buildings that are easily misclassified as
water bodies.

6 Automated Water Extraction
Index (Shadow, AWEIS) [42]

B2 + 2.5B3 − 1.5
(B8 + B11) − 0.25B12

Suitable for scenes with a high amount of shadow.

7 Linear Discriminant Analysis
Water Index (LDAWI) [43]

1.7204 + 171B3 + 3B4 −
70B8 − 45B11 − 71B12

Suitable for scenes where there is a large difference in
spectral distribution between non-water and water bodies.
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