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Abstract: For many remote sensing applications, the instantaneous waterline on the image is critical
boundary information to separate land and water and for other purposes. Accurate waterline
extraction from satellite images is a desirable feature in such applications. Due to the complex
topography of low tidal flats and their indistinct spatial and spectral characteristics on satellite
imagery, the waterline extraction for tidal flats (especially at low tides) from remote sensing images
has always been a technically challenging problem. We developed a novel method to extract waterline
from satellite images, assuming that the waterline’s elevation is level. This paper explores the
utilization of bathymetry during waterline extraction and presents a novel approach to tackle the
waterline extraction issue, especially for low tidal flats, using remote sensing images at mid/high tide,
when most of the tidal flat area is filled with seawater. Repeated optical satellite images are easily
accessible in the current days; the proposed approach first generates the bathymetry map using the
mid/high-tide satellite image, and then the initial waterline is extracted using traditional methods
from the low-tide satellite image; the isobath (depth contour lines of bathymetry), which corresponds
to the initial waterline is robustly estimated, and finally an area-based optimization algorithm is
proposed and applied to both isobath and initial waterline to obtain the final optimized waterline. A
series of experiments using Sentinel-2 multispectral images are conducted on Jibei Island of Penghu
Archipelago and Chongming Island to demonstrate this proposed strategy. The results from the
proposed approach are compared with the Normalized Difference Water Index (NDWI) and Support
Vector Machine (SVM) methods. The results indicate that more accurate waterlines can be extracted
using the proposed approach, and it is very suitable for waterline extraction for tidal flats, especially
at low tides.

Keywords: waterline extraction; bathymetry; tidal flat; remote sensing image

1. Introduction

In general, remote sensing applications apply to either land or water analysis; there-
fore, it is essential to have the land–water masks derived from the same satellite images.
Monitoring coastal and wetland regions also needs instantaneous waterline information.
For example, the total coastline length of China is about 32,000 km, including 18,000 km of
continental coastline and 14,000 km of island coastline. The estimated tidal flats are about
1.5123 million hectares (15,123 km2), accounting for 6.44% of the entire wetland area of
China [1]. Waterlines are constantly changing under the influence of natural processes and
human activities [2,3]. Therefore, the waterlines are highly dynamic and gradually chang-
ing, which makes the information difficult to extract, and not all areas can be surveyed
for measurement. How to use modern technologies to improve coastal/island monitoring
and obtain accurate coastal/island information is a demanding issue. The remote sensing
data provide the instantaneous images taken when the satellites are passing overhead.
The instantaneous waterline is the position of the land–water interface at one instant in
time [4]. Waterlines are certainly not always horizontal. The wave run-up [5] and wind
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setup [6] cause the waterline to change. The instantaneous waterline extracted from the
remote sensing image is of great significance for the monitoring of coastal zone changes,
ocean dynamics, coastal zone ecological environment protection, resource development,
and coastal zone management [7,8].

Traditional waterline monitoring methods mainly rely on field measurements using
gauges [4]. These traditional methods are difficult to carry out in areas such as tidal flats
and coastal wetlands. The main reason is that this measurement method has a long period,
low efficiency, and high cost, and this measurement data are scarce and consume a lot of
manpower and material resources in the management and statistics [9,10].

With the development of remote sensing technology and image processing techniques,
statistical methods using remote sensing data become an important way to extract water-
lines and are successfully applied in many cases [11,12]. Most of the waterline extraction
methods are based on multispectral or hyperspectral images. There are three types of
waterline extraction methods: edge detection methods; threshold segmentation; and image
classification. Edge detection methods detect and create continuous edges (waterlines) on
an image; the most common edge detectors include the Canny edge detection [13] and the
Sobel edge detection [14]. A well-known threshold segmentation method is the Normal-
ized Difference Water Index (NDWI), which is a band ratio technique that uses Green and
SWIR [15] or NIR and SWIR (modified NDWI) [16] bands to generate grayscale images
and segment water and land based on thresholds; there is also an automatic thresholding
technique based on the histogram—Otsu method [17]. The above two methods are simple
and effective; however, they are not effective in tidal flats because there are fewer distinct
features that can separate land and water. The third kind of method is based on image
classification techniques: machine learning methods such as Random Forest (RF) [18–20],
Support Vector Machine (SVM) [21–24], and Logistic Regression (LR) [25,26]. With the
recent development of neural networks, there are many methods, such as convolutional
neural networks [27] and hierarchical segmentation models [28,29], etc. Image classification
methods generally require manual participation and high-resolution images in order to
achieve a high recognition rate. Beyond the above-mentioned methods, there is a variety
of other methods, such as sub-pixel localization [30,31]. Also, there are various waterline
extraction tools, such as CoastSat [32] and CASSIE [3]. The above methods promote the
development of waterline extraction; however, in general, it remains a challenging task to
extract waterlines in complex topography areas such as tidal flats, and manual digitizing
waterlines are frequently required in practical applications.

Multispectral images usually have high spatial resolution and low spectral resolution,
and hyperspectral images have low spatial resolution and high spectral resolution. In
recent years, with the development of UAV technology, aerial images have appeared
and been used for waterline monitoring [33–36]. Aerial images use drones flying at low
altitudes, including three-band (red, green, blue) or four-band (red, green, blue, near-
infrared), which have high spatial resolution. Therefore, the method of using these images
to extract the waterline mainly considers topological features: image shape and texture.
Generally, classification methods are used for waterline extraction or photogrammetry
techniques. These images have high spatial resolution. The collection is expensive, time-
consuming, and requires a large amount of well-trained manpower. It is difficult to achieve
a large-scale census. Although commercial satellite images are expensive, ESA provides
Sentinel-2 multiband images with 10 m spatial resolution and 11-bit radiometric resolution
for free through the internet. Sentinel-2 satellite images are shot periodically and archived.
Therefore, there are chances for customers to obtain images suitable for their demands. It is
generally used in combination with multispectral and hyperspectral.

Synthetic Aperture Radar (SAR) data are capable of all-weather and full-time [37].
It records information about waterline changes in poor weather conditions. SAR has
been well applied in shoreline development [38–40]. However, SAR images have some
problems, such as blurred boundaries, low contrast, high grayscale, and susceptibility
to noise interference. Sometimes, the contrast between water and land is not strong,
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which makes the waterline extraction of SAR images difficult. It needs to be processed
simultaneously with other images [41].

Light Detection and Ranging (LiDAR) is point cloud data. The airborne LiDAR is not
easily affected by the environment; it can operate in all weather conditions and provide
high-precision three-dimensional coordinate data. A digital elevation model (DEM) is
typically generated using airborne LiDAR, and then used for separating the land and
water [42]. However, since land-based LiDAR cannot penetrate water columns, this results
in the inability to accurately extract bathymetry. At the same time, the accuracy of DEM
is also affected by spatial resolution and terrain complexity. There is another space-based
lidar, ICESat-2, which can reflect water depth. NASA launched ICESat-2 (Ice, Cloud, and
Land Elevation Satellite-2) in 2018. The Advanced Topographic Laser Altimeter System
(ATLAS), a space-based lidar, was mounted on ICESat-2. ATLAS splits the emitted visible
green light (532 nm wavelength) laser into six beams using a diffractive optical element
(DOE) and irradiates the beams in pairs of two beams 90 m apart in three rows 3 km apart,
centered vertically below the satellite. Thus, ATLAS measures the elevation of the earth’s
surface in rows of six points. The National Snow and Ice Data Center Distributed Active
Archive Center manages ICESat-2 science data.

In tidal flat areas, the spatial and spectral features are affected by various factors such
as particle sizes, soil moisture contents, local slopes, sea turbidity, and existing tides. There
is no consistent and sufficient correlation between land and water in remote sensing images.
In this area, the waterline is blurring, and the uncertainty of extracted waterlines is high.
The waterline extraction is the most difficult under the condition of low tides.

Extraction of the waterline in tidal flats from satellite imagery at low tide is difficult.
During mid to high tides, most areas of intertidal flats are filled with seawater. So far, none
of the studies that have used satellite imagery to extract the waterline have assumed that
the waterline is level. This is because the waterline varies with individual waves due to
wave run-up on relatively steep beaches. Also, along a shallow coast, the effect of wind
setup changes the waterline (https://en.wikipedia.org/wiki/Wind_setup (accessed on
10 December 2023)). However, in relatively calm waters under the weak wind, where the
seabed gradient is gentle, it may be possible to extract the waterline from satellite imagery
with a coarse spatial resolution (around 10 m or more), assuming that the waterline is
level. This paper presents a novel approach to extracting waterlines, especially for tidal
flat areas, using bathymetry based on mid–high-tide satellite images. Based on the above-
mentioned information, this paper combines Sentinel-2 multiband images and water depth
and elevation data obtained by ICESat-2. The former and latter data are used for extracting
waterline and for reference water depth data, respectively.

This paper extracts waterlines as follows: (1) It introduces a novel method for waterline
extraction based on the assumption that the waterline’s elevation is level; (2) It integrates
bathymetry and waterline extraction techniques to address the waterline extraction prob-
lem: use bathymetry from the high-tide images to improve the waterline extracted from the
low-tide images; (3) It transforms the waterline extraction problem into trajectory similarity
problem and develops an optimization algorithm to minimizes the area of difference in two
trajectories (one trajectory is the isobath from bathymetry and the other is the waterline
from the conventional NDWI or SVM method); (4) It derives bathymetry using widely
available ICESat-2 or GEBCO data and finally obtains absolute elevation values for the
optimized waterline.

2. Materials and Methods
2.1. Study Area

Two difficult waterline extraction regions were selected as the study areas: Chongming
Island (tidal flats) in Shanghai China; and Jibei Island (shallow bedrock and sandy coast) in
Taiwan China. Their locations and satellite images are shown in Figure 1.

https://en.wikipedia.org/wiki/Wind_setup
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Figure 1. Locations of study areas. Bottom row: Jibei Island (a) is a part of Penghu Archipelago. Top
row, (b) is Chongming Island (eastern part). The satellite images (a,b) are shown using bands 4, 3,
and 2 of Sentinel-2 images as red, green, and blue channels.

Chongming Island is located at the mouth of the Yangtze River, 121◦50′–122◦05′ east
longitude, 31◦25′–31◦38′ north latitude, and is at the east of Chongming Island in Figure 1b.
Chongming Island is a typical muddy plain. Chongming Island is formed by the gradual
deposition of sediment carried by the runoff of the two channels of Chongming Island South
Branch and Chongming Island North Branch and is distributed in a semi-elliptical shape
outside the seawall. The Yangtze Estuary is a moderate tidal estuary with a semidiurnal
tide and an average tidal range of 2.43 m to 3.80 m. The high concentration of suspended
sediment in nearshore water also leads to unclear boundaries between tidal flats and water
bodies and is often used as the research object for waterline extraction [43,44].

The second area is located at 23◦43′–23◦46′N, 119◦38′–119◦34′E, Jibei Island, the north-
ernmost island of Penghu Archipelago, as shown in Figure 1a. Jibei Island is commonly
known as “Taiwan Heap”. The terrain of the whole island is high in the east and low in
the west. The sandy beach and spit are the biggest topographic features of the island. Jibei
Island has a vast intertidal zone. The tide situation in the Taiwan Strait is more complicated.
Jibei Island has a regular semidiurnal tide; the tidal range is from 1 m to 2.5 m. The island
covers an area of about 3.1 km2, with a wide beach and a gentle slope. It is a challenging
area for the waterline extraction.



Remote Sens. 2024, 16, 413 5 of 19

2.2. Dataset

Different from the other methods, the proposed novel approach requires high and
low-tide satellite images for the same region.

Sentinel-2 is a multispectral imaging mission comprising two satellites, 2A and 2B.
Satellite 2A was launched by the European Space Agency (ESA) on 23 June 2015, and
2B was launched on 7 March 2017. The revisit period of one satellite is 10 days, and the
revisit period of two satellites is 5 days. The Sentinel-2 satellite carries a multispectral
imager (MSI), which can cover 13 spectral bands, and the spectral range covers visible light,
near-infrared (NIR), and short-wave infrared (SWIR). The ground resolutions are 10 m,
20 m, and 60 m, respectively. With a width of 290 km, it is used for land monitoring and
can provide images of vegetation, soil and water coverage, inland waterways, and coastal
areas, and can also be used for emergency rescue services [45]. Only bands 2, 3, 4, and 8
with a spatial resolution of 10 m are used in this study. The captured images’ details are
shown in Table 1.

Table 1. The satellite imagery data for this experiment.

Study Area Data Source Date Time (UTC) Tide Status

Jibei Island

Sentinel-2
20210316 022551 high tide
20211111 022931 low tide

ICESat-2
20191005 142530 low tide
20210402 122421 low tide
20211110 140101 low tide

Chongming Island
Sentinel-2

20230515 022531 high tide
20230128 023951 low tide

GEBCO 20220529 121058 low tide

General Bathymetric Chart of the Oceans (GEBCO) aims to provide the most au-
thoritative publicly available bathymetry of the world’s oceans. It operates under the
joint auspices of the International Hydrographic Organization and the Intergovernmental
Oceanographic Commission (IOC) (of UNESCO) [24]. This includes global gridded bathy-
metric data sets, the GEBCO Gazetteer of Undersea Feature Names, the GEBCO world
map, Web Map Services, and the IHO-IOC GEBCO Cook Book—a reference manual on
how to build bathymetric grids. This paper uses the latest data updated in 2022 as the
training data in the Chongming Island experimental area. This is the fourth GEBCO grid
developed through the Nippon Foundation-GEBCO Seabed 2030 Project. The grid is used
as a “base” Version 2.4 of the SRTM15+ data set, augmented with the gridded bathymetric
data sets developed by the four Seabed 2030 Regional Centers.

On 15 September 2018, NASA successfully launched the ICESat-2 satellite. ICESat-2 is
equipped with a terrain laser altimeter system (ATLAS) [46], which has been widely used in
the elevation measurement of polar ice sheets, sea ice thickness estimation, land elevation
measurement, surface vegetation measurement, and other research fields. ICESat-2 has a
repeat period of 91 days, with 1387 orbits per period. The ATLAS system is equipped with
two lasers, one primary, and one backup; usually, only the primary one is in the working
state and emits a single pulse (532 nm) at a repetition rate of 10 kHz, with a pulse width of
1.5 ns, and can obtain overlapping spots with an interval of about 0.7 m along the track and
a diameter of about 17 m. The primary laser is split into 6 laser beams, which are arranged
in parallel in three groups along the track; each group contains a strong signal and a weak
signal, respectively, and the energy ratio between the two is 4:1; the cross-track distance
between each group is about 3.3 km, and the cross-track distance within the group is about
90 m. ICESat-2 standard data products are from ATL00 to ATL21. Among them, ATL03 and
ATL04 are level 2 products. ATL03 combines photon round-trip time, laser position, and
attitude angle data to determine the geodetic position (latitude, longitude, and altitude)
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of photon data received by ATLAS. This paper uses ATL03 data; the data are shown in
Table 1.

2.3. Methods

Unlike current methods, which ignore the waterline’s elevation, the proposed wa-
terline approach introduces a new dimension for waterline extraction; this is the general
assumption that the waterline’s elevation should be level. The waterline’s elevation should
be level and obtained through bathymetry inversion techniques. In the tidal flats, espe-
cially at low tides, the waterlines are very blurring on the low-tide satellite images due
to complex spectral characteristics; therefore, it is difficult to derive accurate bathymetry
maps using low-tide satellite images. The proposed approach solves this problem by using
a mid/high-tide satellite image to derive a reliable bathymetry map first. This solution
becomes plausible since the repeatedly acquired satellite images can be easily obtained
(for example, the Sentinel-2 series has two satellites, A and B, that can frequently revisit the
same region).

The new approach is built on existing waterline extraction and bathymetry extraction
techniques. The classic waterline extraction methods NDWI and SVM are chosen as the
initial waterline extraction methods of the proposed approach. A simple but efficient
bathymetry extraction method—the Stumpf model [47], is selected to derive bathymetry
in the proposed approach. The NDWI/SVM method and Stumpf model are only used
for illustration and demonstration purposes; it is worth pointing out that the other water-
line extracted methods and bathymetry inversion methods can be used in the proposed
approach. In the following subsections, NDWI, SVM, and Stumpf models are first briefly
described, and then the proposed approach is described.

2.3.1. NDWI

The Normalized Difference Water Index (NDWI) is the water index obtained by
McFeeters [15] in 1996 by comparing the spectral differences in different ground features;
the equation is as follows.

NDWI =
R(λ1)− R(λ2)

R(λ1) + R(λ2)
(1)

where R(λ1) is the reflectivity of the green band, and R(λ2) is the reflectivity of the near-
infrared band, which correspond to bands 3 and 8 of Sentinel-2, respectively. This paper
uses the common visible and near-infrared bands of Sentinel-2; therefore, it does not use
the MNDWI method.

2.3.2. SVM

Waterline extraction is regarded as a binary classification problem. The support vector
machine (SVM) method [21–24] is such a technique; it finds a separating hyperplane by
maximizing the interval between the target pixel and the background pixel to obtain a
decision boundary that satisfies most of the pixels to be classified, making it a classification
target. The SVM method can overcome the limitation that the neural network needs a
large amount of data for training and is one of the best methods for the classification and
regression of small samples.

2.3.3. Stumpf Model

Bathymetry information can be easily derived from the same multispectral images
used for waterline extraction. The attenuation degree of the water body’s reflectance of blue
and green bands can reflect the water’s depth. The Stumpf model [47] is a commonly used
method, which is based on linear inversion and a logarithmic conversion ratio. The Stumpf
model is more stable and robust than the linear model and has high inversion accuracy
in areas with clear water and turbid water [48]. This paper is to obtain isobaths through
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water depth. It is not necessary to obtain the water depth of each point very accurately. The
equation of the Stumpf model is as follows:

z = m1
ln(n × R(λ1))

ln(n × R(λ2))
+m0 (2)

where n is the fixed coefficient of blue and green bands. The blue light and green light have
strong penetrating powers to water bodies and can reflect underwater topography. m1 and
m0 are empirical parameters as regression coefficients, and z is water depth; R(λ1) and
R(λ2) correspond to the reflectivity of the blue and green bands, respectively.

2.3.4. The Proposed Approach

Neither NDWI nor SVM waterline extraction methods consider the fact that the
waterline’s elevation should be level. The relative water depth can be derived from the
satellite images using Satellite-Derived Bathymetry. Observing Equations (1) and (2), one
can realize that NDWI uses only green and near-infrared bands to separate land and water
planimetrically while the Stumpf model uses only green and blue bands to identify the
depth of water; it, therefore, makes sense to combine Equations (1) and (2). The proposed
approach achieves this. The proposed approach utilizes bathymetry information during
waterline extraction, adding extra dimension to tackle the waterline extraction problem.
The proposed approach particularly suits difficult waterline extraction cases, such as tidal
flats and very shallow water areas: using high-tide images to derive reliable bathymetry
and optimize the waterline extracted from low-tide images.

The procedure of the proposed waterline extraction approach is as follows:

1. Prepare high-tide and low-tide satellite images for the targeted area;
2. Obtain the bathymetry map using the high-tide image (use some reference data,

such as GEBCO or ICESat-2, to obtain absolute bathymetry; relative bathymetry can
still be derived if no reference data are available);

3. Extract the initial waterline from low-tide images using either NDWI, SVM, or
other methods;

4. Extract the depth value from the bathymetry map for sample points on the initial
waterline and apply robust estimate techniques to estimate the isobath (the contour
line, all points on the contour line have the same elevation or depth), which best
matches the initial waterline;

5. If the isobath is regarded as the waterline, the process can be ended. Otherwise, the
isobath is used to optimize the initial waterline;

6. Form two trajectories: one trajectory is the isobath (from above Step 4), and another
trajectory is the initial waterline (Step 3). Apply the proposed area-based optimization
algorithm to minimize the area of differences in the above two trajectories. The
optimized waterline acts as the final waterline.

The workflow of the proposed approach is illustrated in Figure 2. It is worth pointing
out that Step 6 is optional if the isobath is sufficient to be the waterline. The more detailed
descriptions of certain steps of the above procedure are given below. It is worth mentioning
that suitable DEM along waterline regions can be used instead of bathymetry maps; how-
ever, DEM along waterline regions is either inaccurate (out of date) or unavailable (hard to
obtain), in the authors’ opinion, the bathymetry map derived from the high-tide satellite
image is an excellent choice from an efficiency perspective.
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demonstrate the proposed approach.

Bathymetry Inversion

Common bathymetry inversion models for Satellite Derived Bathymetry (SDB) are
mainly empirical models such as Lyzenga [49] and Stumpf [47]. Recent studies focus on
models that use localized optimization techniques such as graphically weighted regression
(GWR) [50] or kriging with an external drift (KED) [51] to improve global optimization
models. These models usually use limited bands for bathymetry inversion. The log-band
ratio method of Stumpf et al. for SDB mapping assumes that the area has a uniform bottom
and a log-band ratio of water-leaving reflectance that decreases linearly with water depth.
The Stumpf model is employed as the SDB model in the proposed approach for the sake
of simplicity.

The Stumpf model requires some reference data in order to inversion bathymetry (see
Equation (2)). The GEBCO data are used as reference data to derive the bathymetry of
Chongming Island, and ICESat-2 is used as reference data to derive the bathymetry of Jibei
Island. The GEBCO data are shown as red dots in Figure 3a. ICESat-2 strips are shown in
Figure 3b.

Since ICESat-2 uses a photon counting lidar with high sensitivity, the original photon
points cloud data have a lot of noise. Firstly, this paper labels the points to distinguish
the water surface and underwater photons. Secondly, after labeling, it is necessary to
denoise the labeled data. At present, there are many denoising methods, mainly involving
denoising based on raster processing, denoising based on local statistical parameters and
denoising based on density spatial clustering (DBSCAN). In this paper, the DBSCAN [52] is
used to separate the underwater signal photons. This method is fast and does not need to
specify the number of clusters in advance. This method mainly distinguishes signal points
and noise points by finding the largest set of density-connected points. The main purpose
of this article is to obtain the trend of water depth. The grid points are in the same image,
with the same deviation, and do not affect the overall high and low trend. There is no
requirement for the accuracy of specific water depth. There is a simple refraction correction;
no tidal correction is made.
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water surface and underwater photons. Secondly, after labeling, it is necessary to denoise 
the labeled data. At present, there are many denoising methods, mainly involving de-
noising based on raster processing, denoising based on local statistical parameters and 
denoising based on density spatial clustering (DBSCAN). In this paper, the DBSCAN [52] 
is used to separate the underwater signal photons. This method is fast and does not need 
to specify the number of clusters in advance. This method mainly distinguishes signal 
points and noise points by finding the largest set of density-connected points. The main 
purpose of this article is to obtain the trend of water depth. The grid points are in the same 
image, with the same deviation, and do not affect the overall high and low trend. There is 
no requirement for the accuracy of specific water depth. There is a simple refraction cor-
rection; no tidal correction is made. 

Figure 3. Bathymetry reference data. (a) GEBCO reference data (red dots) for Chongming Island.
(b) ICESat-2 strips (blue, red, and orange lines) for Jibei Island. (c,d) the vertical profiles of ICESat-2
are the yellow strip in (b). The data are located in (23◦44′52.8′′N, 119◦36′7.2′′E), to (23◦46′44.4′′N,
119◦36′28.8′′E). For convenience, the data are truncated from 23◦46′1.2′′N and divided into upper
and lower graphs. The layered photons in the yellow box represent the water body.

Isobath Estimate

The initial waterline is extracted using either NDWI, SVM, or other methods. In order
to find the isobath that best matches the initial waterline, samples along the waterline are
collected, and samples’ corresponding bathymetry values are extracted from the bathymetry
map. As a result, each sample has its easting northing coordinates (X,Y) and elevation (Z). In
ideal situations, all samples’ Z values should be the same; this single Z can easily determine
the isobath. Because of the noises/errors both on the waterline and bathymetry map, a
fitting is required to estimate a single Z value (Ziso) to determine the best isobath elevation
value. Robust estimate techniques can be employed to estimate Ziso. The RANSAC [53]
technique is used during the estimate in this study. Using Jibei Island’s NDWI initial
waterline (generated using a low-tide Sentinel-2 image) as an example, the three pictures
in Figure 4 illustrate how its corresponding isobath elevation value is determined on
the bathymetry map (derived from a high-tide Sentinel image). In Figure 4a, the black
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and red points are the sample points along the waterline (black are inliers, and red are
outliers, which are later detected using RANSAC). In Figure 4b, RANSAC is used to find
inliers (black points) and outliers (red points) from sample points and obtain the mean
elevation of the initial waterline (black line) only using inliers. Once Ziso (black line in
Figure 4b) is determined, the isobath is extracted from the bathymetry map, as shown
in Figure 4c. In some cases, the isobath can act as the final waterline; however, a further
process can be applied to optimize between the isobath and the initial waterline to find the
final optimized waterline.
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Figure 4. Identifying the isobath value of the initial waterline using a robust estimation technique.
(a) sample points are extracted along the initial waterline (extracted using NDWI in this case).
(b) Finding the robustly estimated isobath value (1.26 m) using samples from the initial waterline
(black points are inliers, and red points are outliers). (c) The initial waterline and its corresponding
isobath are superimposed on the bathymetry inversion map.

Waterline Optimization

The isobath and the initial waterline can be treated as two trajectories. Pelekis et al.
present a method [54], which computes the similarity of two trajectories by the area enclosed
by the trajectories. The larger the area, the smaller the similarity. Inspired by this method,
it was adapted to find the optimal waterline by reducing the area between the waterline
and the isobath. The modified area-based optimization algorithm is shown in Figure 5; the
two trajectories have intersections and overlaps. The purple line is the initial waterline.
The green line is the estimated isobath from the bathymetry map, and the red line is
the corresponding optimized line. The black point Ii is the intersection of the two lines;
Areai is the area enclosed by the two lines. Recorrecting the waterline could be expressed
as relocating a line in the Areai between the intersection points Ii and Ii+1 of the initial
waterline and the isobath; the recorrected line is shown by the red line in Figure 5. The
specific steps are as follows: count the intersection points between the two lines first,
then count the area enclosed by each intersection according to the intersection points, and
calculate the average area as Savg. Equation (3) is used to correct the line.

L =

 L(Ii, Ii+1)min, Areai ≤ Savg

L
(

Ii, pmid1, . . . , pmidj+1, . . . , Ii+1

)
S(Lj,pmidj)

, Areai > Savg
(3)
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S
(

Lj, pmidj

)
= Savg × Lj/

N

∑
j=1

Lj (4)
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line is the final optimized waterline.

If the area of the intersecting part is smaller than or equal to the average area Savg, the
recorrected line between two points is represented by the connection line of the two points
L(Ii, Ii+1)min. If it is greater than the average area Savg, repeat the following process:

• Split the isobath line into line segments; split the average area according to the number
of line segments. The intersection isobath line could be split into N line segments
according to the turning point of the raster (blue point pj). For example, Area4 can be
split into 2 segments, L1 and L2; each line segment is Lj. According to the proportion
of each segment to the total length, the average area Savg is divided into N parts, as
shown in Equation (4);

• Find a point pmidj on the vertical line of the line segment Lj, such as the red point in
Figure 5; this point is in the intersection area of the two lines, and the area enclosed by
this point and the line segment Lj is S

(
Lj, pmidj

)
;

• The curve formed by connecting all the relocation points pmidj is the recorrected
waterline.

2.4. Experimental Design

Using the datasets described above, two experiments were conducted in Jibei Island
and Chongming Island, respectively. High-tide Sentinel images were used to derive
bathymetry maps. GEBCO data are used as reference data to derive the bathymetry of
Chongming Island, and ICESat-2 is used as reference data to derive the bathymetry of Jibei
Island. Low-tide Sentinel images are used to extract the initial waterlines using NDWI
and SVM methods. Using the initial waterlines and the bathymetry maps, the isobaths are
obtained. The proposed area-based optimization algorithm is used to optimize both the
isobath and initial waterline to obtain the final waterline. To quantitatively compare those
different results, the reference waterlines in those two experimental areas are established to
act as the ground truth. The reference waterlines were manually digitized using the low-
tide Sentinel-2 images and closely checked using very high-resolution Google Earth images.
Although great care was taken, some errors may still exist in the reference waterlines;
therefore, one should be aware that there are some uncertainties in the evaluated accuracies.
The initial waterlines extracted using either NDWI or SVM, isobaths, and final water lines
are considered the waterline products, which can be compared against reference waterlines.
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2.5. Evaluation

The labeled waterline is used as the reference waterline. The mean error (Mean) and
standard deviation (STD) between the waterline extracted by different methods and the
reference waterline are used as the criteria to evaluate the extraction accuracy [30]. The
smaller the standard deviation, the more concentrated the data are around its average
value. They are calculated as follows:

Mean = ∑ i=N
i=1

(
Pi−L − L′)

min/N (5)

STD =

√√√√i=N

∑
i=1

(P i−L − L′)
min

2/N (6)

where L′ represents the reference waterline; Pi−L represents any sample point i on the
extracted waterline L, Pi−L − L′ represents the shortest distance from the sample point to
the reference waterline, and N represents the total number of samples. According to the
geographic coordinates, a sample point is taken pixel-wise. For example, in Jibei Island,
more than 7000 sample points are extracted from the waterline.

3. Results
3.1. Jibei Island Waterline Extraction

For the Jibei Island experiment, two Sentinel-2 multispectral satellite images are used:
a high-tide image for bathymetry inversion and a low-tide image for initial waterline
extraction. The initial waterline extracted using NDWI or SVM was optimized using
its corresponding isobath. For description convenience purposes, the following naming
conversions are used in the rest of the text, figures, and tables:

• NDWI: the initial waterline was extracted using the NDWI method;
• SVM: the initial waterline extracted using the SVM method;
• Isobath (NDWI): the corresponding isobath of the initial NDWI waterline from the

bathymetry map;
• Isobath (SVM): the corresponding isobath of the initial SVM waterline from the

bathymetry map;
• Optimized (NDWI): the final waterline after optimizing the initial NDWI waterline

and isobath (NDWI) using the area-based optimization algorithm;
• Optimized (SVM): the final waterline after optimizing the initial NDWI waterline and

isobath (SVM) using the area-based optimization algorithm.

All NDWI-related waterlines are shown in Figure 6, and all SVM-related waterlines
are shown in Figure 7. Table 2 shows the statistical comparison results between various
waterlines and the reference waterline.

Table 2. Accuracy comparisons of NDWI, SVM methods, and the proposed approach in Jibei Island.

Waterline Mean (m) STD (m)

NDWI 38.35 62.24
SVM 25.23 29.66

Isobath (NDWI) 14.85 16.05
Isobath (SVM) 14.56 15.59

Optimized (NDWI) 15.01 16.51
Optimized (SVM) 14.78 16.03
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Figure 6. Jibei Island’s various waterline extraction results based on NDWI method’s initial water-
line. (a) shows the NDWI initial waterline (purple), its corresponding isobath (green), the final op-
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Figure 6. Jibei Island’s various waterline extraction results based on NDWI method’s initial waterline.
(a) shows the NDWI initial waterline (purple), its corresponding isobath (green), the final optimized
waterline (red), and the reference waterline (black). The background image is Sentinel-2 low-tide
image captured on 11 November 2021. (b,c) show two zoom-in regions of (a).
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Figure 7. Jibei Island’s various waterline extraction results based on SVM method’s initial waterline.
(a) shows the SVM initial waterline (purple), its corresponding isobath (green), the final optimized
waterline (red), and the reference waterline (black). The background image is Sentinel-2 low-tide
image captured on 11 November 2021. (b,c) show two zoom-in regions of (a).
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3.2. Chongming Island Waterline Extraction

The Chongming Island experiment was conducted in a similar way to Jibei Island:
two Sentinel-2 multispectral satellite images were used, a high-tide image for bathymetry
inversion and a low-tide image for initial waterline extraction. Isobath was created by
the water depth value estimated by the robust estimate method according to the initial
waterline. This isobath was used for the optimized initial waterline with the area-based
optimization algorithm. The proposed area-based optimization algorithm was used to
locate a line, which reduced the area between the initial waterline and the isobath.

All NDWI-related waterlines are shown in Figure 8, and all SVM-related waterlines are
shown in Figure 9, respectively. Table 3 shows the statistical comparison results between
various waterlines and the reference waterline.
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Figure 8. Chongming Island’s various waterline extraction results based on NDWI method’s initial
waterline. (a) shows the NDWI initial waterline (purple), its corresponding isobath (green), the final
optimized waterline (red), and the reference waterline (black). The background image is Sentinel-2
low-tide image captured on 28 January 2023. (b,c) show two zoom-in regions of (a).
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Figure 9. Chongming Island’s various waterline extraction results based on SVM method’s initial
waterline. (a) shows the SVM initial waterline (purple), its corresponding isobath (green), the final
optimized waterline (red), and the reference waterline (black). The background image is Sentinel-2
low-tide image captured on 28 January 2023. (b,c) show two zoom-in regions of (a).
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Table 3. Accuracy comparisons of NDWI, SVM methods, and the proposed approach in Chongming
Island.

Waterline Mean (m) STD (m)

NDWI 95.57 62.24
SVM 30.36 25.90

Isobath (NDWI) 26.54 20.87
Isobath (SVM) 19.05 17.92

Optimized (NDWI) 27.34 21.15
Optimized (SVM) 18.93 17.51

4. Discussion

Firstly, it can be seen from Tables 2 and 3 that the waterline extraction method using
SVM is better than NDWI. It may be because NDWI is a ratio method; only two bands
(band 3 and band 8 of Sentinel-2 images) are used for extraction calculation, while SVM,
on the one hand, uses water and land samples for training and considers all bands simul-
taneously during classification, and the resultant effect is relatively good, especially in
shallow water areas. From Figures 6a and 7a, it can be seen that SVM results are much
better than NDWI’s.

Secondly, from Tables 2 and 3, it can also be seen that the results of isobath (NDWI) and
isobath (SVM) are much better than NDWI or SVM’s results in both study areas. Further, it
is quite obvious that the optimized waterlines, Optimized (NDWI) and Optimized (SVM),
are closely related to the isobath waterlines, isobath (NDWI) and isobath (SVM), which
proves that the bathymetry information plays a critical role during the waterline extraction
process. Although the proposed approach only needs to know the relative water depth, the
higher the accuracy of water depth inversion (using some reference bathymetry data such
as ICESat-2), the better the extraction of the waterline. In the future, the accuracy of the
waterline could be improved by improving the accuracy of water depth inversion.

Thirdly, in the tidal flats, the low-tide satellite images have no obvious spatial and spec-
tral characteristics to separate water and land; it is difficult to derive accurate bathymetry
maps. In the proposed approach, the solution is to use a mid/high-tide satellite image to
obtain reliable bathymetry maps. The isobaths were generated based on the bathymetry
maps derived from mid/high-tide satellite images. The principle is that the isobath is simi-
lar to the initial waterline or coincides with an ideal state. This paper uses the isobath line
to optimize the initial waterline. It can be seen from Figures 6b,c and 7b,c that the isobaths
are close to the reference lines in the low-tide tidal flats. It has the same phenomenon in
Chongming, as shown in Figures 8b,c and 9b,c.

This paper uses robust estimate techniques to accurately locate the isobath line. This
method assumes that most of the initial waterlines are accurate and obtains some sample
points along the initial waterline. There is no deliberate distinction in tidal flats. If there
are too many sample points in the tidal flat area, the isobath line may be inaccurate.
Furthermore, sampling techniques could be applied to find more accurate initial waterline
sample points.

It is noticeable that the waterlines generated using the raster images are not smooth.
Straight-line segments are convenient to calculate for the area-based optimization algorithm.
Further smoothness could be applied to the final optimized waterlines to improve the
product quality. Another issue the proposed approach has not addressed yet is that
when simultaneously processing multi-waterlines, currently, only one waterline is applied
each time.

5. Conclusions

It is of great significance to accurately extract the waterlines of tide flats, especially at
low tides. The tide flats have complex landforms, and the spatial and spectral information of
the tide flat is not clearly distinguished, making it difficult to distinguish the waterline. Most
waterline methods do not perform well in low-tide flat areas. Through the introduction of
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the third dimension (waterline elevation/depth) to the waterline extraction, the proposed
approach integrates traditional waterline extraction techniques and bathymetry inversion
techniques, greatly improving the waterline extraction results compared to the results using
some traditional methods such as NDWI and SVM. A further improvement can be made
using the proposed area-based optimization algorithm.

It is of great significance to accurately extract the waterline in low-tide flats. The shoal
has complex landforms, and it is difficult to achieve manual measurement and large-scale
general surveys. Determining the tidal flat edge is very helpful for the general survey of
land use and slope calculation in the coastal zone. The 0 m line of water depth based on
remote sensing images during the low-tide period is not accurate. The low-tide reference
isobath line based on mid/high-tide images have an important reference value for the
study of low-tide water depth.

At present, there are many waterline extraction methods. Although this paper uses
NDWI and SVM as examples to generate waterlines and optimize them, this approach is
not limited to optimizing these two methods. The approach proposed in this paper can
optimize the waterline extracted by any method.

The proposed waterline approach shows promising results in two difficult regions
where waterline extraction is challenging for traditional methods. Given the nature of the
flexible structure and applicability of this approach, there are lots of potentials that could
be explored such as trying other than Sentinel-2 sensors and using other than NDWI or
SVM methods to generate initial waterlines. To make this approach more practical, how to
optimize complicated waterlines needs to be addressed in the future.
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