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Abstract: In recent years, laser scanners integrated with Unmanned Aerial Vehicles (UAVs) have
exhibited great potential in conducting power line inspections in harsh environments. The point
clouds collected for power line inspections have numerous advantages over remote image data.
However, point cloud-based individual power line extraction, which is a crucial technology required
for power line inspections, still poses several challenges such as massive 3D points, imbalanced
category points, etc. Moreover, in various power line scenarios, previous studies often require
manual setup and careful adjustment of different thresholds to separate different power lines, which
is inefficient for practical applications. To handle these challenges, in this paper, we propose a
multi-branch network to automatically extract an arbitrary number of individual power lines from
point clouds collected by UAV-based laser scanners. Specifically, to handle the massive 3D point
clouds in complex outdoor scenarios, we propose to leverage deep neural network for efficient and
rapid feature extraction in large-scale point clouds. To mitigate imbalanced data quantities across
different categories, we propose to design a weighted cross-entropy loss function to measure the
varying importance of each category. To achieve the effective extraction of an arbitrary number
of power lines, we propose leveraging a loss function to learn the discriminative features that can
differentiate the points belonging to different power lines. Once the discriminative features are
learned, the Mean Shift method can distinguish the individual power lines by clustering without
supervision. The evaluations are executed on two datasets, which are acquired at different locations
with UAV-mounted laser scanners. The proposed method has been thoroughly tested and evaluated,
and the results and discussions confirm its outstanding ability to extract an arbitrary number of
individual power lines in point clouds.

Keywords: point cloud; UAV-mounted laser scanning system; individual power line extraction;
arbitrary number of power lines

1. Introduction

At present, conventional methods of power line inspection, such as manual inspec-
tion [1] and manned helicopter inspection [2], frequently necessitate the physical presence
of personnel at the site for early fault detection and maintenance. However, numerous
transmission lines are situated in challenging environments, including hot deserts, moun-
tainous terrains, dense forests, and water bodies, presenting significant obstacles for routine
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power line inspections. Moreover, transmission towers in mountainous areas often reach
tens to hundreds of meters in height, making it challenging for ground personnel to obtain
a clear view of the power lines. Consequently, tower climbing and line inspection for defect
detection become imperative, involving the handling of live wires, posing considerable
risks and hindering the prompt identification of power line issues. Additionally, these
conventional inspection methods are highly susceptible to the influence of terrain and
weather conditions. The outcomes of inspections heavily depend on the experience of
personnel, resulting in a time-consuming and labor-intensive process [3,4].

In recent years, with the development of sensor technology, remote sensing data has
been widely used in power line inspection due to its convenience, safety, and efficiency in
data acquisition [5–8]. According to the data acquisition manner, remote sensing data can
be classified into the following two categories: image-based data and 3D point-cloud-based
data. Image-based data mainly includes Synthetic Aperture Radar (SAR) images and aerial
photographs. Point-cloud-based data mainly includes Airborne Laser Scanning (ALS) point
cloud data and Mobile Laser Scanning (MLS) point cloud data. Due to the easier accessi-
bility of images, many studies focus on exploiting remote sensing images to accomplish
power line inspection [9–11]. Although these studies have shown promising performance
in certain scenarios, the performance of these image-based methods is susceptible to issues
such as occlusion and lighting variation.

A UAV integrated with laser scanners, as a low-cost type of ALS system, offers a
cost-effective solution for rapidly capturing three-dimensional spatial information as point
clouds in large-scale scenes [12]. Particularly in remote mountainous areas where it is
difficult for personnel to directly access, the UAV-mounted laser scanning systems have
exhibited significant potential for practical application. Moreover, compared to optical
imaging systems, laser scanning systems have exhibited many advantages, such as precise
spatial information collection, real geometry information acquisition, independence from
lighting conditions, etc. [13]. Therefore, this paper mainly focuses on utilizing the UAV-
mounted laser scanning systems for power line inspection.

Despite of the advantages brought by UAV-mounted laser scanning systems [14], the
automated individual extraction of power lines from point clouds for routine power line
inspection still poses many challenges. Specifically, on one hand, the differences exist in
the spatial distances between different power lines in various scenarios and the number of
power lines are inconsistent in different scenarios. Moreover, the power lines in the collected
point clouds may become discontinuous or interrupted due to occlusion. Therefore, the
robustness and generalization of traditional methods, i.e., clustering-based algorithms [15]
or RANSAC model fitting-based algorithms [16], to extract individual power lines in point
clouds are heavily influenced when they are applied in different scenarios. This is because
they often heavily rely on manual setup and the careful adjustment of different thresholds
to separate different power lines. However, the manually set thresholds are challenging
to adapt to and extract an uncertain number of power lines in various situations, such as
discontinuous power lines and different spatial distances between different power lines. On
the one hand, there are massive 3D points in the point clouds collected by UAV-mounted
laser scanning systems. A significant category imbalance problem exists in the collected
point cloud scenes. Specifically, the number of 3D points for power lines and power towers
in the scenes is much smaller than that of other categories. This can lead to the declined
performance of the extraction model, where the minority categories, i.e., power towers and
power lines, are misclassified as other majority categories.

In order to benefit the routine power line inspection, this paper mainly focuses on
proposing a deep-learning-based method to achieve the automated extraction of individual
power lines and power towers in point clouds collected by UAV-based laser scanners.
Specifically, to handle the massive 3D point clouds in complex outdoor scenarios, we
propose to leverage the RandLA-Net [17] as the backbone network for efficient and rapid
feature extraction in large-scale point clouds. To mitigate imbalanced data quantities
across different categories, we propose to design a weighted cross-entropy loss function to
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measure the varying importance of each category. To effectively learn the discriminative
features to differentiate the points belonging to different power lines, we propose to design
a discriminative loss function to align the point features generated by the neural network.
Therefore, we summarize the main contributions of our paper as follows:

1. We propose an end-to-end and multi-branch network named EM-Net to automatically
and efficiently extract individual power lines and power towers in point clouds
collected by UAV-based laser scanners.

2. In order to effectively extract an arbitrary number of individual power lines, we
design a discriminative loss function into the EM-Net to automatically learn about
discriminative features for differentiating the points belonging to different power lines.
The learned discriminative features can easily be used in traditional unsupervised
clustering algorithms to extract an arbitrary number of individual power lines.

3. To assess the accuracy and robustness of our proposed EM-Net method, we conduct
extensive experiments on two different datasets acquired by UAV-mounted laser
scanners, and demonstrate the superiority of our proposed method in individual
power line extraction.

The remainder of the whole paper is organized as follows. Section 2 introduces the
related research on routine power line inspection based on remote sensing data. Section 3
expounds the procedure of our proposed automated individual power line extraction
method. Section 4 demonstrates the effectiveness of our proposed method through the
extensive experiments on the point clouds collected by different UAV laser scanners. The
paper is concluded in Section 5.

2. Related Work

To reduce the costs and labor involved in power line inspection and achieve intelligent
power line inspection, numerous researchers have focused on developing various technolo-
gies. In this section, we introduce the related works on power line inspection, specifically
focusing on two categories: image-based power line inspection and point-cloud-based
power line inspection.

2.1. Image-Based Power Line Inspection

Image-based methods still play a key role in the area of power line inspection. In
collaboration with machine vision, Chen et al. [18] explored the Radon transform for auto-
matically achieving the power line extraction in high-resolution remote sensing imagery.
To recognize power lines in aerial images, Yetgin and Gerek [19] introduced a new strategy
to obtain discrete feature extraction by applying the cosine transform. Building upon
the local-to-global concept, Song and Li [20] presented a sequential power line extraction
method in two criterions, i.e., in the local criterion, power lines were segmented through
morphological filtering and edge maps by calculating the matched filters and the first-order
Gaussians derivatives, respectively; in the global criterion, the entire and compact power
lines are formed and refined by designing a graph cut-based model. Based on the proba-
bilistic graph model, Zhao et al. [21] proposed a power line extraction method for aerial
images in three steps. Firstly, a line detector was proposed to extract line segments, which
were treated as basic units to construct a graph model. Then, based on the constructed
graph model, a Markov random field [22] was introduced to refine the extracted power
line segments. Finally, the whole power line was obtained by fitting an envelope line. To
achieve automatic power line inspection, Chang et al. [23] proposed a Convolutional Gen-
erative Adversarial Network (cGAN) model to integrate a deep-learning-based semantic
segmentation network with a lightweight Generative Adversarial Network [24] for power
line extraction. In the proposed cGAN model, the generator was responsible for encoding
the area images by generating the synthetic data, while the discriminator distinguished
whether the data was from real area images. Based on the adversarial learning between
the generator and discriminator, the generator could extract a discriminative feature for
power line inspection. Due to the reliability and all-weather operational capability of
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millimeter-wave radar systems, Sarabandi et al. [25] proposed a statistical polarimetric
detection algorithm that utilized coherence between polarized components, demonstrating
improved power line mapping in SAR images with low-grazing incidence. To prevent
power-line-strike accidents for low-flying aircrafts, Ma et al. [26] designed a set of features
to describe the Bragg pattern for the reliable recognition of power lines in SAR videos.

2.2. Point-Cloud-Based Power Line Inspection

The existing related studies on power line inspection mainly focus on the manually
designed descriptors [15,27]. These methods obtained the segmentation results of power
lines and power towers by extracting the local geometric features of the targets through
manually designed operators. Jung et al. [27] computed the geometric features of each voxel
and extracted power lines from point cloud data using a voxel-based hierarchical approach.
Shen et al. [15] partitioned the original space into multiple subspaces and segmented power
lines and towers using multiple height thresholds. To achieve the power line extraction
from point cloud data, Xu et al. [28] proposed a three-step method by exploiting maximum
a posteriori probability and linear structural information. Guo et al. [29] jointly leveraged
geometric characteristics and echo information of the laser scanning point cloud to obtain
a fused feature, and achieved the classification for power line extraction through the
JointBoost classifier. In order to improve the robustness of the power line segmentation,
Wang et al. [30] designed a multi-scale cylinder neighborhood to capture a compact spatial
structure feature. Some methods transformed the unordered point cloud into regular
geometric data structures, such as three-dimensional voxels and two-dimensional images,
and introduced the methods of image processing to perform power line extraction tasks.
Guo et al. [29] combined similarity detection and random sample consensus to detect
data distribution characteristics and estimate power line models. Yang et al. [31] first
transformed point clouds into 3D voxels as operating units, and then integrated Laplacian
smoothing [32] with Markov random fields to obtain a locally continuous and globally
optimal result for power line extraction.

On one hand, although image-based studies have shown their promising performance
in certain scenarios, their performances are easily influenced by the intrinsic deficiency
brought optical imaging systems such as occlusion, lighting variations, lack of geometric
information, etc. On the other hand, although traditional point-cloud-based methods
have developed various manually designed descriptors, the latent patterns implied in the
point clouds still cannot be accurately captured. Moreover, traditional point-cloud-based
methods are heavily influenced by manual setup and threshold settings, which limits
their generalizability.

3. Materials and Methods
3.1. An Overview of EM-Net

As shown in Figure 1, the multi-branch network architecture of the proposed EM-Net
mainly contains three components: the backbone network, the power line and power
tower extraction branch, and the individual power line feature learning branch. The main
benefit of designing the proposed EM-Net as a multi-branch network is to reduce the
massive requirements of annotated training samples. Specifically, the backbone network
is responsible for encoding a convolutional feature for the large-scale point cloud scenes.
The backbone network is shared by the two branches. The power line and power tower
extraction branch is responsible for classifying the points into three categories, i.e., power
line, power tower, and others. The individual power line feature learning branch is
responsible for generating the discriminative embeddings to guarantee the separation of
individual power lines.
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Figure 1. Illustration of the network architecture of the proposed EM-Net. Here, N represents the
number of points in the input point cloud. FC, LFA, RS, US, and MLP, represent Fully Convolution,
Local Feature Aggregation, Random Sampling, Up Sampling, and Multilayer Perceptron, respectively.

During the training phase of the network, the single power line extraction branch
ignores points that do not belong to the power line category when calculating the loss. In
the inference phase of the network, the single power line extraction branch computes point
embeddings for all points, while the power line segmentation branch assigns a categorical
label to each point. Finally, only the point embeddings classified as belonging to the power
line category in the segmentation branch are retained.

3.2. The Backbone Network

To extract power lines and power towers in large-scale point clouds, it is extremely
important to design a proper backbone network for efficiently capturing the local and
global contexts. Here, to consider massive 3D points in the collected outdoor 3D point
cloud data, we leverage RandLA-Net [17] as the backbone network. The RandLA-NET
can achieve efficient and rapid feature extraction for large-scale point clouds. Specially,
RandLA-Net uses random sampling to reduce the number of points in each layer, thereby
reducing computational costs and speeding up the feature extraction procedure. Moreover,
as shown in Figure 1, the RandLA-Net network mainly consists of Encoder layers and four
Decoder layers. In the Encoder layers, point cloud features are successively down-sampled
from the original (N, 8) through the Local Feature Aggregation (LFA) module and Random
Sample (RS) to (N/4, 32), (N/16, 128), (N/64, 256), and (N/256, 512), where N represents
the number of points. Here, the LFA module is used to aggregate local features and reduce
information loss caused by random sampling. The LFA module is a residual structure
composed of Local Spatial Encoding (LocSE) and Attentive Pooling (AP). In the LocSE
module, the center point, k nearest neighbor points, and distance vectors between the
center point and neighbor points are concatenated. The new abstracted feature is obtained
through a layer of MLP convolution. The AP modules introduce an attention mechanism
to calculate the feature contribution weights of each neighboring point, and ultimately
aggregate the feature of the center point. In the decoder stages, features are up-sampled
to (N/64, 256), (N/16, 128), (N/4, 32), and (N, 8) by using MLP. To facilitate better feature
input into the dual branches, we utilize three fully connected layers to output features as
(N, 256).

3.3. The Power Line and Power Tower Extraction Branch

The task of the power line and power tower extraction branch is to classify the points
into three categories such as power line, power tower, and others. In this branch, we
design three fully connected layers whose neurons are 128, 64, and 32, respectively. In
fact, there is a severe category imbalance problem in in the collected point cloud scenes.
Specifically, the number of three-dimensional points for power lines and power towers
in the scene is much smaller than other categories. This imbalance can lead to a bias in
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deep-learning networks during training, causing the network to classify power lines and
power towers as other categories. Therefore, we introduce a weighted cross entropy loss
LWCE into backpropagation to update the training network and effectively train the deep
network model in the presence of data imbalance. The Weighted Cross Entropy (WCE)
loss is an extension of the traditional cross entropy, where a weight coefficient is added to
account for the contribution of classes with smaller proportions in the dataset. We calculate
the weighted cross entropy loss LWCE as follows:

LWCE = −
M

∑
m=1

wmymlog(pm) (1)

wm =
1

Nm
N + ρ

(2)

where wm denotes the calculated weight for category m. N and M represent the number of
points and categories in point clouds, respectively. Nm represents the number of points in
the predicted category m. ym represents the one-hot vector for the predicted category m.
pm is the predicted probability of category m. Integrating the WCE loss into the EM-Net
allows us to address data imbalances and achieve effective training, even in scenarios where
certain classes have significantly fewer instances compared to others. To address scenarios
where power lines or power towers are absent, we set ρ to 0.02, thereby preventing the
denominator of the weight wm from reaching zero.

3.4. The Individual Power Line Feature Learning Branch

Addressing the diverse spatial distances between different power lines and the inter-
ruptions caused by occlusions is challenging when relying on the original XYZ coordinates
or manually crafted feature descriptors. Therefore, in the proposed EM-Net, the individual
power line feature learning branch aims to generate a distinctive embedding feature for
distinguishing 3D points belonging to the different power lines. We prefer that in the
learned embedding feature space, the embeddings of points belonging to the same power
line should be located as close as possible, while the embeddings of points from different
power lines should be located as far as possible. Moreover, because the number of power
lines is often unknown, the designed branch must be suitable for an arbitrary number
of power lines. Therefore, inspired by the image-based instance segmentation [33], we
propose to design a Discriminative Loss LDisc to train the individual power line feature
learning branch as follows:

Lvar =
1
|C|∑

C
c

1
Nc

∑Nc
i=1[∥µc − xi∥ − δv]

2
+ (3)

Ldist =
1

|C|(|C|−1) ∑C
cA ∑C

cB

[
δd −

∥∥µcA
− µcB

∥∥]2
+

(4)

Lreg =
1
|C|∑

C
c ∥µc∥ (5)

LDisc = α·Lvar + β·Ldist + γ·Lreg (6)

where C represents the set of power lines in the point cloud scene. |C| gives the number of
power lines in C. Nc denotes the number of points belonging to power line c. In practice,
C and Nc are only required during the training procedure to learn the discriminative
feature descriptions for 3D points belonging to different power lines. xi and µc represent
the embedding of 3D point i and the point center of power line c, respectively. ∥·∥ denotes
the L2 distance. [x]2+ outputs the maximum of the value of x and 0. Lvar, Ldist, and Lreg
represent the variance term, the distance term, and the regularization term, respectively.
Specifically, Lvar aims to encourage the distance between points belonging to the same
power line in the embedding space to not exceed threshold δv. Ldist encourages the distance
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between the embeddings of point centers from different power lines in the feature space to
be larger than a predefined margin δd. Lreg intends to keep all clusters as close as possible
to the origin for maintaining the bounded activations. Equation (9) computes the overall
loss where α, β, and γ are hyperparameters which give the weight of the variance term,
the distance term, and the regularization term, respectively.

3.5. An Arbitrary Number of Individual Power Line Extraction

In Section 3.4, we generate the discriminative embedding of points belonging to the
power lines by applying the individual power line feature learning branch. To achieve the
unsupervised clustering of an arbitrary number of power lines, we employ the Mean-Shift
clustering algorithm [34] to cluster the point embedding and extract the individual power
line. Besides the fact that Mean-Shift clustering is an unsupervised clustering method, it
does not require the predefinition of the number of clusters. Specifically, the algorithm
starts by randomly selecting data points as initial cluster centroids. Then, it iteratively
updates these centroids to converge towards the densest regions of the data distribution.
The update process is based on the concept of mean-shift, which involves computing the
mean of the data points within a certain neighborhood around each centroid. In each
iteration, for every data point, a window is defined around the current centroid. The size of
the window determines the bandwidth parameter of the algorithm, influencing the extent
of the neighborhood considered for each centroid. Because we encourage the EM-Net to
distinguish the learned features of different individual power lines according to the value
of δv at the training stage, we set the value of the bandwidth equal to δv in practice. Within
this window, the mean-shift vector is calculated by computing the mean of the data points
weighted by their similarity to the current centroid. After computing the mean-shift vectors
for all data points, the centroids are updated by shifting them towards the directions of the
mean-shift vectors. This process is repeated until convergence is reached, typically when
the centroids stop moving significantly or a maximum number of iterations is reached.

Once the algorithm converges, each data point is assigned to the nearest centroid,
forming clusters based on their proximity. The 3D points clustered within the same cluster
are conclusively classified as belonging to an individual power line.

4. Experiments
4.1. The Study Area and Dataset

To demonstrate the effectiveness of the proposed EM-Net on extracting an arbitrary
number of individual power lines from point cloud scenes, the qualitative and quantitative
evaluations are implemented on two datasets, i.e., Datasets I and II. The point clouds in
Datasets I and II are acquired from distinct locations utilizing the HawkScan X3 unmanned
aerial vehicle (UAV) manufactured by RIEGL in Horn, Austria. Equipped with a laser
scanner boasting an accuracy of 2 cm and a point density of 200 points per square meter, this
system ensures precise and dense data collection. The used UAV flew at an altitude of 150 m
with a speed of 24 km/h, and it achieved a maximum scanning angle of 70◦ at a frequency
of 700 kHz. The total length of point clouds in Dataset I and II was approximately 13 km
and 9 km, respectively. For dataset I, we divided the point clouds into 30 segments, each
with a length of 400 m. For dataset II, we similarly divided it into 20 segments, each with a
length of 400 m. As shown in Figure 2a,b, to validate the performance on power line and
power tower extraction, we manually classified the points into three categories, i.e., power
lines, power towers, and others. As shown in Figure 2c,d, to validate the performance on
individual power line extraction, we manually assigned different category labels to the
points belonging to different powerlines. The number of power lines in Datasets I and II
ranged from four to ten. In addition, the discontinuous power lines commonly existed in
used Datasets I and II.
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of power lines, power towers, and others in Dataset I and II, respectively. (c,d) illustrates the
annotations of different individual powerlines in Dataset I and II, respectively. Here, different color
represents different categories.

4.2. Implementation Details

In the proposed EM-Net, the designed two branches are alternatively optimized.
Specifically, at each iteration, we first train the power line and power tower extraction
branch to minimize the weighted cross entropy loss. Then, we train the individual power
line feature learning branch to minimize the discriminative loss. Here, the distance thresh-
olds δv and δd used in Equations (3) and (4) are empirically set to 1.0 and 0.5, respectively.
The hyperparameters α, β, and γ are set to 1.0, 1.0, and 0.001, respectively. Once the
training procedure converges, we can obtain the trained EM-Net to implement power line
and power tower extraction and accomplish the individual power line extraction.

For training the EM-Net, the initial learning rate of the network is set to 0.01 with a
decay rate of 0.95. The batch size and the training epochs are set to 4 and 100, respectively.
The EM-Net is coded with Python 3.6 and TensorFlow 2.6.1. All experiments are executed
on a workstation whose GPU, CPU, and operating system are 3090ti, Intel i9-12900K, and
Ubuntu 18.04, respectively.

4.3. Experiments and Discussion
4.3.1. Evaluation Metrics

To assess the performance of extracting the individual power lines, we used three
evaluation metrics including precision, recall, and F1-score. Specifically, the used evaluation
metrics are calculated as follows:

precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

F1 − score =
2 ∗ precision ∗ recall

precision + recall
(9)

where TP represents the point correctly identified as individual powerline in ground truth.
FN and FP represent the point incorrectly identified as negative samples and positive sam-
ples, respectively. The precision value indications correctly recognized individual power
lines. A higher recall value indicated a higher ability to find all the points belonging to
individual power lines. The F1-score provided a comprehensive consideration of precision
and recall.

4.3.2. Individual Powerline Extraction

We conducted extensive experiments to evaluate the performance of the proposed EM-
Net on extracting individual powerlines in point clouds. Table 1 records the experimental
results of the proposed EM-Net on extracting individual powerlines by using five-fold cross-
validation. To implement the five-fold cross-validation, we divided Dataset I and II into five
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equal parts on average. As recorded in Table 1, the proposed EM-Net obtained a satisfactory
performance on all three measurements for each split. Moreover, the proposed EM-Net
achieved average precision, recall, and F1-score at 0.986, 0.975, and 0.981, respectively. This
exhibits how the proposed method has a promising performance on extracting individual
power lines in point clouds. Furthermore, Figure 3 presents the visualization of the
extraction results obtained by applying our proposed EM-Net. As shown in Figure 3,
although the number of power lines varied, the proposed EM-Net could not only accurately
extract power lines and power towers, but could also distinguish 3D points belonging
to different power lines. This further exhibits the excellent performance of the proposed
EM-Net on extracting an arbitrary number of individual power lines in point clouds.

Table 1. The experimental results of five-fold cross validation of the proposed EM-Net on individual
power line extraction.

Datasets Precision Recall F1-Score

Split I 0.992 0.979 0.985
Split II 0.990 0.984 0.987
Split III 0.985 0.970 0.978
Split IV 0.981 0.965 0.973
Split V 0.984 0.977 0.981

Avg 0.986 0.975 0.981Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 15 
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Figure 3. The visualization of the results of the proposed EM-Net on extracting individual power
lines from point clouds. Specifically, (a–e) and (f–j) represent the extraction results obtained by
the proposed EM-Net and the ground truth, respectively. Here, different colors indicate different
individual power lines.
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4.3.3. A Comparative Experiment

To demonstrate the superior performance, we also compared the proposed EM-Net
with different methods including DBSCAN [35], RANSAC [16], and RECONSTRUCT [27].
Specifically, the DBSCAN method first exploits RandLA-Net to extract power line points,
then leverages the DBSCAN algorithm to spatially cluster the extracted power line points,
and finally treats each cluster as a single power line. The RANSAC method mainly lever-
ages the most widely used robust RANSAC estimator [36] to estimate the power line for
distinguishing points belonging to different individual power lines. The RECONSTRUCT
method extracts the powerline points by (1) removing the points belonging to the ground
and unwanted objects and (2) refining the powerline points by denoising, clustering,
and reconstructing.

Table 2 records the comparative results of the EM-Net against other methods. As
shown in Table 2, the EM-Net achieved the highest score for precision, recall, and F1-
score. Moreover, we provide the visualization of results obtained by different methods
in Figure 4. As shown in Figures 4 and 5, the DBSCAN, RANSAC, and RECONSTRUCT
methods all had varying degrees of misclassification, thus our proposed EM-Net obtained
the accurate classification, which demonstrates the superior performance of EM-Net on
extracting individual power lines from point clouds collected by UAV-mounted laser
scanners. Specifically, as region 1# shows in Figure 4, when the power line was interrupted
due to occlusion, the DBSCAN and RECONSTRUCT methods often incorrectly classified
one line as two lines. Moreover, as region 2# shows in Figure 5, when the power line crossed
the power tower, the DBSCAN and RECONSTRUCT methods often failed to recognize the
points belonging to a single power line. However, in both region 1# and 2#, our proposed
EM-Net accurately identified individual power lines. This is because, compared to the
other methods which adopt the handcrafted feature descriptors, our proposed EM-Net
designed a discriminative loss to automatically learn about effective feature descriptions,
which is beneficial for the individual power line extraction.
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Figure 4. The visualization of the results obtained by the different methods on extracting indi-
vidual power lines on scene I. Specifically, (a–d) are results obtained by the RANSAC, DBSCAN,
RECONSTRUCT and EM-Net (ours), respectively.

Table 2. The comparative results of the EM-Net against other methods.

Methods Precision Recall F1-Score

RANSAC 0.986 0.581 0.731
DBSCAN 0.868 0.657 0.748

RECONSTRUCT 0.986 0.941 0.963
EM-Net 0.987 0.975 0.981

4.4. Discussion

To evaluate the significance of the weighted cross-entropy loss function, we conducted
a comparative analysis with the conventional Cross-Entropy (CE) loss. According to [37],
we used precision, recall, and F1 scores as metrics. Considering the application of our
Weighted Cross-Entropy (WCE) in the branch dedicated to extracting power lines and
towers, we investigated its influence on the extraction process. As presented in Tables 3
and 4, the weighted cross-entropy exhibits a conspicuous enhancement in the extraction
performance on extracting power lines and power towers. Notably, a remarkable nearly 7%
and 1% boost in recall was observed for the power towers and power lines, respectively.
When utilizing the weighted cross-entropy, we observed precision, recall, and F1 scores of
95.11%, 96.86%, and 95.97%, respectively for the power tower. Remarkably, for the power
line category, all metrics exceeded 99%.

Table 3. The experimental results of power tower extraction of the proposed EM-Net with WEC loss
and EC loss.

Loss Precision Recall F1-Score

CE loss 95.44 89.97 92.63
WCE loss 95.11 96.86 95.97

Table 4. The experimental results of power line extraction of the proposed EM-Net with WEC loss
and EC loss.

Loss Precision Recall F1-Score

EC loss 99.52 98.83 99.17
WEC loss 99.31 99.51 99.41
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Figure 5. A visualization of the results obtained by the different methods of extracting individual
power lines on scene II. Specifically, (a–d) show results obtained by RANSAC, DBSCAN, RECON-
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To analyze the importance of the bandwidth value on the individual power line
extraction, we implement the proposed EM-Net under different bandwidth values. Table 4
records the results of the proposed EM-Net of different bandwidth values at 0.5, 0.8, 1.0,
1.2, and 1.5. As recorded in Table 5, when the bandwidth value ranged from 0.5 to 1.0,
the scores of all the measurements sightly increased. When the bandwidth value ranged
from 1.0 to 1.5, the value of precision, recall, and F1-scores sightly decreased. When the
bandwidth value was set at 1.0, the value of F1-scores reached the highest value at 0.965.
This reflects that the proposed EM-Net can obtain the superior performance when we only
set the bandwidth value equal to δv, which was set at 1.0. This is because the EM-Net
learns that the feature distance between 3D points belonging to the same power line in the
embedding space should not exceed the threshold δv.



Remote Sens. 2024, 16, 393 13 of 15

Table 5. The experimental results of the proposed EM-Net under different bandwidth values.

Bandwidth Precision Recall F1-Score

0.5 0.983 0.916 0.949
0.8 0.995 0.809 0.893
1.0 0.967 0.964 0.965
1.2 0.973 0.942 0.957
1.5 0.974 0.858 0.912

5. Conclusions

To effectively extract power lines and differentiate points from different power lines in
point clouds obtained from UAV-mounted laser scanners, this paper presents a novel multi-
branch neural network called EM-Net. The multi-branch architecture of EM-Net allows for
the effective learning of latent feature embeddings in unorganized 3D points. Furthermore,
a discriminative loss function is designed to explicitly guide the feature-learning process
in distinguishing points belonging to different power lines. To address imbalanced point
clouds’ data for training EM-Net, a weighted cross entropy loss is introduced to enhance
the ability of EM-Net to classify the minority category. The proposed method has been
evaluated on two datasets acquired from UAV-mounted laser scanners at different locations.
The qualitative results have demonstrated that our EM-Net achieves the highest scores
on individual power line extraction for metrics such as precision, recall, and F1-score at
0.986, 0.975, and 0.981, respectively. These scores surpass those obtained by the DBSCAN,
RANSAC, and RECONSTRUCT methods. These results highlight the superior performance
of our proposed method in extracting an arbitrary number of individual power lines.
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