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Abstract: In object detection, Transformer-based models such as DETR have exhibited state-of-the-
art performance, capitalizing on the attention mechanism to handle spatial relations and feature
dependencies. One inherent challenge these models face is the intertwined handling of content
and positional data within their attention spans, potentially blurring the specificity of the informa-
tion retrieval process. We consider object detection as a comprehensive task, and simultaneously
merging content and positional information like before can exacerbate task complexity. This paper
presents the Multi-Task Fusion Detector (MTFD), a novel architecture that innovatively dissects the
detection process into distinct tasks, addressing content and position through separate decoders.
By utilizing assumed fake queries, the MTFD framework enables each decoder to operate under
a presumption of known ancillary information, ensuring more specific and enriched interactions
with the feature map. Experimental results affirm that this methodical separation followed by a
deliberate fusion not only simplifies the task difficulty of the detection process but also augments
accuracy and clarifies the details of each component, providing a fresh perspective on object detection
in Transformer-based architectures.
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1. Introduction

Object detection, as one of the critical tasks in computer vision, has received extensive
attention. It is increasingly important in many real-world applications, such as autonomous
driving, monitoring systems, human–computer interaction, medical diagnosis, smart agri-
culture, and retail analysis. Its broad applicability underscores its importance, driving
research efforts to refine and advance detection technology.

The object detection method in the early era mainly used hand-made components to
extract features until the emergence and widespread use of convolutional neural networks
(CNN) [1–4]. The method of object detection ushered in a paradigm shift. CNN-based
frameworks, such as Faster R-CNN [2], YOLO [1,5], and Mask-RCNN [6], not only surpass
traditional techniques in accuracy but also exhibit unprecedented efficiency, enabling real-
time detection. However, although these models are groundbreaking and achieve good
performance, they have also received extensive attention and substantial improvement.
Still, they often suffer from complex object relationships and long-range dependencies.

Transformer [7] has achieved great success in NLP (Natural Language Processing) and
has also been extended to computer vision [8,9]. With the promise of handling complex
spatial relationships and feature dependencies, models such as the DEtection Transformer
(DETR) [8] and its derivatives [10–14] set new benchmarks by leveraging the Transformer’s
inherent self-attention mechanism [7], which enables object detection architecture to open
up the DETR paradigm. However, we argue that even in these state-of-the-art architectures,
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there is an implicit challenge—content and location information are constantly intermixed
in attentional computations.

As mentioned earlier, the currently widely used DETR paradigm method usually
regards the object detection [8,10–14] task as a single task. It integrates location and
classification when querying the feature map so that the object detection in the middle of
the model is always a mixed task of location and classification, as shown in Figure 1a,b.
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Compared with simple and single positioning and classification tasks, achieving
precise positioning and detailed classification will be more difficult. Furthermore, the
richness of content attributes, such as complex textures, patterns, and color gradients, is
often obscured. Our work introduces a fine-grained multi-task approach to object detection,
recognizing these potential pitfalls and focusing on distinguishing between localization and
classification tasks, which can be regarded as learning location information and learning
content information, as shown in Figure 1c. This ensures that tasks in different dimensions
are optimized, simplifying the object detection task within the model without affecting
other dimensions.

Inspired by conditional-DETR [11] and DAB-DETR [8], our approach starts from
the joint learning stage to ensure a robust balance between localization and classification.
Subsequently, a specialized content learning mechanism queries the content information
of objects in the feature map and can identify subtle object attributes, thus providing a
more comprehensive representation. At the same time, the positioning learning component
adjusts the position in the feature map of interest and allows it to fine-tune the model in
stages to ensure accuracy.

Our main contributions include the following:

(1) Propose a pioneering multi-task object detection framework of simple subtasks. We di-
vide content query tasks and location query tasks and jointly optimize object detection
tasks and subtasks, while subtasks do not affect each other.

(2) We design task-specific loss functions and iterative training methods.
(3) Comprehensive evaluations on leading benchmarks confirm our model’s excellence in

accuracy, object understanding, and scalability while increasing the comprehensibility
of the model’s internal components.
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This paper further digs into the technical complexity, empirical validation, and compre-
hensive discussion, revealing how our approach defines the contemporary object detection
field in a new light.

2. Related Works
2.1. Traditional Object Detection Methods

Traditional object detection methods mainly revolve around CNN-based architec-
tures [1–4]. Mainstream methods such as Faster R-CNN [2] and YOLO [1,5] treat object
detection as a combination of localization and classification. Specifically, Faster R-CNN [2]
introduces a Region Proposal Network (RPN) to extract and classify regional proposals. At
the same time, YOLO [1] tries to predict bounding boxes and class probabilities directly
from feature maps at multiple scales. Although CNN-based methods show good perfor-
mances on many benchmarks [15], they require further improvements in using semantics
and spatial information in a global fashion, like Transformer-based methods [8].

2.2. Multi-Stage Object Detection

The multi-stage object detection method is an idea that has received a lot of attention.
For example, Cascade R-CNN [16] uses a sequence of detectors trained with increasing IoU
thresholds to refine detections progressively. However, the main focus of most multi-stage
methods is still limited to the joint optimization of localization and classification. The
nature of decomposing tasks for deeper refinement has not been fully explored, especially
when addressing content attributes individually.

2.3. Transformer in Object Detection

Facing the problems of CNN architecture, Transformer architecture [7] has attracted
attention due to its impressive performance in capturing long-range dependencies and
establishing global spatial relationships. The core idea of Transformer is the self-attention
mechanism, which allows the model to weigh input features differently based on con-
text. Facebook AI’s DEtection Transformer (DETR) [8] brings a paradigm shift in object
detection. Rather than relying on region proposals or anchor boxes typical of CNN-based
detectors [2,6], DETR treats object detection as a direct set prediction problem. It uses
a fixed number of object queries and decodes them parallel to predict bounding boxes
and class labels. The self-attention mechanism enables DETR to handle complex spatial
relationships in images, making it suitable for scenes with many objects or occluded objects.

The success of DETR has spawned various spin-off works aimed at improving the
model and adapting it to different scenarios. For example, DETR with Dynamic Con-
volution (DETR-DC) [17] incorporates convolution operations into the Transformer ar-
chitecture, bridging the gap between CNNs and Transformers. Another notable one is
Sparse RCNN [18], which utilizes a learnable proposal scheme that eliminates the need for
handcrafted anchor boxes or fixed object queries.

Models like DETR [8,10–14,17] incorporate the Transformer’s self-attention mecha-
nism to focus on different image parts, effectively encapsulating spatial relationships and
feature dependencies. This paradigm shift marks a departure from traditional region-based
detection and opens the way for more nuanced approaches to the detection task. Although
the DETR model has achieved remarkable results in object detection, we believe that the
continuous interweaving of content and location information within the self-attention
computation in the model is still an inherent challenge.

2.4. Content Learning and Localization in Vision

Content understanding is crucial in various fields of computer vision. Sun et al. [18]
proposed the residual network (ResNet), which is a structure designed for deep networks.
It solves the vanishing gradient problem in deep networks through residual connections,
thereby better understanding and highlighting the image content. Carion et al. [8] utilize
the Transformer structure to handle object detection, thoroughly combining the content
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and location information of the image. Zhou et al. [19] provide rich annotations, enabling
the model to understand various objects and background content in the image; it also
shows that understanding the content of images is very important in visual tasks. When
we refer to “content,” we are talking about the intrinsic properties of the objects in the
image—the shape, texture, pattern, color, and other properties that define them, includ-
ing the core characteristic properties of the objects in the image. We use these distinct
attributes to understand the content more fully while often ignoring irrelevant details such
as background.

Such content-centric analysis is not common in object detection. Most detection
models [2,3,8,10] focus on identifying boundary regions of objects and classifying them.
We believe that through a dedicated content learning stage, the model can theoretically
gain a deeper understanding of each object’s unique properties, thereby improving de-
tection accuracy, especially in challenging scenes with occlusions, shadows, or changing
lighting conditions.

On the other hand, localization is a fundamental aspect of object detection [1–6]. It
involves identifying the precise location of objects in an image. This is usually achieved
by predicting the bounding box of the encapsulated object. Methods such as bounding
box regression in architectures such as Faster R-CNN [2] explicitly focus on improving
these predictions to improve localization accuracy. References [10–12,20] also attach great
importance to spatial position, emphasizing the importance of precise position-learning
capabilities for accurate object detection.

In object detection, seamlessly combining content and localization learning is challeng-
ing. Object detection tasks do not explicitly separate these aspects. With the emergence of
modern Transformer-based architectures [8,10–12,14] and the pursuit of better interpretabil-
ity, there is a growing need for models that can simultaneously differentiate and optimize
content and localization. Our work is also based on this idea, aiming to improve detection
results by taking advantage of two aspects. Content understanding ensures detailed object
representation, while accurate localization ensures precise object boundaries. Performing
these two tasks separately and maintaining a harmonious balance between the two tasks
may lead to superior object detection performance.

Also, there are good review papers on object detection [21–23]. Our method provides
a separate multi-task training strategy. By decoupling the processes of localization and
content learning, each task can receive the attention it deserves during training. The
introduction of the content learning stage mainly acts as a bridge, exploiting richer feature
interactions and capturing complex object properties. This holistic approach gives our
model an advantage, as evidenced by improvements in accuracy, scalability, and component
interpretability compared with contemporary methods.

In summary, we separate the object detection method into multiple subtasks in the
model and observe the challenge of object detection from the perspective of multiple simple
tasks. The method achieves promising results on various benchmarks, triggering deeper
exploration, and has the potential to shape future detection strategies.

3. Proposed Method

We propose an approach consistent with DETR-like models that divides the object
detection task into multiple subtasks, including content learning related to object infor-
mation and classification (involving content knowledge of multiple targets) and position
learning related to object localization (involving the positioning of multiple objects), and
joint learning of positioning and content learning.

Based on the DAB-DETR model, we design and implement our tasks, thus facilitating
the concurrent execution of the above functions within the integrated framework. In the
following sections, we will first outline the process of our method, explain the combined
learning of localization and classification in object detection, explain the structural design
of content learning, and detail the scheme of position learning. We will explain the model’s
loss function and training strategy.
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3.1. Overall Structure of the Proposed Model

As shown in Figure 2, the architecture of our proposed method is decoder-centric,
where object detection is treated as multi-task learning. The decoder consists of three
sub-modules related to content learning, position learning, and joint learning of content
and position. Each sub-module is displayed with the same color in Figure 2.
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Content learning: For a more in-depth study, we separate the classification task in
object detection as a content learning subtask, as self-attention-C and cross-attention-C
blocks are shown in Figure 2. Our content learning mechanism is specifically tailored to
emphasize the complex textures, patterns, and color gradients of objects. Unlike traditional
models, our design emphasizes content attributes for object detection, enhancing the
model’s classification accuracy.

Position learning: Similarly, we separate the positioning task in target detection as a
position learning sub-task, as self-attention-P and cross-attention-P blocks are shown in
Figure 2. Position learning focuses on the area with objects in the feature map and ignores
its specific category. Incorporating into the base layer fine-tunes the model’s ability to
predict the spatial location of objects in an image accurately.

Joint learning of content and position: The core of our method is the object detection
decoder based on the DETR-like model. By querying, object queries are used to query the
feature map and learn to obtain the information required for the object detection task, as
self-attention_D and cross-attention_D blocks are shown in Figure 2.

In DETR paradigm architecture, the decoder’s information query functions of posi-
tioning and classification are always integrated. In traditional object detection paradigms,
merging these tasks often results in a precision or recall trade-off. The object detection task
will also be more complicated than a single positioning and classification task. Therefore,
by using DETR’s decoder as the base layer of our model, we leverage the localization
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decoder and classification decoder as auxiliary layers, allowing us to treat localization
and classification as separate but intertwined tasks. This approach ensures that the model
understands the fundamental properties of object detection from the beginning and makes
the model better interpretable.

The synergy of these three learning processes forms a cohesive end-to-end training
workflow that follows a progression from simple to complex, ensuring that every aspect of
object detection is addressed with precision and depth. The following subsections delve
into the complexities and design philosophies underpinning each stage.

3.2. Content Learning Stage

In the development of object detection tasks, a richer understanding of image content
becomes crucial. Our proposed content learning phase explicitly addresses this requirement.
Although existence detection methods [8,10–12,14] focus on the spatial representation of
objects, including no clear distinction between classification and localization within DETR-
like models, the complex details of objects (including their unique features, textures, and
relationships) are often not fully explored. Our approach aims to fill this gap by deploying
a content query process.

Attention is a key mechanism in Transformer [7]. It operates on queries (Q), keys (K),
and values (V), and it is defined as follows.

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (1)

where dk is the dimension of queries and keys.
As shown in Figure 2, the content learning stage is similar to the primary object

detection stage. Also, it utilizes both the self-attention layer and cross-attention layer,
which we define as sel f _attention_c and cross_attention_c. This stage is to separate the
classification in object detection into a single content learning task. Its core goal is not
only to identify objects in the image but to conduct more in-depth research and provide a
detailed understanding of its attributes (but does not include its specific location).

The encoder processes the image to achieve this, producing high-dimensional image
features, denoted as T. At the same time, we deploy a set of learnable queries. Unlike
traditional queries, these queries are mapped exclusively to the content space and are
therefore called content queries Qc. Their main functionality revolves around extracting
the intricate details of an object independent of its spatial positioning.

However, to ensure that content queries can effectively focus on image content during
the cross-attention stage, we introduce the concept of “fake location ground truth” Qp f . It
acts as a guide, providing auxiliary location information for content queries. But crucially, it
remains irrelevant to training optimization, effectively blocking gradients. At this stage, we
treat the latter as actual bounding box parameters by combining content queries with fake
location ground truth elements. This strategy allows for a scenario where the model extracts
underlying content details, especially object categories, assuming the location is known.

This process can be represented as follows.

Qc1 = s_ attn _c(Qc) (2)

Qp f = detach
(
Qp1

)
(3)

Qc2 = c_attn_c
(

Qc1 + Qp f , T, T
)

(4)

where s_attn_c and c_attn_c mean the self-attention and cross-attention layers of the content
decoder. Qp f denotes the fake position queries extracted from position queries Qp.

Therefore, the output Qc2 of this stage is considered to be the object category in the
known region.
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3.3. Position Learning Stage

While content recognition is crucial in fully understanding objects, accurate object
localization remains the cornerstone of any effective object detection system, and learning
how and obtaining more accurate location information is also a highlight of the improve-
ment plans of other DETR-like models [10,11]. The position learning stage aims to improve
the accuracy of spatial recognition and localization of objects in images, focusing on un-
derstanding the location of objects in the image. As shown in Figure 2, similar to the
content learning stage, our location learning stage follows a structure that includes self-
attention and cross-attention mechanisms. However, its core difference from the content
learning stage is that it focuses exclusively on the spatial properties of objects without any
interference from content details.

The inputs to this stage are high-dimensional image features T from the encoder
and a set of learnable positional queries Qp, which are aimed at finding and refining the
spatial coordinates of objects within the image. To further guide these location queries, we
introduce the concept of “fake content ground truth” Qc f as auxiliary category information.
However, similar to its counterpart in the content learning phase, Qc f remains irrelevant to
training optimization and only serves as a guide.

Essentially, by mixing Qp with Qc f , the latter is treated as the actual category label.
Therefore, this stage effectively localizes multiple known objects by querying the location
of that object in the image features under the assumption that a specific object exists in the
known image.

Similarly, for these location queries to perform optimally, they need to undergo a
self-attention mechanism that allows each query to adaptively adjust its focus based on
insights gleaned from other queries, which we defined as sel f _attention_p. This adaptive
refinement helps reduce overlap and redundancy.

The following steps involve the cross-attention mechanism, defined as cross_attention_p.
Here, refined location queries Qp are fused with fake content labels Qc f and are then
interacted with image features T, allowing each query to focus on a specific spatial region
of the image. This interaction brings sharper spatial focus, ensuring higher accuracy in
predicting bounding boxes.

After the cross-attention stage, similar to the object detection stage, the location query
is transformed to produce predictions of object space boundaries. These predictions are
represented in the form of bounding box coordinates.

The procedural steps can be summarized by the following equation:

Qp1 = s_ attn _p
(
Qp

)
(5)

Qc f = detach(Qc1) (6)

Qp2 = c_attn_p
(

Qp1 + Qc f , T, T
)

(7)

Therefore, the output Qp2 of this stage is used to locate the area where objects exist in
the image features.

3.4. Joint Cotent and Position Learning Stage

We describe object detection as a joint learning process of localization and classification.
This stage builds on the structural framework of other decoders similar to the DETR
model [10,11,14], employing a collaborative learning approach to localize and classify
objects in images, that we defined as decoder_D, which includes self-attention_D and
cross-attention_D, as shown in Figure 2.

The encoder first processes the input image and generates a set of high-dimensional
image features, denoted as T. Meanwhile, the decoder uses several predefined object
queries Q as input, each Q potentially corresponding to an object in the image. These
queries are abstract representations, and they are converted into localization as a bounding
box and classification of object category predictions.
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Self-attention mechanism: Object queries undergo a self-attention mechanism before
interacting with image features. This step allows queries to be correlated with each other,
ensuring that predictions do not overlap or become connected in the feature space. We
can also argue that allowing queries to talk or communicate with each other creates an
environment for them to interpret the scene together.

Cross-attention mechanism: After self-attention, cross-attention is calculated between
the output queries as Q, and the image feature T. This process allows each query to focus
on a specific area of the image, focusing on particular details, textures, patterns, and also
spatial features. The result of this mechanism is a refined set of features for each query,
tuned and predictively prepared for their respective focus areas.

Prediction phase: As features are enriched, each query undergoes a series of trans-
formations to predict the location and classification of its corresponding potential object.
Locations are bounding boxes with coordinates, and classifications are probability dis-
tributions over predefined object categories. During the inference phase, our network
structurally uses detection outputs to predict outcomes. However, the detection output
utilizes a fusion mechanism to integrate information from the content output and position
output. Specifically, the content output provides class information about detected objects,
while the location output provides spatial information about the location of these objects.
The detection output then combines these two pieces of information to produce a final
confidence score and bounding box for object detection. This fusion approach ensures
that the model can utilize the complete information learned through separated learning,
content, and location information during inference to improve detection accuracy.

This collaborative learning mechanism ensures that with each iteration, the model can
better recognize the exact location and category of objects in the image. Over time, through
backpropagation and optimization routines, learnable object queries fine-tune themselves
to match real-world objects, ensuring accurate object detection.

This stage is the decoder process of the DETR-like model. During the training pro-
cess, the queries used for positioning and classification are fused and participate in the
calculation to achieve basic object detection tasks. The use mechanism of query and the
decoding mechanism of queries in this process have laid the foundation for introducing
more detailed subtask implementation.

3.5. Training Strategy and Loss Computation

We adopt an end-to-end training strategy, meaning that all components (including
object detection, content learning, and location learning) are trained simultaneously, en-
abling queries to detect objects in images while enhancing object location and category
awareness. In the content learning stage, the model focuses on the image content to ensure
that the content query can capture the content information of the object. While in the
position learning stage, the model focuses on the possible object regions in the image,
ensuring that the position query can accurately capture the position information of the
foreground region.

Considering that our model has to handle multiple tasks, we use a multi-task learning
loss function to train the model. Following the approach of DETR-like models, we first find
the best bipartite match between the predictions produced by a detection query and the
ground truth and design a loss function accordingly. According to our task design, the loss
function mainly consists of object detection loss, content loss, and positional loss. Among
them, detection loss also includes positioning loss and content loss. The three outputs of
the model correspond to object query, content query, and location query. We will optimize
each output according to these three losses and adjust the proportion of each loss to obtain
the best performance. Specifically, the localization loss combines L1 loss and GIOU loss to
quantify the difference between predicted and ground truth bounding boxes. In addition,
the classification loss uses focal loss. Therefore, the loss function is formed as follows:

Ltotal = αLdetection + βLcontent + γLposition (8)
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where α, β, and γ are the weights of each loss, which is used to adjust the importance
of each loss in the overall loss. The choice of these weights is usually tuned based on
performance on the validation dataset. After experimental verification, we set α, β, and γ
to 2, 2, and 1, respectively. For the specific hyperparameter settings in detection, we follow
the settings in DAB-DETR [10].

4. Experimental Results
4.1. Datasets

We evaluate with the COCO 2017 object detection dataset, split into train2017 and
val2017. MS-COCO is composed of 160K images with 80 categories. These images are
divided into train2017 with 118K images, val2017 with 5K images, and test2017 with
41K images. Following the common practice [15], we report the standard mean average
precision (AP) results on the COCO validation dataset under different IoU thresholds and
object scales.

4.2. Implementation Details

Following the approach of DAB-DETR [10], we utilize various ResNet [24] models,
which have been pre-trained on ImageNet, as our backbone. Regarding hyperparameters,
we use the same values in DAB-DETR’s configuration by employing a 6-layer Transformer
encoder and a 6-layer Transformer decoder with a hidden dimension of 256.

Our decoder includes three self-attention layers and three cross-attention layers as a
block, corresponding to object detection, content learning, and position learning, as shown
in Figure 2.

4.3. Object Detection Performance Comparison

Our proposed approach is of plug-and-play type. Therefore, we use our proposed
method to insert several popular DETR-like models and compare them to evaluate the
effectiveness of our method in the object detection task.

Our goal is to observe and validate the effectiveness of our model in improving the
performance of object detection tasks and the role of its separated components in explaining
the object detection task during model decoding.

Table 1 shows the comparison results between various DETR-like models after using
our method. For a fair comparison, we use the same parameter settings as each method,
and the difference only exists in whether to insert our proposed subtask module.

Table 1. Results for our method on baselines and comparison between baselines. Each one has the
same settings as the baseline.

Model Epochs AP AP50 AP75 APS APM APL Params

DETR [8] 500 42.0 62.4 44.2 20.5 45.8 61.1 41 M

DAB-DETR [10] 50 42.2 63.1 44.7 21.5 45.7 60.3 44 M
+Ours 50 42.8 (0.6 ↑) 63.3 (0.2 ↑) 45.4 (0.7 ↑) 22.4 (0.9 ↑) 46.1 (0.4 ↑) 61.1 (0.8 ↑) 45 M

60 42.9 63.5 45.6 23.2 46.3 60.9 45 M
70 43.1 63.5 45.9 23.7 46.3 61.1 45 M
80 43.2 63.8 46.3 23.5 46.4 61.4 45 M
100 43.4 63.9 46.4 24.1 46.3 62.1 45 M
110 43.2 63.8 46.1 24.1 46.1 61.9 45 M

DAB-Deformable-
DETR [10] 50 46.9 66.0 50.8 30.1 50.4 62.5 44 M

+Ours 50 47.8 (0.9 ↑) 67.1 (1.1 ↑) 51.3 (0.5 ↑) 30.7 (0.6 ↑) 51.0 (0.6 ↑) 62.6 (0.1 ↑) 47 M

DINO [12] 36 50.9 69.0 55.3 34.6 54.1 64.6 47 M
+Ours 36 51.2(0.3 ↑) 69.0(0.0 ↑) 55.8(0.5 ↑) 34.4(0.2 ↓) 54.5(0.4 ↑) 64.7(0.1 ↑) 51 M
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Our approach gives superior performance compared with each model, like in DAB-
DETR, with a 0.6% improvement in Average Precision (AP) compared with the baseline.
Specifically, for small objects, our method attains a 0.9% enhancement in performance,
indicating that our approach offers improved detection efficacy on small objects.

This kind of comparison validates our approach’s effectiveness and points out areas
of potential improvement that simplify the model’s task internally. Through this rigorous
analysis, we can identify the strengths of our model and areas where further refinements
could be beneficial.

4.4. Ablation Experiments

We conduct a series of component ablation experiments to gain insight into the contri-
bution of individual components in our proposed method to the performance.

Baseline model: We first need to determine the baseline model, which is trained
without any of our specific added components, that is, the original model. For example, if
we conduct a series of ablation implementations based on DAB-DETR, the baseline model
is the DAB-DETR model. This provides a reference point that allows us to evaluate the
performance improvement of each component.

Single component addition:
Baseline plus content learning: this configuration only added a content learning phase

to the baseline model.
Baseline plus position learning: we add a position learning phase to the baseline

model in this setting.
Baseline plus content learning and position learning: this allows us to observe per-

formance changes when the two main components are present simultaneously and thus
evaluate their synergy.

We trained and evaluated the model in each configuration, recording key performance
metrics, as shown in Table 2.

Table 2. Ablation experiments of components.

B B + C B + P B + C + P AP AP50 AP75 APS APM APL

a
√

42.2 63.1 44.7 21.5 45.7 60.3
b

√
42.1 63.5 44.3 22.1 45.8 60.4

c
√

42.5 63.6 44.9 22.5 46.0 60.6
d

√
42.8 63.3 45.4 22.4 46.1 61.1

The results show that the content and position learning stages are necessary for
performance improvement, where position learning contributes most significantly. Through
these ablation experiments, we confirm the effectiveness and necessity of the component
design of our method.

4.5. Attention Visualization of Decoders

To more intuitively understand the decoding mechanism of feature maps by different
decoders in our model, we followed DETR attention visualization methods [10,25]. Also,
we conducted a series of attention map visualization experiments. This method uses a
‘hook’ to hook the attention weights of the decoder layer and then visualizes each detected
object. Through its visualization results, we can analyze which part of the image is being
looked at by the decoder’s object queries. The part where a query is looking at can acquire
more attention weight, and then the model uses this to predict specific bounding boxes and
classes. We use this visualization method to observe which parts of the image the queries
indicated by our different decoders are looking at simultaneously.

Cross-attention visualization of DAB-DETR: We first show cross-attention maps in the
original DAB-DETR model, as shown in Figure 3a. This provides a baseline for comparison,
revealing the focus of the decoder’s attention without any specific improvement component.
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Cross-attention visualization of content learning: We first analyzed the cross-attention
weight in the content learning stage. As shown in Figure 3b, for content query, we can see
that the model mainly focuses on the core part of the object in the image to capture the
object content and ignores the background.

Cross-attention visualization of position learning: In the visualization of the position
learning stage, as shown in Figure 3, second row, the model’s attention is more focused on
the boundary area of the object, and relatively less attention is paid to the object’s interior.
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This proves that the model successfully learns the location information of the object at
this stage.

Cross-attention map visualization of joint content and position learning: Figure 3d
is the decoder attention map that combines the content learning and position learning
stages, revealing the synergistic effect when these two components work at the same time
and their impact on the focus of attention and target detection performance of the original
model’s detection queries.

Object detection visualization: We also show the object detection results predicted by
the decoder, outlined by a blue rectangle, as shown in Figure 3e. This provides an intuitive
display of results. At the same time, the queries that predict the results correspond to the
previous attention map. For example, in the query that predicts ‘sports ball’, the area of
focus is shown in the first attention map in the first four rows.

From the above visualizations, we can see that although all decoders use the cross-
attention mechanism, they pay attention to different parts of the image at different learning
stages. This further proves that the attention distributions of the three decoders we designed
are different when dealing with other tasks and are consistent with their design goals.

4.6. Experimental Results on Small Objects

In real-life scenes, detecting small objects in images is challenging because the number
of pixels is limited, details are often difficult to capture, and there are higher requirements
for image understanding.

The proposed model learns and understands images’ content from multiple aspects.
Through the performance comparison of Table 1, we can see that one of the achievements
of our proposed model is that compared with the baseline, its performance in detecting
small objects has been improved and gives better enhancement in the context of the COCO
dataset. Figure 4 shows the comparison results of our model and baseline methods on
images containing small objects from the COCO dataset.
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The detection results in Figure 4 show that our model provides better detection and
localization results for small objects on the COCO dataset. At the same time, the baseline
method [10] either misses or inaccurately locates some of these objects, such as those in
the red box in Figure 4b. Compared with baseline results, our method better detects small
objects in the red box area where smaller objects exist without specifically training or
fine-tuning the small object dataset. Usually, the detection of small objects requires a better
understanding of the details of the image [23], so by analyzing the above small object
detection results, our model has a better understanding of the content and details of the
image, which is due to our auxiliary independent learning and emphasis on the content
information and location information of the image. Also, reflecting the separate stages of
content learning and location learning in our model (as described in Sections 3.3 and 3.4)
enhances the model’s ability to capture complex details of the object.

Our results on the COCO dataset show the promise of our improved method to
enhance small object detection, as we believe it has multiple layers and a deeper under-
standing of image details. While we did not train specifically on a dedicated small object
dataset, nor were we designed to generalize across a variety of datasets, our results demon-
strate the model’s potential in the context in which it was trained. Future work could study
its adaptability and efficacy on datasets dedicated to small object detection or investigate
its design for generalization capabilities.

5. Conclusions

In this study, we propose an innovative multi-component object detection technique
that seamlessly integrates the joint learning stage of localization and classification, the
content learning stage, and the location learning stage within the DETR model frame-
work. Our approach divides object detection into three subtle stages. Starting with joint
learning of positioning and classification lays a strong premise for in-depth exploration
of subsequent content and accurate learning of object locations. We are introducing a
decoder structure designed explicitly for understanding object content information and
using an independent content learning mechanism to enable the model to capture objects’
complex details and characteristics meticulously. Furthermore, our uniquely designed
position learning architecture emphasizes capturing precise object locations, ensuring the
model can identify object locations in multi-faceted scenarios. Through testing on standard
benchmarks, our proposed method consistently exhibits excellent performance in object
detection tasks, significantly outperforming established baselines. We believe our approach
reveals potential improvements in object detection and demonstrates the effectiveness of
refined research directions in this area.

However, we acknowledge that our method, like all research, has limitations. First,
although our model performs well in benchmarks, its generalization to multiple datasets
and to real-world scenarios needs further exploration. Then, there is also the issue of
computational efficiency in processing datasets, especially large-scale datasets, because our
multi-stage learning mechanism can be resource-intensive. Moving forward, we aim to
address these limitations by optimizing our model’s computational architecture, thereby
enhancing its efficiency. We will also investigate the application of our method to broader
datasets and real-world scenarios to ensure robustness and versatility. Additionally, we
plan to delve into integrating unsupervised learning techniques to improve the model’s
performance in less controlled environments, paving the way for more generalizable object
detection systems. In conclusion, our research focuses on more refined and detailed object
detection strategies, providing new perspectives for improving accuracy and reliability in
this field.
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