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Abstract: Achieving the accurate and efficient monitoring of forests at the tree level can provide de-
tailed information for precise and scientific forest management. However, the detection of individual
trees under planted forests characterized by dense distribution, serious overlap, and complicated
background information is still a challenge. A new deep learning network, YOLO-DCAM, has been
developed to effectively promote individual tree detection amidst complex scenes. The YOLO-DCAM
is constructed by leveraging the YOLOv5 network as the basis and further enhancing the network’s
capability of extracting features by reasonably incorporating deformable convolutional layers into
the backbone. Additionally, an efficient multi-scale attention module is integrated into the neck to
enable the network to prioritize the tree crown features and reduce the interference of background
information. The combination of these two modules can greatly enhance detection performance. The
YOLO-DCAM achieved an impressive performance for the detection of Chinese fir instances within a
comprehensive dataset comprising 978 images across four typical planted forest scenes, with model
evaluation metrics of precision (96.1%), recall (93.0%), F1-score (94.5%), and AP@0.5 (97.3%), respec-
tively. The comparative test showed that YOLO-DCAM has a good balance between model accuracy
and efficiency compared with YOLOv5 and advanced detection models. Specifically, the precision
increased by 2.6%, recall increased by 1.6%, F1-score increased by 2.1%, and AP@0.5 increased by
1.4% compared to YOLOv5. Across three supplementary plots, YOLO-DCAM consistently demon-
strates strong robustness. These results illustrate the effectiveness of YOLO-DCAM for detecting
individual trees in complex plantation environments. This study can serve as a reference for utilizing
UAV-based RGB imagery to precisely detect individual trees, offering valuable implications for forest
practical applications.

Keywords: YOLOv5; individual tree detection; planted forests; Chinese fir; deformable convolution;
attention mechanism

1. Introduction

Planted forests constitute an essential component of forest resources, covering ap-
proximately 294 million hectares and representing a 7% area of global forests [1], playing
important roles in ecosystem functions, including energy supply, climate regulation, and
carbon sequestration [2–4]. In planted forests, it is imperative to accurately ascertain tree
density, identify their positions, and analyze their distribution patterns [5,6]. Such inven-
tory information is important for evaluating the state of forests [7] and serves as a critical
prerequisite for practicing forest management and developing sustainable forestry. Hence,
individual tree detection (ITD) has become a crucial part of forest inventory, arousing
wide concern.
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Achieving ITD through a field survey is arduous and time-consuming, making it
unsuitable for large tracts of land despite offering relatively dependable inventory data.
A necessity arises for developing cost-effective, accurate, and large-scale remote sensing
methods for identifying and locating trees in forested regions. Several approaches em-
ploying diverse remote sensing data sources have emerged in response to this challenge.
For instance, active remote sensing, based on laser scanning, allows for the acquisition
of the detailed three-dimensional spatial information of forests, enabling high-precision
ITD. However, from a cost perspective, it is exorbitant costing, impeding its large-scale
application [8,9]. A high-resolution spectral image is readily available either cheaply or
freely, but from an operational perspective, the resolution and accuracy of the data remain
highly questionable concerning identifying and locating relatively clustered individual
trees in forests [10,11].

In recent years, the utilization of advanced UAV remote sensing and computer vision
techniques has presented promising potential for ITD through the use of RGB images
captured by UAVs. Several approaches have been carried out for ITD, including local
maxima [12], watershed segmentation [13], region growing [14], and support vector ma-
chines [15]. The utilization of conventional methods for ITD is constrained by various
factors, such as the limited use of depth feature information, the need to readjust param-
eters for different scenarios, and high time complexity due to traversing and calculating
the whole image. By contrast, detecting individual trees using deep learning has emerged
as a promising research area, as its advantages in the automatic learning of complicated
and abstract features result in high detection accuracy and adaptability to different data
distributions and scene changes [10,16,17].

An object detector based on deep learning extracts high-level semantic features from
input raw data and assigns the detected object with a bounding box and corresponding
category in the image. A fundamental method classification can be established based on
whether it generates candidate boxes. One is namely two-stage models, such as R-FCN [18]
and Faster R-CNN [19], executing ITD with candidate boxes. The other is namely the one-
stage model, with typical models including SSD [20] and YOLO [21]. The former proposes
the regions that may contain objects. Then, it classifies and predicts the boundary boxes of
these regions, which can achieve high detection accuracy but is limited by a slow inference
speed. The latter directly classifies the entire image and boundary box prediction to achieve
target detection by applying predefined anchor boxes while maintaining accuracy to achieve
a high speed. Santos et al. [22] conducted a comparative assessment of three object detection
models to identify individual trees. The two-stage Faster R-CNN model suffered from
the highest computational cost and reasoning speed, while the one-stage model achieved
superior performance in both detection accuracy and speed. The conventional method for
ITD primarily focuses on predicting the location and category of trees. Recently, researchers
extended this approach by segmenting each tree crown at the pixel level (i.e., detect all
target instances in the image and label pixels belonging to its category for each instance).
Sun et al. [23] utilized the two-stage Cascade Mask R-CNN model to detect the number
of trees and delineate each tree crown across a vast sub-tropical megacity, achieving an
R2 value of 88.32%. Mo et al. [24] employed a lightweight single-stage YOLCAT model
to segment the Litchi Canopy, attaining an AP of 96.25% with real-time detection speed.
However, individual tree crown segmentation demands an extensive amount of pixel-level
labeling data for training, which consumes considerable manpower and time. Furthermore,
the computational complexity and accuracy of this model are concerning.

In this study, the focus is on one-stage models, specifically YOLO-type models for
ITD. These models have been reported to attain comparable levels of accuracy while also
outperforming two-stage detection models in terms of reasoning speed [22,25]. Various
advancements have been implemented in the YOLO family to enhance detection speed and
accuracy, such as YOLOv1-v8 [21,26–31], showing promising results for ITD. Lou et al. [32]
employed the YOLOv3 network to detect loblolly pines, resulting in a remarkable precision
of over 93%. Chen et al. [33] introduced an improved YOLOv4 model for the detection of
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bayberry trees. Dong et al. [34] developed an improved YOLOv7 model, incorporating
SimAM attention and SIoU modules, attaining a 90.34% mAP@0.5 in detecting Metasequoia
glyptostroboides tree crowns. Wardana et al. [35] evaluated the performance of YOLOv8 in
detecting oil palm trees, achieving an accuracy of 98.5%. In the field of forestry, YOLOv5
has been widely employed to address various tasks related to individual tree detection [10],
forest fire detection [36], and forest pest detection and control [37], consistently deliver-
ing a strong performance. Compared to other YOLO versions, YOLOv5 has achieved
high-accuracy detection alongside a fast inferencing speed and low model complexity.
Additionally, this model is a lightweight network with smaller weight files while taking
significantly less time for model training. It is suitable for UAV inspection missions and can
also be deployed on edge computing devices and cloud servers for real-time detection [10].
Therefore, we chose the YOLOv5 version for the detection of individual trees.

While the prevailing YOLOv5 network has demonstrated a commendable performance
in low-density and uniform planted forest scenarios [38,39], it faces limitations when
applied to planted forests characterized by high density, substantial tree crown occlusion,
and a complicated background [40]. Within intricate environments, the feature extraction
capability of YOLOv5 in the backbone module, while effective, can be considered relatively
simplistic, potentially leading to the omission of crucial information. Additionally, the
hierarchical feature extraction function employed by the network unavoidably compresses
information, increasing the likelihood of object–background confusion. Consequently, the
performance of YOLOv5 no longer meets the requirements of ITD, as it is inclined to false
detection and missed detection.

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is one of the most important
plantation tree species in China. Its planted area reaches 9.87 million hectares, ranking first
in all dominant tree species’ plantations [41]. It is characterized by a high timber yield,
exceptional wood quality, and significant ecological functions [5,41]. The tree-level location
information is important for Chinese fir management practices, generally obtained using a
manual inventory. To the best of our knowledge, there have been relatively few studies
utilizing the object detection model for identifying individual Chinese fir trees within UAV
RGB imagery, and its potential remains largely unexplored. Moreover, previous research
on individual tree detection has primarily concentrated on regular and homogeneous
plantation forest environments, lacking the inclusion of multiple complex plantation forest
scenes concurrently.

To address these aforementioned challenges, we developed an enhanced YOLO model
integrating deformable convolution and attention mechanism (YOLO-DCAM) to achieve
the accurate detection of individual Chinese fir trees in diverse complex natural environ-
ments. Our main aims are as follows. (1) Constructing a comprehensive dataset for the
detection of individual Chinese fir trees within a diverse range of planted forest environ-
ments, including high density, crown overlap, and complex background. This dataset
was utilized to train the detection model, enhancing its robustness and adaptability across
various environmental scenarios. (2) Employing deformable convolution in the backbone
of the YOLOv5 network to enhance target feature extraction capabilities and augment the
model’s detection accuracy in complex scenes. (3) Introducing a high-efficiency attention
module into the neck of the YOLOv5 network, enabling a heightened focus on target
information and reducing redundant information with background, which mitigates issues
related to missed detection and false detection.

Overall, this study aims to develop an enhanced YOLO model for the detection
of individual trees in diverse planted forest scenes based on the highly adaptable UAV
platform and RGB imagery to enable a timely, cost-effective, and precise ITD, thus aiding
intelligence forest management practices.
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2. Materials and Methods
2.1. Framework of Study

The schematic representation of our study’s framework is delineated in Figure 1.
(1) Data preparation. We employed UAV to capture a Digital Orthophoto Map (DOM),
subsequently slicing it into 640 × 640-pixel subblocks. Instances were meticulously an-
notated to construct the ITD dataset. (2) Model training. The training and validation
sets were utilized to iteratively train and fine-tune the model parameters, culminating in
the acquisition of the optimal model. (3) Model evaluation. An ablation experiment was
conducted to compare YOLO-DCAM’s performance against the baseline YOLOv5. Then,
a comprehensive assessment was conducted, benchmarking our model’s efficacy against
eight mainstream single-stage detection models. Finally, we used three additional UAV
RGB imagery subblocks sized at 100 × 100 m to further assess the model’s robustness.
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Figure 1. Workflow of detecting individual trees using UAV imagery and object detector.

2.2. Study Area

The study area was carried out in the Shanxia experimental forest farm (SEFF), Jiangxi
Province, China (114◦30′E, 27◦30′N). SEFF is mainly composed of low hills. The climate
of SEFF belongs to a subtropical monsoon humid type, with an average annual temper-
ature of 17.9 ◦C and annual precipitation of 1593.7 mm, concentrated from April to July.
Furthermore, the vegetation types of SEFFs are predominantly occupied by coniferous and
mixed forests, encompassing a diverse range of tree species, including Chinese fir, Pinus
massoniana, Schima superba, etc. In SEFF, Chinese fir exhibits extensive distribution in
the whole forest farm, covering a variety of canopy density (i.e., the extent of vegetation
cover in the forest) types, including low, medium, and high levels, as well as different
developmental stages, including young, middle-aged, and mature forests.

2.3. UAV Data Acquisition

The RGB images were acquired using a DJI M210 UAV, which has a take-off weight
of 3.84 kg. The UAV system was equipped with a consumer-grade visible light camera
Zenmuse X7 with a 24 mm prime lens. Flight missions were carried out in October 2020
with sunny weather. The imagery data were acquired at an approximate flight height of
110 m with both forward and lateral overlap set at 80%. All the images were put into
Agisoft Metashape to generate the DOM of the study area with a 3 cm spatial resolution,
processed based on the standard photogrammetric processing workflow. This includes
image alignment, dense cloud creation, DEM (the Digital Elevation Model), and DOM
generation, etc. The DOM of the SEFF (refer to Figure 2) contains features such as vegetation,
buildings, and bare land. Our primary focus is on the single-class detection of Chinese fir in
a comprehensive natural environment. Therefore, a wide range of subsets on the orthophoto
map (refer to Figure 2C) containing various planted forest environments were selected
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manually to produce the dataset, according to the guidelines of the subcompartment
information table provided by forest farm staff, the visual interpretation of DOM, and
field investigation.
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in (C). (A) The site in (C) may contain multiple cases of (a–e).

2.4. Dataset Preparation

The image data were partitioned into subblocks measuring 640 × 640 pixels, which not
only ensured the inclusion of an appropriate number of Chinese fir trees within each image
but also prevented overload hardware limitations. Furthermore, annotating the target object
within each image is crucial for model training, validation, and testing. Manual annotation
was performed using the annotation tool LabelImg (https://github.com/heartexlabs/
labelImg (accessed on 5 August 2023)) to delineate rectangular bounding boxes around
instances of individual Chinese fir trees.

Then, statistical analysis was conducted on the anchor boxes encompassing Chinese
fir tree crowns (refer to Figure 3). Figure 3A illustrates the anchor box information of an
annotated tree crown instance. For an image with a 640 × 640 pixel size, it is denoted
as Ih and Iw for its height and width, respectively. For an anchor box within the image,
its height and width are referred to as Ah and Aw, with its center coordinates denoted as
P = (x, y). And height and width in Figure 3B represent the proportion of the tree crown
anchor box to the image (i.e., height = Ah/Ih, width = Aw/Iw). Based on the statistical chart,
the center point positions (i.e., (x, y)) of anchor boxes exhibit an approximately nonuniform
distribution, which is primarily attributed to the spatially heterogeneous distribution of
trees. The width and height of anchor boxes are primarily concentrated around (0.15, 0.15)
(i.e., the relative proportion of image size), displaying a trend akin to normal distribution,
indicating that the dataset contains tree crowns of different sizes.

https://github.com/heartexlabs/labelImg
https://github.com/heartexlabs/labelImg
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The resulting Chinese fir ITD dataset comprised 978 images, all sized at 640 × 640 pixels.
The whole dataset contained four environment scenarios, and a detailed description is pro-
vided in Figure 2 and Table 1. These labeled individual tree samples in each scenario were
divided into sub-training, sub-validation, and sub-testing sets using a random allocation
ratio of 6:2:2. Recent research indicates that models trained using diverse heterogeneous
datasets exhibit enhanced generalization and improved performance compared to models
trained solely on a single homogeneous dataset [10]. Consequently, we amalgamated
data from four scenarios to create a comprehensive dataset for training, validating, and
evaluating the model’s performance.

Table 1. Data characteristics of the individual Chinese fir tree detection dataset.

Dataset Canopy
Density

Tree
Species

Ratio of
Non-Target

Tree Species

Image
Number

Chinese Fir
Instance Description

Scene 1 0.55–0.70 Single-class <2% 138 2501
Pure Chinese fir forest with low density
and uniform distribution. Corresponds to
Figure 2a.

Scene 2 0.70–0.95 Single-class <5% 310 8091
Pure Chinese fir forest with high density,
clustered, or random distribution.
Corresponds to Figure 2b,c.
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Table 1. Cont.

Dataset Canopy
Density

Tree
Species

Ratio of
Non-Target

Tree Species

Image
Number

Chinese Fir
Instance Description

Scene 3 0.65–0.90 Multi-class 45% 284 4288
Mixed forest and non-target tree species
can be viewed as background information.
Corresponds to Figure 2d.

Scene 4 0.45–0.65 Multi-class 30% 246 5559

Low density and random distribution
Chinese fir forest with multiple tree species
and bare ground as background
information. Corresponds to Figure 2e.

2.5. The YOLO-DCAM Network
2.5.1. YOLOv5 Network Baseline

The YOLOv5 network demonstrates exceptional performance as an object detector,
exhibiting remarkable capabilities in achieving high detection accuracy while maintaining
a rapid inference speed. The YOLOv5 architecture encompasses a collection of five sub-
versions, each characterized by a consistent underlying framework yet distinguished by
variations in network widths and depths, which influence the accuracy and efficiency
of detection. The underlying framework of YOLOv5 consists of three key components,
namely the backbone, neck, and head. The backbone serves to extract features from
input data by employing a sequence of operations, including Cross Stage Partial (CSP)
networks [42], convolutional (Conv) blocks, and a Spatial Pyramid Pooling Fusion (SPPF)
mechanism. These operations facilitate the extraction and integration of informative
features, which are subsequently passed to the neck module. The neck is used for refining
and enhancing features extracted from the backbone by a series of operations, including
convolution, sampling, and feature fusion. The neck aggregates features from various
network levels by employing horizontal connections and a top-down bidirectional fusion
process, encompassing both low-level spatial details and high-level semantic information,
which is achieved by applying a functional pyramid structure [43]. This effective fusion
technique allows for capturing coarse-grained and fined-grained features at diverse levels.
The head performs final predictions for the object’s locations and class by integrating
multi-level features from the backbone and neck modules.

2.5.2. Overview of YOLO-DCAM Network Architecture

A detailed network structure of YOLO-DCAM is illustrated in Figure 4. For the back-
bone of YOLO-DCAM, a CSP-DCN module is reasonably embedded, which is constructed
by leveraging the CSP module as a baseline and assembling the deformable convolution
layer. The CSP-DCN is designed to effectively enhance the feature extraction capability.
In the neck part, an efficient attention module with parallel, multi-scale, and cross-spatial
learning methods is rationally added to capture local and global attention information
effectively. This addition focuses the model on target features, reduces redundancy, and
mitigates challenges related to the missed and false detection of individual trees in com-
plex scenes.

2.5.3. Improved Backbone with Deformable Convolution Network

The conventional convolutional method utilizes kernels of regular size and shape,
thereby exhibiting strong feature extraction capabilities for objects of regular geometry.
However, their efficacy of feature extraction potential is probably limited when confronted
with irregularly shaped objects. The deformable convolutional network v2 (DCN) [44] is
an advanced convolutional operation that incorporates a learnable offset variable to every
sampling point within the convolution kernel, which means a wide and adaptive receptive
field. This feature enables the local random sampling of the input feature map, surpassing
the constraints imposed by regular grid point sampling in conventional convolution. By
adaptively changing the current position of the convolution operation, DCN exhibits im-
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proved adaptability to diverse target shapes and sizes, enhancing the extraction capability
of fine-grained and high-level semantic features.
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Figure 4. The architecture of the YOLO-DCAM network.

The operational process of deformable convolution is displayed in Figure 5A. First,
for a convention kernel with N sampling points, we define wi as the weight for the i-th
sampling point on the input feature map x; and pi is the pre-defined offset for the i-th
sampling point location. For example, in a 2d convention kernel with a 3 × 3 size and
dilation of 1, N is 9 and pi ∈ {(−1,−1), (−1, 0), . . . , (1, 1)}. The process using the standard
convolution on the input feature map x to yield y(p) (i.e., the feature value on position p of
the output feature map y) can be defined as

y(p) =
N

∑
i=1

wi·x(p + pi) (1)

For DCN, the operation can be expressed as

y(p) =
N

∑
i=1

wi·x(p + pi + ∆pi)·∆mi (2)

∆pi is the learnable location offset for the i-th sample point, which adjusts the range
of the receptive field. ∆mi is the learnable modulation scalar used to modulate the per-
ceived amplitude for the input feature map x. ∆pi and ∆mi are obtained via an additional
convolution layer over the input feature maps x. The convolution kernel of the additional
convolution layer is of the same spatial resolution and dilation as the current convolutional
layer. It outputs 3N channels, of which 2N channels are used to generate the offsets for the
x and y directions, which are then combined into ∆pi.
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Figure 5. (A) Diagram of the deformable convolution operation process. (B) The comparative
outputs of the deformable convolution and standard convolution; (a) the standard convolution
operation; (b–d) examples of deformable convolution operation. (C) Architectures of CSP_DCN and
Bottleneck_DCN. Fin represents the feature map before the operation process; Fout represents the
feature map after the operation process.

The remaining N channels were processed through a sigmoid layer to produce ∆mi.
The sigmoid layer is mainly used to map the value range of ∆mi to [0, 1]. Due to the effect of
fractional ∆pi, the value of x(p + pi + ∆pi) may not correspond to the value in the integer
position of the feature map x. Therefore, the bilinear interpolation is used to calculate
x(p + pi + ∆pi). The bilinear interpolation operation is as follows.

x(p) = ∑
q

G(q, p)·x(q) = ∑
q

g(qx, px)·g
(

qy, py

)
·x(q) (3)

Here, x(p) = x(p + pi + ∆pi), x(q) is the value of the integer position on x, g(a, b) =
max(0, 1 − |a − b|).

The CSP module plays a pivotal role as a fundamental component in the backbone of
YOLOv5, serving the purpose of feature extraction. Hence, we introduced DCN into the
CSP module to enhance its feature extraction capability. However, the utilization of DCN
incurs higher computational complexity compared to standard convolutional operations.
Consequently, we selectively applied DCN solely to the bottleneck of the CSP module to
balance model efficiency and detection accuracy. In the bottleneck, the substitution of DCN
occurs solely in the second convolutional module, as the first convolutional module is em-
ployed for dimensionality reduction, rendering its replacement unnecessary. We refer to this
improved variant as CSP-DCN. Figure 5 demonstrates its detailed structural configuration.

2.5.4. Improved Neck with the Attention Module

The significance of features varies across different positions and channels within
the feature maps generated by the convolution operation. The attention mechanism is
a prevalent detection enhancement strategy; through the assignment of varying weights
to distinct components within the model, it strengthens the extraction of more discrimi-
native feature representation, thereby optimizing the model and enabling more precise
judgments. Nevertheless, standard channel-based and spatial-based attention modules
feed the entire feature layer into the convolutional layer to extract channel and location
information. This approach often results in the heightened consumption of memory and
computational complexity.
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The efficient multi-scale attention (EMA) [45] is a highly efficient approach that em-
ploys a feature grouping strategy for processing input feature data in parallel, thereby
accelerating model training. Meanwhile, it integrates multi-scale parallel subnetworks
alongside a cross-spatial learning approach to capture both short and long-range depen-
dencies. The network representation of EMA is illustrated in Figure 6.
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Firstly, for the input characteristics X ∈ RC×H×W , EMA organizes channel dimensions
into G subfeature groups Xi = [X1, X2, X3, . . . , XG], Xi ∈ RC//G×H×W to enable paral-
lel processing operations. Subsequently, all grouped subfeatures are directed into three
parallel branches to extract attention weights. Two of the branches utilize 1D horizontal
global pooling (X avg pool) and 1D vertical global pooling (Y avg pool) to decompose the
channel information of Xi into two separate processes of one-dimensional feature coding,
aggregating coded features along distinct spatial directions. The two 1D encoded features
are merged along the height direction, followed by an input 1 × 1 convolution for further
processing. This results in the generation of two feature vectors oriented in vertical and
horizontal directions. Subsequently, the sigmoid function is applied to confine the value
range of the vectors within (0,1). The channel-wise attention maps from both directions
within each group are aggregated through multiplication to re-weight the input group
feature maps. The third branch utilizes 3 × 3 convolutional operations to capture local
cross-channel information, expanding the feature space in contrast to a 1 × 1 convolution.
Further, the cross-spatial learning method is adopted to integrate richer features of different
spatial dimensions, resulting in the output of two iterative feature maps. Finally, the two
generated iterative feature maps were concatenated and then fed into the sigmoid function
to generate the final attention weights.

In summary, EAM improves pixel-level attention in high-level feature maps by merg-
ing context information across different scales and enhancing short and long-range depen-
dencies through parallelizing convolution kernels via cross-spatial learning [43].

Integrating the EMA module into the neck enhances its capability to capture both local
and long-distance dependent information, significantly improving the model’s express-
ibility. The combination strategy facilitates a targeted information focus while reducing
attention toward redundancy and background information, which effectively reduces error
detection and missed detection.
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2.5.5. Loss Function

The loss function of YOLO-DCAM includes the following three parts: coordinate loss
L_coord, confidence loss L_conf, and class loss L_cls.

L_total = L_coord + L_conf + L_cls (4)

The CIOU loss function is employed to compute L_coord, which calculates the dispar-
ity between predicted boxes and labels. L_conf employs binary cross-entropy to determine
object presence and prediction accuracy. L_cls assesses the accuracy of predicted object
classes. Since this study focuses on a single-class Chinese fir, the L_class is set to 0.

2.6. Model Evaluation

To evaluate the model performance for ITD, precision, recall, F1-score, and average
precision (AP) metrics are employed for a comprehensive assessment. Precision represents
the rate of accurate detection among all model prediction objects. Recall represents the
ratio between correct predictions and all labels. The F1-score combines precision and recall
to provide a comprehensive evaluation. AP represents the average precision calculated
over different recall rates across varying levels of confidence thresholds equivalent to the
area of the precision–recall curve. In particular, AP@0.5 is computed at an Intersection over
the Union (IoU) threshold of 0.5. Higher values of these metrics indicate superior model
performance. The specific formulas used to compute these metrics are as follows:

Precision =
TP

TP + FP
× 100% (5)

Recall =
TP

TP + FN
× 100% (6)

F1 =
2 × P × R

P + R
× 100% (7)

AP =
∫ 1

0
P(R)dR (8)

where TP represents the count of trees correctly identified and located, which are truly
positive and correctly recognized as such. FP corresponds to the count of falsely identified
individual trees, which are negative but erroneously identified as positive. FN represents
the missed detection of trees. P and R refer to precision and recall, respectively.

2.7. Experimental Settings

In this study, the deep learning network was trained using the PyTorch framework on
a workstation running with a Windows 10 operating system. The hardware environment
configuration consisted of an Intel(R) Xeon(R) W-2265 (3.50 GHz) CPU, NVIDIA GeForce
RTX 3090 (24 GB) GPU, and 128 GB of RAM. The deep learning environment included
Python 3.9, CUDA 11.6, and PyTorch 1.13. In the training stage, the pre-training strategy
is used to initialize all models with a pre-training weight trained on the COCO dataset.
We chose the Adam gradient optimization algorithm for training ITD models. It is known
for its capacity to improve convergence and alleviate diminishing learning rates. The
hyperparameters of momentum, learning rate, and weight decay are set as default values of
0.937, 0.01, and 0.0005, respectively. The training utilized an input data size of 640 × 640 × 3
with a batch size of 16, and the training epochs were set to 300.

Figure 7 shows the change curves of loss, precision, recall, and AP@0.5 during training.
During the initial 100 epochs, the training loss value exhibited substantial fluctuations,
whereas after approximately 100 epochs, it experienced slight fluctuation and tended to
converge. Significant fluctuations could be attributed to the different data distributions
and characteristics between the initial task (i.e., the pre-trained weight strategy) and the
specific tree detection task, necessitating the model to adapt to new data patterns. The four
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evaluation metrics exhibit a rapid upward trend within the first 100 epochs, followed by a
gradual convergence towards their respective peak values. The weight obtained from the
epoch with the best detection performance on the validation set was employed as the final
weight for detection.
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3. Result and Analysis
3.1. Ablation Experiment

To evaluate the performance of the model proposed for ITD, we selected the standard
YOLOv5 network as the baseline, and the impact of two enhancements, namely DCN and
EMA, was explored. The experimental results are depicted in Table 2.

Table 2. Comparison results between the improved YOLOv5 and YOLOv5.

Basic Network Precision Recall F1-Score AP@0.5

YOLOv5 93.5 91.4 92.4 95.9
YOLOv5 + DCN 94.0 92.0 93.0 96.5
YOLOv5 + EMA 94.6 91.2 92.9 96.3

YOLOv5 + DCN + EMA 96.1 93.0 94.5 97.3

The basic network YOLOv5 achieved the detection of Chinese fir instances with model
evaluation metrics of precision (93.5%), recall (91.4%), F1-score (92.4%), and AP@0.5 (95.9%),
respectively. Upon incorporating the CSP-DCN module, several improvements were ob-
served. Firstly, the network effectively expanded its receptive field through the offset
feature sampling operation, enhancing its contextual comprehension capabilities. Conse-
quently, feature extraction efficiency was enhanced, leading to a 0.5% increase in precision
and a 0.6% increase in recall, F1-score, and AP@0.5, respectively. The results demonstrate
how incorporating the CSP-DCN module yielded a positive effect, effectively enhancing
the overall performance of ITD. Furthermore, the addition of the EMA module effectively
heightened the foreground features in the images while the background regions were
appropriately suppressed. This implementation yielded a 1.1% precision increase, a 0.5%
increase in the F1-score, and a 0.4% increase in AP@0.5, alongside a slight decrease of 0.2%
in recall. When both DCN and EMA modules were embedded in YOLOv5, the synergistic
effect yielded substantial improvements, including a 2.6% increase in precision, a 1.6% in-
crease in recall, a 2.1% increase in the F1-score, and a 1.4% improvement in AP@0.5. These
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results highlight the synergistic effect of integrating both enhancements, showcasing their
collective potential for enhancing the detection capacity of YOLOv5.

Furthermore, a visual qualitative comparison of heat maps for the test results before
and after the addition of the DCN and EMA modules is depicted in Figure 8. The improved
YOLO-DCAM model shows a stronger focus on the Chinese fir tree crown region compared
to YOLOv5, and the confidence value of the detected object is higher, effectively improving
the accuracy of detection. In addition, YOLO-DCAM can detect more Chinese fir, effectively
reducing missed detections.
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Figure 8. Heat map visualization for comparative analysis of partial detection results between
YOLOv5 and YOLO-DCAM networks, utilizing Grad-CAM methodology. Grad-CAM is a technique
that visually interprets model decisions, revealing the model’s focus area within images and the
intensity of its focus. The red area indicates the region identified by the model as Chinese fir, where
increased color intensity corresponds to higher confidence levels in the identification of the target
as the Chinese fir. The images in the first row depict the original image used for testing and its
corresponding ground truth. A, B, C, and D correspond to scenes 1, 2, 3, and 4, respectively.

3.2. Comparison Experiments of Different Models

An insight into the performance of YOLO-DCAM, multi-model comparative tests
were conducted with mainstream models. We aimed to achieve high-precision individual
tree detection while striking a balance between model size and detection speed. Therefore,
we did not include the two-stage model in the comparison model due to their high model
complexity and computational resource requirements. The comparison models include
SSD, YOLOv4, YOLOv5, YOLOv6, and the latest YOLOv7-tiny, YOLOv7, YOLOv8 and
RT-DERT-l [46]. To ensure comparability in evaluating its effectiveness across different
models, we employed identical training settings for the models mentioned above.

Table 3 and Figure 9 present the comparison results of multiple detection models,
where precision, recall, the F1-score, AP@0.5, model size, and fps were selected as eval-
uation metrics. Precision, recall, F1-score, and AP@0.5 evaluate the model’s detection
performance, while the model size and FPS indicate the model’s complexity and detection
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speed. The enhanced YOLOv5 demonstrates exceptional performance in comparative
model experiments. Mainly, it achieves remarkable precision, recall, and F1-score values of
96.1%, 93.0%, and 94.5%, respectively, surpassing YOLOv5 and other state-of-the-art detec-
tion models. The AP@0.5 metric of YOLO-DCAM is 97.3%, which is slightly lower than the
highest value but only 0.1% less than YOLOv7. It is worth noting that the model size of
YOLO-DCAM is 14.8 MB, which is only 45.1% of the YOLOv6 model size and 65.7% of the
YOLOv8 model size. For the fps metric, the improved YOLOv5 model has a nine-frame
decrease compared to the YOLOv5 model and achieves only 71% of the detection speed of
YOLOv8 and 62.4% of the detection speed of YOLOv6.

Table 3. Comparative experimental results for different detection models.

Network Precision Recall F1-Score AP@0.5 Model Size
(MB) FPS

SSD 89.1 84.7 86.8 91.4 90.5 28
YOLOv4 93.2 91.9 92.5 96.8 100.6 44
YOLOv5 93.5 91.4 92.4 95.9 14.4 62

YOLO-DCAM 96.1 93.0 94.5 97.3 14.8 53
YOLOv6 93.2 90.8 92.0 97.0 32.8 85

YOLOv7-tiny 91.4 89.6 90.5 93.7 12.3 68
YOLOv7 95.3 92.1 93.7 97.4 74.8 47
YOLOv8 93.7 91.5 92.6 97.2 22.5 74

RT-DERT-l 93.2 90.6 91.9 96.4 66.1 80
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Although the introduction of the DCN module and EMA module results in a slight
increase in model size and a modest decrease in detection speed, these changes lead to a
significant improvement in the detection accuracy of the model. Overall, YOLO-DCAM
achieved the best results in overall performance, with remarkable results in balancing
accuracy, model size, and detection speed.

3.3. The Detection Result of YOLO-DCAM
3.3.1. Visualized Detection Result of YOLO-DCAM

To intuitively assess the detection performances of individual Chinese fir trees across
diverse environmental scenes, we utilized 640 × 640-pixel images from the test set com-
prising four scenes as the input for model inferencing. This process yielded the location,
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size, and confidence scores of the prediction-bounding boxes in each image. The initial
reasoning results of the YOLO model encompassed numerous background-bounding boxes
with low confidence levels. To offer clearer results, we retained only those bounding
boxes with a confidence value greater than 0.5. Subsequently, these remaining detections
were highlighted as red rectangular boxes overlaid on respective images, as illustrated
in Figure 10. Remarkably, the proposed YOLO-ITD exhibits exceptional performance
in accurately detecting individual trees within a diverse range of challenging planted
forest environments.
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3.3.2. Quantitative Detection Result of YOLO-DCAM

We utilized the test sets comprising four distinct planted forest scenes to calculate
quantitative metrics, precision, recall, F1-score, and AP@0.5. These results, as presented
in Table 4 and Figure 11, were employed to evaluate the performance of YOLO-DCAM.
As shown in Figure 11, all evaluation metrics of YOLO-DCAM outperformed those of the
YOLOv5 model across different environmental scenarios. This substantiates the effective-
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ness of the YOLO-DCAM model in enhancing the detection performance of individual
trees within diverse and complex planted forest environments.

Table 4. Statistics of YOLO-DCAM performance for diverse planted forest environments calculated
based on the test dataset.

Classes Precision Recall F1-Score AP@0.5

All 96.1 93.0 94.5 97.3
Scene 1 99.4 99.2 99.3 99.5
Scene 2 96.5 94.3 95.4 98.0
Scene 3 94.8 91.8 93.3 96.2
Scene 4 96.4 88.8 92.4 95.9
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Figure 11. The comparison results of YOLO-DCAM under four distinct planted forest scenes.

Specifically, YOLO-DCAM achieves the highest detection performance in low-density
pure Chinese fir forests (i.e., scene 1) with model evaluation metrics of precision (99.4%),
recall (99.2%), F1-score (99.3%), and AP@0.5 (99.5%), respectively. The detection model
demonstrates excellent performance, achieving near-complete and accurate detection. For
the high-density pure Chinese fir forest (i.e., scene 2), the detection performance is lower
than low-density pure forests. The precision achieved was 96.5%, with a recall of 94.3%,
yielding an F1-score of 95.4% and an AP@0.5 of 98.0%. Within the mixed forest (i.e., scene 3),
the model achieved a precision of 94.8%, a recall of 91.8%, an F1-score of 93.3%, and an
AP@0.5 of 96.2%. Within Chinese fir forests with multi-species and bare ground as the
background information, model detection performance was the worst among the four
scenarios, presenting a precision of 96.4%, a recall of 88.8%, an F1-score of 92.4%, and an
AP@0.5 of 95.9%. The overall precision of individual Chinese fir tree detection in four scenes
was 96.1%, with the lowest and highest values of 94.8% and 99.4%, respectively. The overall
recall rate was 93.0%, with the lowest and highest values of 88.8% and 99.2%, respectively.
For the F1-score, the lowest F1-score was 92.4%, and the highest value was 99.3%, with an
overall value of 94.5%. The AP@0.5 was higher than 95.9%, with the highest value of 99.5%.

3.3.3. Robustness Testing

Three supplementary subblocks of UAV RGB imagery, each approximately measuring
100 × 100 m, were used to enhance the evaluation of the model’s robustness. Test 1 and
test 2 subblocks were obtained from SEFF. Geographically, their locations were randomly
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selected to avoid overlap with the region used to prepare the Chinese fir detection dataset,
ensuring an unbiased evaluation of the model’s performance. Test 3 was collected from the
Huangfengqiao Forest Farm (HQFF), Hunan Province, China (113◦42′E, 27◦20′N). Chinese
fir stands as the dominant tree species in HQFF. The data collection took place in July 2022.

The YOLO-DCAM model consistently outperforms the YOLOv5 model across all
three plots (refer to Figure 12). Specifically, YOLO-DCAM achieved the highest detection
performance in test 3, with an F1-score of (94.7%) and AP@0.5 of (98.3%), respectively.
Although the UAV image was collected from a different geographic region and year,
YOLO-DCAM was still robust. Test 2 presents a precision of 96.6%, recall of 91.0%, F1-score
of 93.7%, and AP@0.5 of 97.2%. For test 1, in the mixed forest with multiple tree species and
dense canopy cover, YOLO-DCAM was able to accurately distinguish between non-target
background tree species and Chinese fir, with a precision of 92.9%, a recall of 91.5%, an
F1-score of 92.2%, and AP@0.5 of 96.24%. The proposed model effectively enhances both the
precision and recall for Chinese fir detection, reducing false and missed detections. Overall,
the YOLO-DCAM detection model demonstrates outstanding detection performance across
a diverse range of complex plantation environments.
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DCAM in three test plots, corresponding to test 1, test 2, and test 3, respectively.
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4. Discussion
4.1. YOLO-DCAM Network for Individual Chinese Fir Tree Detection

Mapping individual trees is a foundational task for forestry managers and scien-
tists. Several studies have focused on achieving the accurate detection of individual
trees. We compared accuracy metrics provided in similar ITD tasks to evaluate our model.
Chen et al. [47] developed an improved K-means algorithm for detecting individual trees in
Chinese fir plantations, covering canopy closures from low to high density. Their algorithm
resulted in precision and recall rates of 78.48% and 83.72%, respectively, which are lower
than the performance achieved by our method. Additionally, we achieved a higher F1-score
(94.5%) than the result of Gan et al. [48] (F1-score: 57%). The latter performed ITD using
the Detectree2 model in a temperate deciduous forest. On the other hand, Yu et al. [17] con-
ducted a comparative experiment for individual Chinese fir detection using UAV imagery.
The Mask R-CNN model yielded the best results, achieving an F1 score of 94.68%, which is
comparable to our method. However, it is important to note that Yu’s study was conducted
in a young Chinese fir plantation forest, where tree crowns were well-spaced and non-
overlapping. In contrast, our experiment was conducted across a range of complex planted
environments, including high density, overlapping tree crowns, and complex backgrounds.

The YOLO-DCAM model exhibits exceptional performance at identifying individual
trees according to comprehensive experiment analysis. By incorporating a deformable con-
volution network, the sampling mode within the convolution operation is refined through
the introduction of position offset variation. This innovative approach introduces spatial
deformation to the feature map, enabling the self-adaptive adjustment of the sampling
position based on the input feature content. This augmentation allows the network to
effectively accommodate tree crowns of diverse shapes and sizes. As a result, the detection
model can effectively capture detailed changes with the deformable receptive field, signifi-
cantly enhancing its feature extraction capability. The impact of the deformable convolution
network on the ITD in this paper is similar to the conclusions of object detection tasks
in the literature [49,50]. Furthermore, the integration of the attention mechanism enables
the network to dynamically adjust feature weights across different areas, thus enhancing
the network’s focus on target features [51]. The fusion of the EMA module enhances its
ability to capture local information and global long-distance dependencies, enabling the
model to focus selectively on relevant target features while inhibiting irrelevant features
and reducing the interference of complex background information. This refinement of
attention enhances the accurate capture of intricate tree crowns and ultimately improves
the monitoring capacity of forests at the tree level.

4.2. False and Missed Examination Analysis of Individual Tree Detection

In our research, we conducted a study that focused on detecting individual Chinese
fir trees across four distinct plantation environments. Our findings revealed that the most
accurate detection performance was observed in the low-density pure forest scene in
contrast to the forest scene characterized by high density and a complex background. In
this particular setting, nearly all individual trees were successfully and completely detected,
aligning with conclusions drawn from prior studies [52,53]. Within the low-density pure
forest scenario, the semantic features present in the tree crowns were relatively simple,
with distinct and clear boundaries between individual trees, enabling the model to adeptly
accommodate its features, resulting in more accurate detection. By contrast, the detection
performance in other forest scenarios decreased, mainly due to the following reasons:

(1) Tree crown overlap. Within the high-density forest scene, continuous tree crown
coverage leads to significant overlap and occlusion among individual trees. Although
this model can identify most individual trees in the high-density environment, it still
tends to interpret partially and heavily overlapping multiple tree crowns as a single
tree crown entity, leading to missed detection, as illustrated in Figure 13A.

(2) Background information interference. For the mixed forest scene, these non-object
tree species share similar visual characteristics with object trees, creating challenges in



Remote Sens. 2024, 16, 335 19 of 22

distinguishing the semantic characteristics between them. This similarity often leads
to false detection, as depicted in Figure 13B.
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4.3. Potential Uncertainty

Deep learning models are extensively employed for ITD tasks, as they can autonomously
learn feature representations directly from raw data, eliminating the process of manual
feature design and extraction. In our experiments, we initially trained the YOLO model
using a dataset containing labeled instances of individual Chinese fir trees across various
planted forest scenes. Subsequently, this trained model is deployed for ITD, showcasing
exceptional performance. However, forest environments like tropical rainforests are far
more complex than experimental pure and mixed forests, featuring multiple tree species,
a nearly closed canopy, and a multi-layered forest structure, among other characteristics.
Therefore, we face the challenge of working with a limited sample dataset that might
not adequately encompass the complexity of forest environments. Although promising
experimental results have been achieved in detecting individual trees in Chinese fir-planted
forests, the applicability of our approach to other tree species in pure forests and mixed
forests remains to be determined. Another challenge faced is the model’s robustness. The
dataset employed to train the model for detecting individual Chinese fir trees was restricted
to a specific temporal and weather condition. Consequently, the model’s robustness in
detecting individual trees within UAV images of varying temporal resolutions and weather
conditions remains incompletely tested. In addition, during the sample labeling process,
even with the utilization of multi-person verification methods to minimize deviations, it
was inevitable that the tree crown might not be accurately framed due to the challenges of
image resolution, blurred crown boundaries, and subjectivity. This limitation could result
in a slight deviation in the IoU value between the prediction and label, leading to error
detection and missed detection.

4.4. Further Work

To further advance our research, we intend to collect a more diverse and extensive
range of scenario data, incorporating multiple temporal and weather conditions. This ap-
proach systematically assesses the generalization capabilities of the YOLO-DCAM network,
enhancing its adaptability to various complex environments. While our work focused
on detecting one-class tree species, the real-world scenario often involves the coexistence
of multiple tree species. Next, we broaden our scope by considering the detection and
identification of multiple tree species simultaneously. In addition, it is essential to acknowl-
edge that relying solely on UAV RGB imagery as the input data for the detection model
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restricts us from extracting spectral and textural features while neglecting crucial spatial
information about the forest. This limitation could lead to a deterioration in the perfor-
mance of ITD. As mentioned above, although active remote sensing (e.g., Light Detection
and Ranging) offers detailed three-dimensional spatial information, they are burdened
with high costs and intricate data processing procedures. In recent years, the leverage of
UAV photogrammetry technology to generate point clouds [54] has been regarded as a
cost-effective solution for acquiring spatial information. Integrating the spatial information
derived from the photogrammetric point cloud with the optical information provided by
UAV imagery obtains more comprehensive features [55], potentially enhancing the model’s
understanding and recognition of the forest environment and improving the performance
of ITD.

5. Conclusions

This study focuses on the accurate detection of individual trees within Chinese fir-
planted forests, utilizing UAV-based RGB imagery. To address the challenges caused by
complex forest environments, a new tree-level detection network, YOLO-DCAM, is in-
troduced. Specifically, YOLO-DCAM leverages the deformable convolution module to
replace the conventional CSP module in the YOLOv5 backbone and embed the efficient
multi-scale module into the neck, which can effectively enhance this network’s capability
of extracting features and heighten focus on target information. In comparative evalua-
tions with other prominent detection models, YOLO-DCAM exhibits superior detection
performance, achieving remarkable accuracy metrics, including precision of 96.1%, recall
of 93.0%, F1 score of 94.5%, and AP@0.5 of 97.3%. Moreover, this heightened performance
is accomplished while effectively managing model size and model complexity metrics. The
robustness of YOLO-DCAM was reaffirmed through the testing results obtained from three
supplementary plots. In summary, this method can emerge as a precise, cost-effective, and
highly adaptable solution for ITD and support tree-level information monitoring.
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