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Abstract: Although convolutional neural networks (CNNs) have proven successful for hyperspectral
image classification (HSIC), it is difficult to characterize the global dependencies between HSI pixels
at long-distance ranges and spectral bands due to their limited receptive domain. The transformer
can compensate well for this shortcoming, but it suffers from a lack of image-specific inductive biases
(i.e., localization and translation equivariance) and contextual position information compared with
CNNs. To overcome the aforementioned challenges, we introduce a simply structured, end-to-end
convolutional network and spectral–spatial transformer (CNSST) architecture for HSIC. Our CNSST
architecture consists of two essential components: a simple 3D-CNN-based hierarchical feature
fusion network and a spectral–spatial transformer that introduces inductive bias information. The
former employs a 3D-CNN-based hierarchical feature fusion structure to establish the correlation
between spectral and spatial (SAS) information while capturing richer inductive bias and more
discriminative local spectral-spatial hierarchical feature information, while the latter aims to establish
the global dependency among HSI pixels while enhancing the acquisition of local information by
introducing inductive bias information. Specifically, the spectral and inductive bias information is
incorporated into the transformer’s multi-head self-attention mechanism (MHSA), thus making the
attention spectrally aware and location-aware. Furthermore, a Lion optimizer is exploited to boost
the classification performance of our newly developed CNSST. Substantial experiments conducted on
three publicly accessible hyperspectral datasets unequivocally showcase that our proposed CNSST
outperforms other state-of-the-art approaches.

Keywords: convolutional neural networks (CNNs); hyperspectral image classification (HSIC);
spectral–spatial transformer; multi-head self-attention (MHSA)

1. Introduction

Hyperspectral images (HSIs) consist of hundreds of contiguous narrow spectral bands
extending across the electromagnetic spectrum, from visible to near-infrared wavelengths [1],
resulting in abundant SAS information. Effectively classifying SAS features is critical in HSI
processing, which aims at categorizing the content of each pixel using a set of pre-defined
classes. In recent years, HSIC has seen widespread adoption across various domains,
including urban planning [2], military reconnaissance [3], agriculture monitoring [4], and
ocean monitoring [5].

The advancement of deep learning (DL) in artificial intelligence has considerably
improved the processing of remote sensing images. When compared with traditional
machine learning techniques including support vector machines (SVMs) [6], morphological
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profiles [7], k-nearest neighbor [8], or random forests [9], DL-based approaches exhibit a
powerful feature extraction capability, thus being able to learn discriminative and high-
level semantic information. Therefore, DL-based techniques are extensively employed
for HSIC [10]. For instance, a deep stacked autoencoder network has been suggested for
the classification of HSIs by focusing on learning spectral features [11]. Chen et al. [12]
employed a multi-layer deep neural network and a singular restricted Boltzmann ma-
chine for the purpose of capturing the spectral characteristics within HSI data. However,
these approaches solely utilize spectral data information and overlook the importance of
spatial-contextual information for enhancing classification performance. Hence, joint SAS
feature extraction methods have been proposed to extract additional contextual semantic
information from complex spatial structures, thus enhancing the model’s classification
performance. Yang et al. [13] presented a two-branch SAS characteristic extraction network
that employed a 1D-CNN for spectral characteristic extraction and a 2D-CNN for spatial
characteristic extraction. The learned SAS information is linked and channeled into a fully
connected (FC) layer, which extracts spectral–spatial characteristics to facilitate further
classification. Yet, the 2D-CNN architecture could potentially result in the loss of spectral
information within HSI. To proficiently capture SAS features, a 3D-CNN coupled with a
regularization model has been proposed [14]. Roy et al. [15] combined a 2D-CNN and
3D-CNN to acquire spectral–spatial characteristics jointly represented from spectral bands
using 3D-CNN, and then further learned spatial feature representations using 2D-CNN.
Guo et al. [16] proposed a dual-view spectral and global spatial feature fusion network
that utilized an encoder–decoder structure with channel and spatial attention to fully mine
the global spatial characteristics, while utilizing a dual-view spectral feature aggregation
model with a view attention for learning the diversity of the spectral characteristics and
achieving a relatively good classification performance.

Despite the above CNN-based approaches achieving relatively good categorization
results in the classification tasks, they did not exploit hierarchical SAS feature information
across various layers. Furthermore, the excessive depth of convolutional layers may cause
gradient vanishing and explosion problems. The dense connected convolutional network
(DenseNet) offers an effective solution to mitigate these issues; it achieves this by promoting
the maximal flow of information among different convolutional layers through connectivity
operations, effectively fusing the hierarchical features between different layers [17]. Based
on this, a comprehensive deep multi-layer fusion DenseNet using 2D and 3D dense blocks
was presented in [18], which effectively improved the exploitation of HSI hierarchical
signatures and handled the gradient vanishing problem. In [19], a fast dense spectral–
spatial convolution network (FDSSC) was introduced, which combines two separate dense
blocks and increases the network’s depth, allowing for a more straightforward utilization
of feature information across different layers. By combining the advantages of CNN and
graph convolutional network (GCN), Zhou et al. [20] proposed an attention fusion network
based on multiscale convolution and multihop graph convolution to extract multi-level
complex SAS features of HSI. Liang et al. [21] presented a framework that integrates a
multiscale DenseNet with bidirectional recurrent neural networks, which adopted the
multiscale DenseNet (instead of traditional CNNs) to strengthen the utilization of spatial
characteristics across different convolutional layers. Despite the powerful ability of the
above DenseNet-based approaches to retrieve SAS characteristics in HSI classification
tasks, they still suffer from the limitation that CNNs typically only consider local SAS
information between features, while ignoring global SAS information (failing to establish
global dependencies across long-range distances among HSI pixels).

Recently, vision transformers have witnessed a surge in popularity within numerous
facets of computer vision, including target recognition, image classification, and instance
segmentation [22,23]. Transformers are primarily composed of numerous self-attention and
feed-forward layers that inherit the global receptive field, which allows them to efficiently
establish long-range dependencies among HSI pixels, compensating for the lack of CNNs in
global feature extraction. Hence, vision transformers have attracted widespread attention
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in HSIC, in which the MHSA serves as the primary characteristic extractor of the trans-
former for learning the remote locations of HSI pixels and global dependencies between
spectral bands [24,25]. Furthermore, the transformer emphasizes prominent features while
concealing less significant information. He et al. [26] were pioneers in developing a bi-
directional encoder representation of the transformer-based model for establishing global
dependencies in HSIC. This approach primarily relies on the MHSA mechanism of the
MHSA layer, where each head encodes a global contextual semantic-aware representation
of the HSI for discriminative SAS characteristics. Hong et al. [27] proposed a framework
for learning the long-range dependence information between spectral signatures using
group spectral embedding and transform encoders by treating HSI data as sequential infor-
mation, while fusing “soft” residuals across layers to mitigate the loss of critical signature
information in the process of hierarchical propagation. Xue et al. [28] introduced a local
transformer model in combination with the spatial partition restore network, which can
effectively acquire the HSI global contextual dependencies and dynamically acquire the
spatial attention weights through the local transformer to adapt to the intrinsic changes in
HSI spatial pixels, thus augmenting the model’s ability to retrieve spatial–contextual pixel
characteristics. Mei et al. [29] introduced a group-aware hierarchical transformer (GAHT)
for HSIC, which incorporates a new group pixel embedding module that highlights local
relationships in each HSI spectral channel, thus modeling global–local dependencies from
a spectral–spatial point of view.

Although the above transformer-based models exhibit excellent abilities to model
long-range dependencies among HSI pixels, they still suffer from some limitations in terms
of extracting HSI characteristic information: (1) MHSA falls short in effectively considering
both the positional and spectral information of the input HSI blocks when establishing
the global dependencies of the HSI, which renders that the network lacks the utilization
of the positional information among HSI pixels, and (2) some discriminative local SAS
characteristic information that is helpful for HSIC purposes is not sufficiently exploited.
Given that CNNs exhibit strong local characteristic learning abilities, a convolutional trans-
former (CT) network was proposed in [30], first employing central position coding to merge
the spectral signatures and pixel positions to obtain the spatial positional signatures of
the HSI patches, and then utilizing the CT block (containing two 2D-CNNs with 3 × 3
convolutional kernel sizes) to acquire the local–global characteristic information of HSIs,
which significantly improved this model’s local–global feature acquisition ability. The
spectral–spatial feature tokenization transformer (SSFTT) was introduced in [31], which
converts the SAS characteristics learned by a simple 3D-CNN and 2D-CNN layer into
semantic tokens, and inputs them into a transformer encoder to perform spectral–spatial
characteristic representation. Although the above methodologies try to employ CNNs to
strengthen the local characteristic extraction capabilities of the network, the simple CNN
structure fails to adequately extract hierarchical features in various network layers. In this
regard, Yan et al. [32] proposed a hybrid convolutional and ViT network classification
approach, where one branch uses hybrid convolution and ViT to boost the capability of
acquiring local–global spatial characteristics, and the other branch utilizes 3D-CNNs to
retrieve spectral characteristics. However, separate extraction of SAS characteristics with
a branch based on 2D-CNNs and a hybrid convolutional transformer network based on
3D-CNNs may ignore the intrinsic correlation between SAS signatures. A local semantic
feature aggregation-based transformer approach was proposed in [33], which utilizes 3D-
CNNs to simultaneously extract shallow spectral–spatial characteristics, and then merges
pixel-labeled features using a local pixel aggregation operation to provide multi-scale char-
acteristic neighborhood representations for HSIC. A two-branch bottleneck spectral–spatial
transformer (BS2T) method was introduced in [34], which utilizes two 3D-CNNs DenseNet
structures to separately abstract SAS properties to boost the extraction of the localized
characteristics, as well as two transformers for establishing the long-range dependencies
between HSI pixels. However, it may result in the model failing to adequately leverage
the correlation between SAS information (this architecture contains two 3D-CNNs hierar-
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chical structures and two transformers, and is relatively complex). Zu et al. [35] proposed
exploiting a cascaded convolutional feature token to obtain joint spectral–spatial informa-
tion and incorporate certain inductive bias properties of CNNs into the transformer. The
densely connected transformer is then utilized to improve the characteristic propagation,
significantly boosting the model’s performance.

Inspired by the above, we propose a simply structured, end-to-end convolutional
network and spectral–spatial transformer (CNSST) architecture for HSIC. It comprises two
primary modules, a 3D-CNN-based hierarchical feature fusion network and a spectral–
spatial transformer that introduces inductive bias properties information (i.e., localization,
contextual position, and translation equivariance), which are used to boost the extraction
of local feature information and establish global dependencies, respectively. Regarding the
local spectral–spatial feature extraction, to acquire SAS hierarchical characteristic represen-
tations with more rich inductive bias information, a 3D-CNN-based hierarchical network
strategy is utilized to capture SAS information simultaneously, so as to establish the correla-
tion between the SAS information of HSI pixels and to obtain a more rich inductive bias (yet
more discriminative spectral–spatial joint feature information). Meanwhile, the hierarchical
feature fusion structure is utilized to boost the utilization of the HSI semantic feature
information across different convolutional layers. In the spectral–spatial transformer net-
work, the SAS hierarchical characteristics containing rich inductive bias information are
introduced into the MHSA to make up for the shortcoming of insufficient inductive bias in
the image features acquired by the transformer. This allows the transformer not only to
effectively establish long-range dependencies among HSI pixels, but also to enhance the
model’s location-aware and spectral-aware capabilities. Moreover, a Lion optimizer is ex-
ploited to enhance the performance of the model. A summary of the primary contributions
of this research is as follows:

1. We propose a simply structured, end-to-end convolutional network and spectral–
spatial transformer (CNSST) architecture based on a 3D-CNN hierarchical feature
fusion network and a spectral–spatial transformer that introduces rich inductive bias
information in the HSI classification process.

2. To obtain feature representations with richer inductive bias information, a 3D-CNN-
based hierarchical network is utilized to capture SAS information simultaneously in
order to establish the correlation between these two sources of information in HSI
pixels, while the hierarchical structure is exploited to improve the utilization of the
HSI semantic feature information in various convolutional layers.

3. Spectral–spatial hierarchical features containing rich inductive bias information are in-
troduced into MHSA, which enables the transformer to effectively establish long-range
dependencies among HSI pixels, and to be more location-aware and spectral-aware.
Moreover, a Lion optimizer is exploited to boost the categorization performance of
the network.

The rest of this article is structured as follows. The related work is briefly described
in Section 2. Section 3 provides an in-depth description of the general framework of the
CNSST. Section 4 shows the experimental analysis and discussion. Finally, Section 5 wraps
up the paper with concluding remarks and hints at future research directions.

2. Related Work

This section provides an introduction of the basic modules used in our CNSST archi-
tecture, including 3D-CNNs, hierarchical DenseNet, and the self-attention mechanism.

2.1. 3D-CNNs for HSI Classification

Here, 1D-CNNs can be applied to extract spectral signatures of HSI pixels, and 2D-
CNNs are normally utilized to obtain spatial information. Yet, there is abundant SAS
information contained in HSIs, which means that separate extraction of SAS characteristics
may ignore the correlation between certain spatial characteristics and specific spectral char-
acteristics. Compared with traditional pixel-based approaches, 3D-CNN-based approaches
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employ the target pixel and its neighboring pixels as inputs, which makes it possible
to capture the rich spatial information surrounding the target pixel and fully leverages
the correlation between SAS information, whereas pixel-based approaches solely employ
a single pixel for network training. The input size of the 3D-CNN-based approach is
p × p × b, where p × p and b stand for the number of neighboring pixels and spectral
bands, respectively. Consequently, 3D-CNN is utilized as the foundational structure of
the proposed CNSST model to obtain SAS feature information to fully capitalize on the
correlation between certain spatial features and specific spectral features.

The inclusion of batch normalization in 3D-CNN modules is a common tool used
in DL models to make the learning process fast and to reduce the dependence on initial
values [36]. As a result, a batch normalization (BN) layer is incorporated into each 3D-CNN
layer to increase numerical stability and suppress overfitting. As demonstrated in Figure 1,
ni feature map (FM) of size pi × pi × bi is input into a 3D-CNN layer containing mi+1
channels sized αi+1 × αi+1 × di+1, resulting in ni+1 output FM of size pi+1 + pi+1 + bi+1.
The ith output of the (i + 1)-th 3D-CNN layer with BN output can be computed as follows:

Xi+1
k = A f

(
ni

∑
j=1

Xj
i − Ex(Xi

j)

V f (Xi
j)

∗ Hi+1
k + bi+1

k

)
, (1)

where A f (·) represents the activation function (AF) employed to introduce nonlinear
properties to boost the representation of the network. The jth input FM of the (i + 1)-th
layer is denoted as Xi

j ∈ RP×P×b, while Ex(·) and V f (·) correspond to the expectation and

variance function of the input feature tensor, separately. Hi+1
k and bi+1

k stand for the weight
parameters and bias values of the (i + 1)-th 3D-CNN layer, respectively, while ∗ stands for
the convolution operation.

Figure 1. Configuration of 3D-CNN with a BN layer.

2.2. Hierarchical DenseNet

Traditional CNNs merely transform FMs forward from one convolutional layer to the
next one. They are unable to train the network using information from different layers.
Typically, increasing the number of convolutional layers tends to enhance the network
performance. However, an excessive number of layers may result in gradient disappearing
and explosion problems. The hierarchical Densenet is used to effectively mitigate these
issues. It connects each layer directly to the other ones and combines features in the
channel dimension by concatenating them to ensure maximum information flow between
layers. Every convolutional layer receives information from the preceding layer as an input
and subsequently transmits its FM to the succeeding layer [17]. The architecture of the
hierarchical DenseNet is depicted Figure 2. The dense block serves as the fundamental unit
in the hierarchical DenseNet. Assuming that the lth layer’s output FM is xl , the output of
the l-th layer’s dense block may be represented as follows:

xl = Hl [x0, x1, · · · , xl−1], (2)
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where Hl(·) denotes a functional module that comprises BN layers, convolution layers,
and Mish AF layers. Additionally, x0, x1, · · · , xl−1 denote the output FMs of the previous
dense blocks.

Figure 2. Structure of the hierarchical DenseNet.

The architecture of the dense block employed in our model is presented in Figure 3.
Specifically, each convolutional layer consists of m kernels of shape α × α × d. Each layer
then produces m FMs with dimensions p × p × b. The number of FMs corresponds to the
number of convolutional kernels and a linear correlation exists between the number of
channels in each layer and the convolutional layers. The number of channels mj in the
dense block of the jth layer takes the value (j − 1)× m + b, with b representing the number
of channels from the input FMs.

Figure 3. Configuration of the dense block employed in the CNSST approach, where BN + Mish
represents a BN layer and a Mish AF layer.

2.3. Self-Attention Mechanism

Attention mechanisms have their origins in the investigation of the human visual
nervous system, which has always been able to selectively concentrate on the significant
parts of all information, while ignoring other irrelevant parts. The same is true for the
attention mechanism in DL. The self-attention mechanism (SA) has revolutionized various
natural language processing (NLP) tasks by capturing dependencies and relationships
among various elements in a sequence. It enables models to assess the significance of
different elements dynamically, resulting in improved performance on tasks, including text
translation [37], sentiment analysis [38], and NLP [39]. In the domain of HSIC, SA has also
been widely exploited [26–31]. The SA can be represented as:

Attention(Q, K, V) = S(
QKT
√

dK
)V, (3)

where S(·) denotes the softmax AF. Q, K, V, and dK represent the query, key, value,
and dimension of the value K, correspondingly. The query holds the information to be
extracted, the keyword serves as the index, and the value encapsulates the feature to be
fetched. Attention is computed by obtaining the correlation between the query and the
key, obtaining the attention graph, which is then utilized to derive the eigenvalues of
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the values. Figure 4 illustrates the detailed architecture of the SA. In HSIC, SA exhibits
superior discrimination. Ge et al. [40] combined multiscale pyramidal convolutional blocks
and polarized attention blocks to retrieve SAS characteristics from HSIs. Xia et al. [41]
introduced a lightweight residual structure to replace the standard residual structure. This
structure introduces an SA, enabling adaptive fusion of the input and output FMs, thereby
further enhancing the feature extraction capability of the residual structure. [42] developed
a novel high-order self-attention network that utilizes the SA module to capture long-range
dependencies within scenes, facilitating the extraction of high-level semantic features. In
the proposed method, to enhance the transformer’s location and spectral awareness, a
novel MHSA with position coding is used to characterize the spatial location correlation
and spectral–spatial correlation among hierarchical spectral–spatial features that contain
rich induced bias information.

Figure 4. The architecture of the self-attention mechanism, where Q, K, V, and dK represent the
query, key, value, and dimension of the value K, respectively. The query holds the information to
be extracted, the keyword serves as the index, and the value encapsulates the feature to be fetched.
Softmax denotes the AF.

3. Methodology

The structure of the proposed CNSST model is schematically depicted in Figure 5. The
CNSST architecture is formed by two primary components: a 3D-CNN-based hierarchical
feature fusion network and a spectral–spatial transformer network that introduces induc-
tive bias properties information. In terms of the 3D-CNN-based hierarchical feature fusion
network, the 3D-CNN-based hierarchical network strategy is employed to capture SAS
information simultaneously, so as to establish the correlation among the SAS information of
the HSI and to obtain more abundant inductive bias. Moreover, the hierarchical DenseNet
feature fusion structure is utilized to promote the utilization of the HSI semantic character-
istic information in the respective convolutional layers, aiming to achieve a spectral–spatial
hierarchical signature representation with richer inductive bias information. The spectral–
spatial transformer network is employed to establish long-range dependencies between HSI
pixels and to reinforce the local characteristic extraction capability. Specifically, the spectral–
spatial hierarchical signatures containing rich inductive bias information are introduced
into the multi-head spectral–spatial self-attention module to make up for the shortcomings
of insufficient inductive bias in the image features acquired by the transformer, as well
as to make the model more location-aware and spectral-aware. Finally, spectral–spatial
feature fusion is conducted by the FC layer and then the probability prediction of each class
is conducted by the Softmax AF. Moreover, a Lion optimizer is exploited to improve the
categorization performance of the model. Next, we describe each of the modules in detail.
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Figure 5. General framework of CNSST for HSIC. The network is organized into two stages (the
hierarchical DenseNet block and the spectral–spatial transformer block). The previous stage is
utilized to extract the local SAS feature properties of the HSI pixels and to obtain more abundant
inductive bias. In the latter stage, a spectral–spatial transformer is employed to effectively es-
tablish long-range dependencies among HSI pixels, and to improve their location-awareness and
spectral-awareness capabilities.

3.1. 3D-CNN-Based Hierarchical Dense Spectral-Spatial Feature Fusion Network

In this section, we provide a detailed description of the 3D-CNN-based hierarchical
dense spectral–spatial feature fusion network module in CNSST. As shown in Figure 6, the
structure primarily consists of a 3D-CNN-based hierarchical DenseNet spectral–spatial
block. Unlike methods that obtain SAS characteristics by spectral branch and spatial
branch, respectively, here, a 3D-CNN-based hierarchical DenseNet is adopted to extract
the spectral–spatial characteristics simultaneously in order to establish the correlation
between SAS information while capturing richer inductive bias and more discriminative
local SAS hierarchical characteristic information. When the pixels containing abundant
spectral–spatial characteristic information are introduced into the proposed structure, the
proposed model with multiple nonlinear layers can effectively provide hierarchical feature
representations. Furthermore, the utilization of multiple convolutional layers enables CNN
to learn features more discriminatively under sparsity constraints. Regarding the network
parameter settings, assuming that the input FM is of size H × W × D with n channels, and
the convolution layer comprises mo kernels with size ao × ao × do, then each layer calculates
FMs as follows:

Ho =
H + 2Pad − ao

so + 1
, (4)

Wo =
W + 2Pad − ao

so + 1
, (5)

Do =
D + 2Pad − do

so + 1
, (6)

where Ho, Wo, and Do represent the corresponding sizes of the produced FMs. Parameter
Pad denotes the padding applied during the resizing of the output FM, while so signifies
the stride of the filter used. Moreover, the corresponding number of channels within the
resulting feature map can be expressed by n + (j − 1)× mo, in which j pertains to the jth
convolutional layer under consideration.

Specifically, the 3D-CNN-based hierarchical Dense spectral–spatial feature fusion
model mainly consists of 4 convolutional layers, where each layer has a kernel size of
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3 × 3 × 7 and number of channels mo set to 12. In addition, we added a dropout layer
between the last BN layer and the global average pooling layer to prevent overfitting.
AF can enhance the efficiency of the counter-propagation and facilitate the network’s
convergence. As shown in Figure 6, we adopted a self-regularized non-monotone AF Mish,
which can preserve negative inputs as negative outputs, thereby effectively trading the
input information and network sparsity. In the end, the local spectral–spatial characteristics
extracted from the hierarchical dense spectral–spatial feature fusion network containing
rich inductive bias and more discriminative characteristics are used as the inputs to the
spectral–spatial transformer block.

Figure 6. Structure of the 3D-CNN-based hierarchical Dense spectral–spatial feature fusion network.

3.2. Spectral–Spatial Transformer Network

As illustrated in Figure 5, the proposed spectral–spatial transformer block primarily
contains a spectral–spatial MHSA module, as well as feature contraction and expansion
modules. The MHSA module feeds the feature mapping into the spectral–spatial trans-
former module, which contains rich induced bias and hierarchical spectral–spatial charac-
teristics, and then utilizes the spectral–spatial self-attention and positional coding modules
to establish the global remote dependencies of the spectral–spatial characteristics in HSI
pixels. To be specific, in the spectral–spatial transformer block, spectral–spatial hierarchi-
cal characteristics of size Ho × Wo × Do are first fed into the feature contraction module
consisting of convolutions with a convolution kernels of size 1 × 1 and BN operations.
Following that, the new characteristics obtained after feature contraction are input into the
MHSA module to establish long-range dependencies between the HSI pixels. Finally, the
convolution kernel with a size of 1 × 1 is employed in the feature expansion module for
the dimensionality change, so the output features can be adapted to the structure of the
network and are better combined between different levels of FMs.

Generally, positional coding is employed as a constraint to boost the attention sensitiv-
ity to positional information in transformer-based approaches [34,35]. Relative distance-
aware position coding has great potential for describing the spatial content location of
image pixels. The reason for this is that the attention considers not only the contextual
feature information, but also the relative distances between the different positional fea-
tures in pixels, which can effectively establish the correlation between the image feature
information and positional awareness [43]. Hence, in our proposed CNSST, we used 2D
relative position self-attention to realize the relative position encoding of HSI pixel features.
The 2D relative height information Lh and relative width information Lw are computed for



Remote Sens. 2024, 16, 325 10 of 26

each HSI pixel feature to obtain a new spectral–spatial feature FN containing the relative
position information.

In addition, MHSA is a mapping process that converts a query and a set of key–value
pairs into an output. In this process, each input (query, key, and value) is represented as a
vector and the output is a weighted sum of the values. The architecture of MHSA in the
spectral–spatial transformer is presented in Figure 7. To enhance the location-awareness
and spectral-awareness of the proposed CNSST, MHSA with relative position coding is
utilized to co-describe the spatial–positional and spectral–spatial correlations between the
HSI pixel patches. Firstly, the HSI pixel features F are processed by three convolutional
layers to yield three new groups of features Q, K, V ∈ RH×W×D. Meanwhile, the entire
hierarchical spatial features on the channel are mapped to global features, utilizing the
global pooling operation to produce the spectral signatures Fo of FN , which are then
introduced into the attention mechanism, where the spectral–spatial attention AM can be
represented as follows:

AM = Attention(Q, K, V, Fo) = S
(
(Lh + Lw)QKT

√
dk

)
FoV, (7)

where S(·) denotes the softmax AF. Lh and Lw stand for the height information and width in-
formation of the 2D relative position encoding, respectively. Q, K, V, Fo, and dK correspond
to the query, key, value, spectral signatures, and dimension of the value K, correspondingly.
These weight matrices and parameters were utilized to calculate MHSA, and the outcomes
from each attention head are concatenated to obtain the output MHSA with H-heads, which
can be expressed as follows:

MHSA(Q, K, V, Fo) = Concat(AM1, AM2, · · · , AMH)W, (8)

where W signifies the matrix parameters obtained from the linear layers, and H signifies
the number of heads.

Figure 7. The architecture of MHSA in the spectral–spatial transformer.

3.3. Lion Optimizer

The optimizer has a significant role in training DL models, and its primary aim is to
help the model gradually learn and update the parameters to make it fit the data better
and decrease its loss function. The Lion optimizer is a simple and efficient optimization
algorithm, and it has achieved excellent performance in image classification, computer
vision, and other areas [44]. Unlike traditional optimizers, that store 1st and 2nd order
moments, Lion merely tracks momentum and utilizes symbolic function operations for
calculating parameter updates, thereby not only boosting the performance of the model, but
also reducing memory overhead. To improve the categorization performance of CNSST, the
Lion optimizer is applied to the CNSST model instead of the traditional Adam optimizer.
The Lion optimizer’s computational procedure can be expressed as follows:
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gt = ▽ϑ f (ϑt−1), (9)

ϑt = ϑt−1 − ψt{sign[ρ1mt−1 + (1 − ρ1)gt] + λϑt−1}, (10)

mt = ρ2mt−1 + (1 − ρ2)gt, (11)

where gt = ▽ϑ f (ϑt−1) is denoted as the gradient of the loss function at weight ϑt−1 for the
current sample. Equation (10) represents the weight reduction process of decoupling, in
which ψt denotes the step size and sign(·) denotes the sign function. ρ1 and ρ2 denote the
decay rates of the 1st and 2nd order moments, respectively, and their corresponding default
values are set to 0.9 and 0.99. mt is the momentum vector of the t-th iteration. Equation (11)
is employed for calculating the bias-corrected 1st and 2nd moments to offset the bias.

4. Experiments and Analysis

To assess the efficacy of the proposed CNSST approach, intensive experiments are
performed using three familiar HSIC datasets. Next, we describe the datasets utilized,
experimental settings, and then compare and experimentally analyze them in conjunction
with several state-of-the-art models to exemplify the validity of the CNSST.

4.1. Datasets Description

In the experimental evaluations, four HSIC datasets are adopted to assess the CNSST
approach we introduced. These datasets include the University of Pavia (UP), Salinas
Scene (SV), Indian Pines (IP), and ZaoYan region (ZY). The corresponding pseudo-color
and ground-truth images for these three datasets are depicted in Figure 8. Details about the
categories and samples of the counterpart datasets are provided in Tables 1–4. The details
are shown below:

UP: It was acquired utilizing the ROSIS-3 sensor through an aerial survey performed
over the Pavia region, Italy. It includes 610 × 340 pixels, containing a combined count
of 42,776 labeled samples distributed among 9 distinct classes. Notably, this dataset
encompasses 103 spectral bands, spanning a wavelength range from 4.3 µm to 8.6 µm.

SV: It was gathered utilizing the AVIRIS sensor—equipped with 224 spectrum bands—
over Salinas Valley, USA. The dimensions of the images within this dataset are
512 × 217 pixels. It contains 54,129 sample pixels labeled samples distributed among 16
distinct classes and encompasses 204 bands in the range of 0.4 µm to 2.5 µm wavelengths.

IP: It was gathered utilizing the AVIRIS sensor over the region of Indiana, USA. It
includes 16 distinct classes in total, spanning a wavelength ranging from 0.4 µm to 2.5 µm.
The scene’s dimensions encompass 145 × 145 pixels, 220 spectral bands, and a combined
count of 10,249 samples are available within this dataset.

ZY: It was collected by the OMIS sensor over the Zaoyuan region, China. The sense
contained 137 × 202 pixels and 80 spectral bands with the first 64 spectral bands in the
range of 0.4 µm to 1.1 µm and the last 16 covering the region of 1.06 µm to 1.7 µm. The
available ground-truth map contains only 23,821 labeled samples and 8 landcover classes.

(a) (b) (c) (d)

Figure 8. Cont.
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(e) (f) (g) (h)

Figure 8. Pseudo-color and ground-truth images of three datasets. Pseudo-color images of the UP, SV,
IP, and ZY datasets are depicted in (a,c,e,g), while the counterpart ground-truth maps are displayed
in (b,d,f,h).

Table 1. Details of the categories and sample numbers for UP dataset.

Category Name Total Number Category Name Total Number

N1 Asphalt 6631 N6 Bare Soil 5029

N2 Meadows 18,649 N7 Bitumen 1330

N3 Gravel 2099 N8 Self-Blocking Bicks 3682

N4 Trees 3064 N9 Shadows Bare Soil 947

N5 Painted metal sheets 1345

Table 2. Details of the categories and sample numbers for SV dataset.

Category Name Total Number Category Name Total Number

N1 Broccoli-green-weeds-1 2009 N9 Soil-vinyard-develop 6203

N2 Broccoli-green-weeds-2 3726 N10 Corn-senesced-green-
weeds 3278

N3 Fallow 1976 N11 Lettuce-romaine-4wk 1068

N4 Fallow-rough-plow 1394 N12 Lettuce-romaine-5wk 1927

N5 Fallow-smooth 2678 N13 Lettuce-romaine-6wk 916

N6 Stubble 3959 N14 Lettuce-romaine-7wk 1070

N7 Celery 3579 N15 Vinyard-untrained 7268

N8 Grapes-untrained 11,271 N16 Vinyard-vertical-trellis 1807

Table 3. Details of the categories and sample numbers for the IP dataset.

Category Name Total Number Category Name Total Number

N1 Alfalfa 46 N9 Oats 20

N2 Corn-notill 142 N10 Soybean-notill 972

N3 Corn-mintill 830 N11 Soybean-mintill 2455

N4 Corn 237 N12 Soybean-clean 593

N5 Grass-pasture 483 N13 Wheat 205

N6 Grass-trees 730 N14 Woods 1265

N7 Grass-pasture-mowed 28 N15 Buildings-Grass-Trees-
Drives 386

N8 Hay-windrowed 478 N16 Stone-Steel-Towers 93
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Table 4. Details of the categories and sample numbers for ZY dataset.

Category Name Total Number Category Name Total Number

N1 Vegetable 2625 N5 Corn 1425

N2 Grape 1302 N6 Terrace/Grass 1484

N3 Dry vegetable 3442 N7 Bush-Lespedeza 1808

N4 Pear 10,243 N8 Peach 1492

4.2. Experimental Settings

To better compare the classification performance (experimental classification accuracy
and classification visual maps) of different methods, during the selection of experimental
training data, 1% of labeled samples are uniformly chosen for training from the UP and SV
datasets, which contain a substantial number of labeled samples (42,776 and 54,129 labeled
samples), while the remainder is for testing. However, for the IP and ZY datasets, which
have relatively fewer labeled samples (10,249 and 23,821 labeled samples), 10% and 2.5%
of the samples are respectively chosen for training, while the rest serve for testing. It’s
worth noting that all experimental samples were chosen randomly. To evaluate the CNSST
model’s performance, we assessed the outcomes using three well-established metrics:
overall accuracy (OA), average accuracy (AA), and the Kappa coefficient (Ka). Every phase
of model training and testing was performed on a computer system equipped with 64 GB
RAM, RTX 3070Ti GPU, and Pytorch framework.

In addition, we performed a comparative analysis of the CNSST model, compar-
ing it to several state-of-the-art classification approaches, including SVM [6], SSRN [45],
CDCNN [46], FDSSC [19], DBMA [47], SF [27], SSFTT [31], GAHT [29], and BS2T [34].
The CNSST framework takes the original 3D HSI as input, without any pre-processing
for dimensionality reduction. For optimizing the performance of CNSST, the optimal
experimental parameters are empirically adopted. The batch size, epoch and learning
rate are correspondingly set as 64, 200, and 0.0001. The convolution kernel size is set at
3 × 3 × 7, and there are a total of 5 convolution layers in the architecture (the hierarchical
Dense spectral-spatial feature fusion block consists of 4 layers, with each layer having
12 convolutional kernel channels). After repeating the test twenty times for each experi-
mental method, the final classification outcome is determined by taking the average of the
results from each test.

The spatial patch size has a significant influence on HSIC. As the size of the spatial
patch in the CNN increases, the model can cover more pixel information. It helps to
enhance the HSIC accuracy because a larger patch can collect more HSI characteristics
and contextual information. However, too large spatial patches may also suffer from the
problem of introducing too much irrelevant pixel information, which may cause confusion
and misclassification [21]. Hence, the sizes of spatial were set to 5 × 5, 7 × 7, 9 × 9, 11 × 11,
13 × 13, and 15 × 15 to explore the influence on the categorization performance. The OA
outcomes of the CNSST approach on UP, SV, IP and ZY datasets at various spatial sizes are
reported in Figure 9. According to the classification accuracies under different spatial patch
sizes in three datasets, the patch size of the proposed CNSST set as 11 × 11.
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Figure 9. OA of the CNSST approach on UP, SV, IP, and ZY datasets for various spatial patch sizes.

4.3. Experiment Outcomes and Discussion Analysis

The results, categorized using various approaches for the UP dataset, are demonstrated
in Table 5, with the highest category-specific precision highlighted in bold. It is observed
that CNSST has the highest categorization accuracy with 99.30%, 99.08%, and 99.07% for
OA, AA and Ka, respectively. The OA categorization accuracy of SVM is 88.69%, which
is 8.39%, 8.96%, 7.31%, 8.54%, 9.18%, 10.24%, and 10.61% lower than the DL-based SSRN,
FDSSC, DBMA, SSFTT, GAHT, BS2T, and CNSST approaches, respectively. The reason is
that the DL-based approaches (except for CDCNN and SF) can automatically extract the SAS
characteristic information of HSI pixels and are superior in their characteristic extraction
capability to the traditional SVM approach based on manual feature extraction. However,
the classification accuracies of the DL-based methods, CDCNN and SF, are only 87.90% and
88.67% (similar to the classification accuracies of SVM and lower classification accuracies
relative to other DL-based methods). The reason may be that there are limitations in the
network structure design of CDCNN based on ResNet and multi-scale convolution, which
results in CDCNN’s poor characteristic extraction capacity. The SF approach merely utilizes
the group spectral embedding and transform encoder to acquire long-range dependency
information, which fails to adequately use the local spectral–spatial feature information
of HSI. In contrast, the classification accuracies of SSFTT, BS2T, and CNSST are 8.56%,
10.26%, and 10.63% higher, respectively, than that of SF, because they are not only able
to utilize the transformer to efficiently establish long-range dependencies between HSI
pixels, but also utilize CNN to efficiently augment the model’s ability to capture the local
spectral–spatial characteristic information. Moreover, the accuracies of BS2T and CNSST
are 98.93% and 99.30%, respectively, which are both higher than SSFTT. This is because
SSFTT merely adopts one 3D-CNN and one 2D-CNN layer for extracting the local spectral–
spatial signature information, which fails to extract the local signature information of
HSI at a deeper level. However, BS2T and CNSST adopt the DenseNet-based structure,
which can efficiently exploit the hierarchical local signature information from different
convolutional layers, while also capturing the long-range dependency between HSI pixels
with the transformer.

The classification maps for various approaches on UP are depicted in Figure 10. FDSSC,
BS2T, and CNSST have relatively fewer misclassified pixels and better intra-class homo-
geneity, generating relatively smoother classification visual maps. Meanwhile, the visual
maps of the other methods have relatively more misclassified labels and poorer homo-
geneity. This may be because FDSSC using 3D-CNN dense SAS networks with various
kernel sizes can adequately capture different hierarchical levels of detailed information on
spectral–spatial characteristics. Meanwhile, BS2T and CNSST not only exploit the 3D-CNN
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DenseNet’s ability to efficiently extract local hierarchical features, but also the transformer’s
ability to model the long-range global characteristics of HSI pixels, and thus their cate-
gorization performance is better than FDSSC. In addition, the categorization accuracy
of the proposed CNSST is 0.37% higher than BS2T, and CNSST has significantly fewer
misclassification labels than BS2T in the lower left corner of the classification map. This is
because BS2T employs a two-branch DenseNet structure to acquire the SAS characteristics
of HSI separately, which fails to efficiently build up the correlation between SAS charac-
teristics, and may result in the loss of characteristic information. However, the proposed
CNNST employs a single 3D-CNN-based hierarchical DenseNet structure to capture SAS
information simultaneously, which not only establishes a correlation between the SAS
information of the HSI pixels, and obtains richer inductive bias and more discriminative
spectral–spatial joint feature information; this information (inductive bias and contextual
positional information) is also input into the transformer, which enables the model to be
more positional-aware and spectral-aware. In addition, CNNST also utilizes the new Lion
optimizer to boost the categorization performance of the proposed CNSST.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Classification maps of various approaches on UP dataset. (a) SVM (OA = 88.69%). (b) SSRN
(OA = 97.08%). (c) CDCNN (OA = 87.90%). (d) FDSSC (OA = 97.65%). (e) DBMA (OA = 96.00%).
(f) SF (OA = 88.67%). (g) SSFTT (OA = 97.23%). (h) GAHT (OA = 97.87%). (i) BS2T (OA = 98.93%).
(j) CNSST (OA = 99.30%).

From Table 6, it can be seen that CNSST still achieves the optimal categorization
accuracies of OA, AA and Ka, which are 99.35%, 99.52%, and 99.28%, respectively. Also, the
classification accuracies of all the individual categories reached more than 99.04%, except
for Vinyard-untrained (category N15) and Fallow-roughplow (category N4), which had
classification accuracies of 97.78% and 98.13%, respectively. The classification accuracy of
FDSSC based on 3D-CNN hierarchical DenseNet is 2.06% and 11.15% higher than SSRN and
CDCNN based on the simple 3D-CNN structure, respectively. Similarly, the classification
accuracies of CNSST and BS2T are significantly superior to SF, SSFTT, and GAHT in the
transformer-based approaches. This further illustrates that the hierarchical DenseNet can
effectively capture the characteristic information at different hierarchical levels, and has
more powerful characteristic capture capabilities than methods based on simple CNN
architectures. Moreover, the categorization accuracy of CNSST is 0.9% higher than BS2T
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on OA. This also illustrates that CNSST can effectively establish the correlation between
the SAS feature information, reduce the loss of information, and obtain rich inductive bias
information and spectral–spatial joint feature information. This information is then input
into the spectral–spatial transformer with position encoding, which can effectively enhance
the model’s spectral–spatial feature extraction capabilities.

The classification maps of various approaches on SV are depicted in Figure 11. As FDSSC
based on 3D-CNN hierarchical DenseNet can fully exploit the SAS characteristic information
of various convolutional layers, it significantly outperforms SSRN, CDCNN, and DBMA in
the classification maps. The classification maps of FDSSC based on 3D-CNN hierarchical
DenseNet are significantly better than SSRN, CDCNN, and DBMA. Among the transformer-
based approaches, the SF, SSFTT and GAHT approaches suffer from obvious misclassified
pixels and relatively poor homogeneity. The reason for this is that SF merely exploits the
transformer to capture long-range dependence information. GAHT merely utilizes the group-
aware hierarchical transformer to constrain MHSA to the local spatial–spectral context. However,
there are some limitations in these approaches based on the transformer structure alone in
obtaining localized characteristic information. Although SSFTT adopts 3D-CNN and 2D-CNN
to enhance the extraction of local feature information, its structure is relatively simple, resulting
in a limited capacity for local feature extraction by the model. Comparatively, the BS2T and
CNNST approaches, which combine the advantages of transformer and DenseNet, have a better
performance in classification visual maps. Moreover, CNNST has fewer misclassified labels and
better smoothing than BS2T. This further illustrates the effectiveness of CNNST in establishing
the correlation between SAS feature information, reducing information loss and enhancing
spectral–spatial transformer feature extraction.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11. Classification maps of various approaches on SV dataset. (a) SVM (OA = 88.90%). (b) SSRN
(OA = 94.75%). (c) CDCNN (OA = 85.66%). (d) FDSSC (OA = 96.81%). (e) DBMA (OA = 96.12%).
(f) SF (OA = 91.38%). (g) SSFTT (OA = 93.56%). (h) GAHT (OA = 96.36%). (i) BS2T (OA = 98.45%).
(j) CNSST (OA = 99.35%).

From Table 7, the proposed CNSST approach still achieves the highest accuracy of
98.84% on OA. SVM, CDCNN, and SF have the lowest accuracies on OA, which are
79.72%, 74.10%, and 87.46%, respectively. The classification maps of various approaches
on IP are depicted in Figure 12. It is also obvious that they contain a lot of noise and
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mislabels. This further indicates the limitations of the network structure design of ResNet
and multiscale CNN-based CDCNN with a poor feature extraction capability, even lower
than the traditional hand-crafted SVM. Furthermore, SF, which is based on group spectral
embedding and a transform encoder, fails to efficiently utilize the local feature information
of the HSI pixels, even though it can acquire the long-range dependency information
among HSI pixels. The DenseNet-based FDSSC achieves a classification accuracy of 98.17%
with relatively few misclassified pixels in the classification visual map. However, the
3D-CNN DenseNet-based FDSSC fails to exploit the long-distance dependency between
HSI pixels. BS2T and CNSST combine the strengths of both hierarchical DenseNet and
transformers, and effectively realize the extraction of local–global SAS features. Moreover,
CNNST not only outperforms BS2T with 0.35% in classification accuracy, but also has fewer
misclassified labels on the classified visual maps and is relatively smoother. It proves the
effectiveness of CNSST in enhancing the correlation between SAS feature information and
in introducing rich inductive bias information into the transformer with position coding to
strengthen the local–global feature extraction of the model.

From Table 8, it is obvious that the classification accuracy achieved by the proposed
CNSST approach is still the highest, with OA, AA, and Ka of 98.27%, 97.70%, and 97.73%,
respectively. In terms of OA, the classification accuracies of CNSST are higher than those
of the GAHT, SSFTT, SF, and FDSSC approaches by 0.84%, 1.66%, 4.28%, and 0.86%,
respectively. In addition to the classification results of the test labeled pixels in the reference
map, we also considered background pixels (i.e., pixels that were not assigned any labels)
for classification tests on the ZY dataset to show the consistency of the classification results
from the classification visual map. From Figure 13, the CNSST method has significantly
fewer misclassified labels than them and has better edge detail information preservation.
This further demonstrates that the CNSST approach combining the hierarchical DenseNet
and Transformers can more adequately realize the local-global SAS feature extraction
for HSI pixels. Moreover, the proposed CNSST method significantly outperforms BS2T
both in terms of the classification accuracy and classification visual map, which further
demonstrates the validity of CNNST in strengthening the correlation between SAS features
as well as introducing location information and rich inductive bias information into the
transformer to reinforce the feature extraction capability of the model.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12. Classification maps of various approaches on IP dataset. (a) SVM (OA = 79.72%). (b) SSRN
(OA = 98.06%). (c) CDCNN (OA = 74.10%). (d) FDSSC (OA = 98.17%). (e) DBMA (OA = 95.06%). (f) SF
(OA = 87.46%). (g) SSFTT (OA = 97.00%). (h) GAHT (OA = 98.41%). (i) BS2T (OA = 98.49%). (j) CNSST
(OA = 98.84%).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 13. Classification maps of various approaches on the ZY dataset. (a) SVM (OA = 88.24%). (b) SSRN
(OA = 95.56%). (c) CDCNN (OA = 87.69%). (d) FDSSC (OA = 97.41%). (e) DBMA (OA = 96.77%). (f) SF
(OA = 93.99%). (g) SSFTT (OA = 96.61%). (h) GAHT (OA = 97.43%). (i) BS2T (OA = 98.01%). (j) CNSST
(OA = 98.27%).
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Table 5. Classification accuracy (%) achieved by various approaches on the UP dataset with 1% training samples in each category. The bold denotes the highest value.

Category SVM SSRN CDCNN FDSSC DBMA SF SSFTT GAHT BS2T CNSST

N1 88.62 99.16 90.00 98.86 97.23 88.09 97.47 97.85 99.34 97.60
N2 92.06 98.47 94.73 99.37 98.58 99.75 99.11 99.54 99.41 99.98
N3 73.64 91.30 42.19 85.13 85.66 97.58 88.31 89.46 92.14 99.19
N4 93.95 99.98 97.47 99.08 98.65 91.06 96.86 97.37 98.34 99.21
N5 96.44 99.89 97.84 99.78 99.31 99.56 99.89 100.0 99.57 98.80
N6 84.91 97.97 84.09 99.02 98.45 99.59 97.97 97.87 99.02 99.79
N7 73.65 97.70 70.20 99.96 92.76 56.25 91.18 93.36 99.76 99.77
N8 81.72 86.14 75.28 93.10 86.50 94.63 92.28 95.02 91.29 98.67
N9 99.93 99.61 88.09 97.68 97.16 94.09 99.54 99.69 95.89 98.78

OA 88.69 ± 0.76 97.08 ± 0.71 87.90 ± 1.46 97.65 ± 1.21 96.00 ± 1.07 88.67 ± 1.01 97.23 ± 0.37 97.87 ± 0.10 98.93 ± 0.14 99.30 ± 0.16
AA 87.21 ± 1.34 96.69 ± 0.98 82.21 ± 2.17 96.89 ± 1.77 94.89 ± 1.30 83.80 ± 1.68 95.85 ± 0.58 96.68 ± 0.14 98.31 ± 0.18 99.08 ± 0.12
Ka 84.89 ± 1.06 96.13 ± 0.95 83.92 ± 1.93 96.89 ± 1.61 94.69 ± 1.42 84.88 ± 1.37 96.33 ± 0.49 97.17 ± 0.14 98.59 ± 0.17 99.07 ± 0.22

Table 6. Classification accuracy (%) achieved by various approaches on the SV dataset with 1% training samples in each category. The bold denotes the highest value.

Category SVM SSRN CDCNN FDSSC DBMA SF SSFTT GAHT BS2T CNSST

N1 99.78 99.97 40.00 100.0 100.0 94.41 99.17 99.96 100.0 100.0
N2 98.97 97.74 74.97 97.00 99.97 99.44 99.84 100.0 99.95 100.0
N3 91.17 98.77 92.63 98.77 98.89 95.61 96.99 98.52 99.54 99.70
N4 97.75 95.87 95.21 96.55 94.85 93.36 99.44 98.75 97.53 98.13
N5 95.74 94.02 92.09 99.67 98.80 92.73 96.77 98.87 99.89 99.90
N6 99.90 99.83 98.68 99.98 99.27 99.07 99.71 99.92 99.94 99.99
N7 97.64 100.0 96.63 99.97 99.98 98.56 99.56 99.89 99.90 99.33
N8 73.81 87.76 76.34 95.56 92.34 82.63 89.77 93.04 97.64 99.18
N9 98.48 99.60 98.38 99.74 99.85 97.26 99.08 99.91 99.95 100.0

N10 88.22 97.95 87.78 99.50 98.19 90.87 94.57 97.40 98.92 99.39
N11 91.09 97.29 89.04 97.20 93.26 88.82 95.54 98.54 99.94 100.00
N12 96.37 99.35 90.22 99.72 98.70 98.72 99.89 99.90 99.94 100.00
N13 93.86 96.00 92.50 99.73 99.92 93.40 98.08 98.59 99.41 99.95
N14 96.19 97.95 97.27 98.84 95.82 97.25 94.68 97.82 98.00 99.04
N15 76.23 97.29 62.18 90.67 90.09 82.28 76.50 87.45 94.46 97.78
N16 98.11 99.35 99.11 100.0 100.0 93.20 96.58 97.67 99.98 100.00

OA 88.90 ± 0.80 94.75 ± 1.02 85.66 ± 3.44 96.81 ± 1.58 96.12 ± 1.43 91.38 ± 0.34 93.56 ± 0.74 96.36 ± 0.36 98.45 ± 0.40 99.35 ± 0.20
AA 93.33 ± 0.35 97.11 ± 0.87 86.45 ± 5.10 98.20 ± 0.61 97.33 ± 1.09 93.60 ± 0.65 96.01 ± 0.47 97.89 ± 0.19 98.92 ± 0.18 99.52 ± 0.11
Ka 87.60 ± 0.90 94.15 ± 1.14 83.96 ± 3.94 96.45 ± 1.76 95.68 ± 1.59 90.41 ± 0.38 92.82 ± 0.83 95.95 ± 0.40 98.27 ± 0.44 99.28 ± 0.23
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Table 7. Classification accuracy (%) achieved by various approaches on IP dataset with 10% training samples in each category. The bold denotes the highest value.

Category SVM SSRN CDCNN FDSSC DBMA SF SSFTT GAHT BS2T CNSST

N1 61.33 88.94 48.25 98.02 97.66 35.67 82.70 78.91 96.58 96.04
N2 71.15 98.60 73.53 99.24 91.84 81.10 96.46 98.82 98.61 99.24
N3 75.18 96.96 72.55 98.75 95.93 83.28 97.22 98.52 99.24 98.88
N4 59.43 93.19 70.03 98.21 95.70 72.84 94.94 97.47 97.33 97.42
N5 90.43 99.27 94.18 98.38 97.58 87.40 95.18 97.30 98.88 99.66
N6 88.12 99.56 95.06 99.46 98.73 97.63 99.45 99.79 99.22 99.86
N7 85.32 97.03 67.50 84.98 84.52 76.36 99.09 100.0 57.71 62.98
N8 89.61 99.68 88.21 99.94 99.01 97.12 99.31 100.0 100.0 100.0
N9 73.58 89.87 61.95 86.66 88.99 51.25 77.5 92.5 98.82 100.0

N10 74.85 96.76 70.91 97.00 92.79 85.37 96.68 97.99 97.43 97.65
N11 77.56 98.11 66.65 97.78 95.42 90.21 96.85 98.80 98.95 99.48
N12 71.27 98.14 64.87 97.26 93.97 70.18 94.02 97.05 98.37 98.82
N13 91.52 100.0 98.56 98.10 99.65 97.31 99.87 99.51 99.39 100.0
N14 91.68 98.85 87.13 99.14 98.49 95.94 99.26 98.99 99.09 98.27
N15 75.87 98.29 82.24 96.72 92.64 85.82 94.23 95.21 97.53 98.92
N16 97.24 96.87 97.21 94.29 97.67 97.02 98.63 98.64 93.68 97.82

OA 79.72 ± 0.75 98.06 ± 0.64 74.10 ± 3.66 98.17 ± 0.77 95.06 ± 2.08 87.46 ± 0.62 97.00 ± 0.67 98.41 ± 0.29 98.49 ± 0.13 98.84 ± 0.12
AA 79.63 ± 1.97 96.88 ± 0.55 77.43 ± 5.35 96.50 ± 1.29 94.92 ± 1.01 81.53 ± 1.52 95.09 ± 0.36 96.15 ± 1.25 95.69 ± 0.46 96.56 ± 0.32
Ka 76.75 ± 0.86 97.79 ± 0.73 69.90 ± 4.87 97.92 ± 0.88 94.37 ± 1.64 85.70 ± 0.70 96.58 ± 0.86 98.19 ± 0.33 98.28 ± 0.15 98.68 ± 0.14

Table 8. Classification accuracy (%) achieved by various approaches on the ZY dataset with 2.5% training samples in each category. The bold denotes the highest value.

Category SVM SSRN CDCNN FDSSC DBMA SF SSFTT GAHT BS2T CNSST

N1 88.17 99.45 87.49 99.34 96.00 93.50 96.46 96.76 97.97 98.49
N2 90.04 93.40 90.15 88.32 98.15 94.96 97.08 96.67 92.42 96.50
N3 88.59 95.06 83.76 98.77 97.75 95.77 97.36 98.41 98.89 97.80
N4 92.34 98.03 92.25 98.55 97.64 96.83 97.81 98.63 99.49 99.14
N5 67.00 88.87 67.97 94.92 94.57 92.15 92.00 96.13 93.44 97.05
N6 88.08 97.07 88.89 97.61 95.11 95.26 95.91 96.90 97.89 97.76
N7 94.51 96.99 94.37 96.68 96.74 94.90 96.41 95.60 96.74 96.91
N8 69.98 96.35 68.13 97.04 93.34 76.65 93.49 93.80 97.78 98.03

OA 88.24 ± 0.59 95.56 ± 0.91 87.69 ± 0.81 97.41 ± 0.87 96.77 ± 0.35 93.99 ± 0.50 96.61 ± 0.49 97.43 ± 0.25 98.01 ± 0.16 98.27 ± 0.23
AA 84.84 ± 1.13 95.65 ± 1.51 84.13 ± 1.74 96.40 ± 0.81 96.16 ± 0.98 92.50 ± 1.06 95.81 ± 1.01 96.61 ± 0.75 96.83 ± 0.54 97.70 ± 0.37
Ka 84.53 ± 0.75 95.48 ± 1.18 83.79 ± 1.10 96.59 ± 1.13 95.76 ± 0.44 92.15 ± 0.71 95.55 ± 0.63 96.64 ± 0.31 97.40 ± 0.18 97.73 ± 0.17
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4.4. Performance with Various Percentages of Training Samples

To further verify the sample sensitivity of the CNSST method, a comparison exper-
iment of the different methods at varying sample proportions was conducted. In the
experiments, labeled samples amounting to 0.5%, 0.75%, 1%, 2%, and 3% were randomly
chosen from the UP and SV datasets for training. Similarly, 6%, 7%, 8%, 9%, and 10%
of the samples were randomly chosen from the IP dataset. For the ZY dataset, 0.5%, 1%,
1.5%, 2%, and 2.5% samples were randomly selected. The classification accuracies of the
various approaches with various percentages of training samples on the UP, SV, IP and
ZY datasets are presented in Figure 14. Notably, the SVM and CDCNN methods are too
low (even below 80.0%) to achieve their classification accuracy on the ZY dataset under
small samples. Therefore, some curves in subfigure (d) are not shown for a better visual
comparison. As depicted in Figure 14, the categorization accuracy of all models rises with
the increase in training samples. With a decrease in training samples, the classification
accuracies of all models continue to decrease, and the curves of the other models (apart
from CNSST) have relatively large variations on the UP and SV datasets. However, CNSST
has a relatively smooth change and still maintains the optimal categorization accuracy on
all four datasets. It also demonstrates that CNSST is relatively insensitive to the proportion
of training samples and has a relatively good robustness.

(a) (b)

(c) (d)

Figure 14. Accuracy of various approaches with various percentages of training samples on four
datasets. (a) UP dataset. (b) SV dataset. (c) IP dataset. (d) ZY dataset.
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4.5. Parameter Sizes and Runtimes

The parameter sizes and runtimes of the various methods on four datasets are shown
in Table 9, where Par denotes the size of the parameter. Obviously, it is shown that the
good classification performance of our proposed CNSST method on the four datasets is
obtained at the expense of the computational complexity of the model. Notably, despite the
relatively large parameters of the CNSST model, its training time is not the longest. This is
because, to reduce the training cost of the model and avoid model overfitting, the proposed
CNSST method employs an early stopping strategy. Furthermore, the batch size of the
proposed CNSST is 64, while that of the BoS2T and FDSSC methods is 16. Meanwhile, a
larger batch size usually implies that more samples can be processed in parallel, allowing
them to be simultaneously modeled by the forward propagation process, thus effectively
reducing the inference time.

Table 9. The parameter sizes and runtimes of the various methods on four datasets.

Category
Parameter Sizes and Runtimes

SVM SSRN CDCNN FDSSC DBMA SF SSFTT GAHT BS2T CNSST

UP
Par/M - 0.217 0.628 0.651 0.321 0.164 0.484 0.927 1.490 2.957
Train/s 20.79 702.3 34.21 3563.2 144.32 373.93 133.10 309.91 1102.3 528.23
Test/s 8.78 35.79 17.25 84.46 122.83 90.56 22.49 71.65 391.64 226.48

SV
Para/M - 0.370 1.082 1.251 0.618 0.303 0.950 0.973 1.674 4.578
Train/s 38.20 1083.3 45.87 5655.5 429.43 693.82 344.03 453.24 1470.7 1223.2
Test/s 14.05 72.86 28.32 185.38 277.86 100.45 28.25 44.59 413.92 557.11

IP
Par/M 000 0.364 1.064 1.227 0.606 0.343 0.932 1.366 1.666 4.513
Train/s 374.23 2273.4 73.29 8275.7 772.29 1258.9 593.18 512.34 2607.2 2140.59
Test/s 7.52 11.14 4.40 31.22 42.76 18.79 5.99 6.27 63.01 84.51

ZY
Par/M - 0.180 0.525 0.507 0.257 0.139 0.378 1.224 1.447 2.568
Train/s 61.24 802.6 25.03 3472.4 241.00 440.18 165.29 261.30 1890.1 469.25
Test/s 9.33 15.98 6.27 38.80 54.88 9.16 2.48 6.61 213.89 95.64

4.6. Ablation Experiments

To better validate the efficacy of the modules in the proposed CNSST approach,
ablation experiments were conducted. The ablation experiment outcomes on various
datasets are presented in Figure 15. Among them, SCNSST indicates that the proposed
CNSST does not utilize hierarchical dense blocks to obtain hierarchical spectral–spatial
characteristics from different convolutional layers, but rather utilizes the simple 3D-CNN
structure (as shown in Figure 5, only the second stage is used, while the first stage is
replaced with a conventional CNN network). The no-RPE means that the proposed CNSST
does not utilize relative position encoding in the transformer. The no-RPT means that
the proposed CNSST does not utilize the transformer with relative position encoding
(considering only the first stage without the existence of the second stage, as seen in
Figure 5, solely employing the first stage without the presence of the second stage). Also,
no-Lion indicates that the traditional Adam optimizer is employed in the proposed CNSST
instead of the new Lion optimizer.

From Figure 15, the CNSST approach achieves a significantly higher categorization
accuracy than SCNSST, no-RPE, and no-RPT, which further demonstrates that CNSST
with hierarchical DenseNet can adequately exploit the spectral–spatial joint characteristic
information at various levels and acquire richer inductive bias information. Secondly,
its introduction into the transformer with 2D-relative position encoding allows for a bet-
ter characterization of the spatial position information of HSI pixels and strengthens the
position-aware and spectral-aware capabilities of the model. Moreover, the spectral–spatial
transformer with relative position encoding can effectively establish long-range depen-
dencies between HSI pixels and enhance the feature extraction capabilities of the model.
Moreover, the classification outcome of the proposed CNSST outperforms the no-Lion,
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which further demonstrates the effectiveness of the new Lion optimizer employed in this
work in enhancing the model’s categorization performance.

Figure 15. Outcome of ablation experiments on various datasets.

5. Conclusions

In this study, we propose an end-to-end, yet structurally simple CNSST framework
for spectral–spatial HSI classification, which organically integrates a 3D-CNN-based hierar-
chical feature fusion network with a spectral–spatial transformer structure that introduces
inductive bias properties information. On the one hand, the 3D-CNN-based hierarchical
network is utilized to establish the correlation between SAS information and capture richer
inductive bias and spectral–spatial hierarchical feature information, effectively introducing
abundant inductive bias in the hierarchical network into the transformer. On the other
hand, the spectral and inductive bias information is synthesized into the MHSA of the
spectral–spatial transformer to empower it with both spectral and positional awareness,
which enables the transformer to not only efficiently utilize the long-range dependencies
between HSI pixels, but also to improve the capture of local characteristic information. Ex-
perimental results performed on four HSIC datasets demonstrate that CNSST outperforms
other state-of-the-art networks in both quantitative and visualization analyses, and main-
tains an excellent classification performance with small samples. Furthermore, extensive
ablation experiments also further prove the effectiveness of the different components of
CNSST, including the Lion optimizer, in improving HSIC performance.

However, the good classification results of the CNSST approach depend on a relatively
large computational complexity. The further development of this work will investigate
lightweight methodologies to decrease the computational cost of the model. In another fu-
ture work, we will investigate how to develop self-supervised or semi-supervised spectral–
spatial transformer networks for HSIC to alleviate the model’s dependence on the number
of samples.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network
HSIC Hyperspectral image classification
HSI Hyperspectral image
CNSST Convolutional network and spectral-spatial transformer
SAS Spectral and spatial
MHSA Multi-head self-attention mechanism
DL Deep learning
FC Fully connected
SVM Support vector machines
DenseNet Dense connected convolutional network
GAHT Group-aware hierarchical transformer
FDSSC Fast dense spectral-spatial convolution framework
CT Convolutional transformer
SSFTT Spectral–spatial feature tokenization transformer
BS2T Bottleneck spectral–spatial transformer
BN Batch normalization
FM Feature map
AF Activation function
SA Self-attention mechanism
NLP Natural language processing
UP University of Pavia
SV Salinas scence
IP Indian Pines
OA Overall accuracy
AA Average accuracy
Ka Kappa coefficient
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