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Abstract: As the electromagnetic environment becomes increasingly complex, a synthetic aperture
radar (SAR) system with wideband active transmission and reception is vulnerable to interference
from devices at the same frequency. SAR interference detection using the transform domain has
become a research hotspot in recent years. However, existing transform domain interference detection
methods exhibit unsatisfactory performance in complex interference environments. Moreover, most
of them rely on label information, while existing publicly available interference datasets are limited.
To solve these problems, this paper proposes an SAR unsupervised interference detection model
that combines Canny edge detection with vision transformer (CEVIT). Using a time–frequency
spectrogram as input, CEVIT realizes interference detection in complex interference environments
with multi-interference and multiple types of interference by means of a feature extraction module
and a detection head module. To validate the performance of the proposed model, experiments are
conducted on airborne SAR interference simulation data and Sentinel-1 real interference data. The
experimental results show that, compared with the other object detection models, CEVIT has the best
interference detection performance in a complex interference environment, and the key evaluation
indexes (e.g., Recall and F1-score) are improved by nearly 20%. The detection results on the real
interfered echo data have a Recall that reaches 0.8722 and an F1-score that reaches 0.9115, which are
much better than those of the compared methods, and the results also indicate that the proposed
model achieves good detection performance with a fast detection speed in complex interference
environments, which has certain practical application value in the interference detection problem of
the SAR system.

Keywords: synthetic aperture radar (SAR); interference detection; complex interference; unsupervised
learning; transformer

1. Introduction

A synthetic aperture radar (SAR) is a piece of wideband microwave remote sensing
equipment that acquires high-resolution images through the active transmission and recep-
tion of electromagnetic signals. However, with the wide application of microwave remote
sensing technology, when operating, SAR is vulnerable to interference from devices in
the same frequency band, the electromagnetic environment is becoming more and more
complex, and spectrum resources are becoming more and more scarce. Generally, the
energy of this interference is much larger than the energy of the target signals, which leads
to a significant degradation in the quality of the SAR imaging [1–5]. At the same time,
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with the rapid development of interference technology, a variety of interference techniques
are constantly proposed, resulting in difficulty maintaining stable performance of SAR
systems in the complex interference environment. The complex interference environment
refers to the simultaneous existence of multiple or more types of interference, and the
power of these interference signals may vary with a certain range. However, there are
relatively few existing studies on statistical characterization and detection for SAR com-
plex interference [1,6,7]. In the conventional signal or echo domain, some scholars have
utilized the statistical characteristics of the signal for interference detection. Wang et al. [8]
used approximate spectral decomposition to divide the spectrum into multiple sampling
bands and compared each sub-band with the threshold; if the power of the sub-band is
higher than the threshold, the sub-band is considered to contain interference, and the sub-
band samples are deleted to achieve interference mitigation. Natsuaki et al. [9] proposed
an interference detection method for a pulse signal SAR system with a relatively large
time–bandwidth product. They employed local autocorrelation-based detection in the
range–time and azimuth–frequency domains. Leng et al. [2] conducted experiments on C-
band SAR Sentinel-1 data, utilized the scattering characteristics whereby co-polarization is
generally larger than cross-polarization in the common backscatter coefficient of the Earth,
and proposed a radio frequency interference (RFI) index based on the dual-polarization
difference design of RFIs, which is capable of detecting RFIs and locating them better
by using the ground range detected (GRD) data, by taking advantage of the unique RFI
characteristics of dual-polarization GRD images. At present, interference detection based
on traditional methods is usually used to detect interference much stronger than the real
signal, and the detection results cannot be well obtained when the interference-to-signal
ratio is relatively low. At the same time, most of them have a certain limitation on the
detection environment [1,7,8]; thus, the detection effect is not satisfactory in the complex
interference environment. In recent years, with the development of computer-related tech-
nologies, artificial intelligence technology represented by deep learning has been widely
used in various fields, and intelligent analysis and interpretation based on data in the field
of remote sensing have become trends for future development [10]. The powerful learning
ability of deep learning and the ability to deal with massive data classification make it
highly promising for applications in interference detection. Using deep learning to learn
and think about the statistical properties of interference to achieve interference detection in
complex interference environments has become a hotspot in current research.

After receiving the SAR echoes, the data are sampled and stored. Data processing
is a two-dimensional process, but it is typically separated into two independent one-
dimensional processing steps: the range processing and the azimuth processing. Some
researchers have transformed signal processing from the signal domain to the transform
domain (e.g., frequency domain, time–frequency domain, or image domain), moving
from one-dimensional processing in the signal domain to two-dimensional processing in
the image domain in recent years, and designed a deep learning network to realize the
interference detection by using multi-layer convolutional neural networks (CNN) [11–16].
The interference detection problem in the transform domain can be categorized as a target
detection problem. Noting that the single-shot multibox detector algorithm has not yet been
applied to the interference detection and suppression problem, Yu et al. [11] utilized short-
time Fourier transform (STFT) to transform the SAR echoes into the time–frequency domain
and trained the model using pre-labeled datasets to achieve the detection of multiple
types of interference, parameter estimation, and interference suppression. Tao et al. [16]
proposed a semantic cognitive enhancement network for interference detection. The
network combines dilated spatial pyramid pooling, deep convolution, and self-attention
mechanisms. The method does not require a pre-set threshold and does not require a
large number of training samples. Experiments are conducted on different scenes of
Sentinel-1 images containing multiple types of interference to verify the robustness of
the model’s detection performance. So far, most of the deep-learning-based interference
detection networks are supervised learning approaches, which require training sets, test
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sets, and validation sets, while there are fewer publicly available interference-containing
SAR datasets, resulting in the need for manual annotation during the construction of the
datasets. Moreover, supervised learning can only capture information about interference
that is already labeled in the dataset, and the power and type of interference in the actual
data have a certain randomness, which may lead to supervised learning models only being
suitable for use in a specific dataset or unlabeled interference types appearing to be missed.

Unsupervised learning is one of the most challenging and significant problems in com-
puter vision and machine learning today, where unsupervised learning models reveal the
intrinsic properties and patterns of data and enable prediction by learning from unlabeled
samples. In recent years, transformer networks have developed rapidly; compared with
CNNs, the attention mechanism in transformer networks can deal with long-distance de-
pendencies better, and the model is more portable. These advantages make more and more
research begin to focus on how to apply transformer networks in computer vision [17–28].
Research has also made some progress in unsupervised learning of transformer networks
in target detection. Caron et al. [25] proposed an end-to-end target detection method where
the model uses self-distillation loss for self-supervised learning. The model is interpreted
as a form of self-distillation with no labels (DINO). It established a teacher network and a
student network, achieving a high-accuracy attention map and fully unsupervised seman-
tic segmentation on transformer networks. This resulted in state-of-the-art performance
on public object detection datasets at the time. Siméoni et al. [26] used the DINO self-
supervised pre-training model to obtain the feature maps. They calculated similarity scores
between each patch and its adjacent patches, selecting the patch with the fewest similar
patches as the initial seed for positioning the starting point of target localization. They
used the similarity scores to connect and build a binary target segmentation mask, ulti-
mately achieving object detection. The model locates objects in images without any labels,
resulting in a significant performance improvement compared to state-of-the-art methods.
Wang et al. [27] proposed a graph-based algorithm that used the features obtained by a
self-supervised transformer to detect and segment salient objects in images (Tokencut).
With this approach, the image patches that compose an image are organized into a fully
connected graph, where the edge between each pair of patches is labeled with a similarity
score between patches using features learned by the transformer, and then normalized cuts
are used to group self-similar regions and delineate foreground objects. Wang et al. [28]
proposed a zero-shot unsupervised multi-object detection method. The method utilizes
features extracted by the DINO model, repeatedly employs the Tokencut to generate masks
for multiple objects, and uses these masks as ground truth. For the problem wherein
ground truth masks obtained by self-supervised model will miss some ground truth, a
dynamic loss descent strategy is used to detect the objects missed by the ground truth
masks, and the performance is further improved by multiple self-training. Many scientific
experiments have demonstrated the advantages of a pre-trained vision transformer (VIT)
as a backbone network for feature extraction in object detection, while less research has
been performed in the field of SAR interference detection using unsupervised learning of a
VIT, and the possibility of utilizing pre-trained VITs for feature extraction and detection of
complex interference in the transform domain has become a point of interest for us.

The paper proposes an unsupervised interference detection model for a vision trans-
former combined with Canny edge detection (CEVIT) and conducts experiments on datasets
containing complex interference and a lower interference-to-signal ratio (ISR). The experi-
mental results show that CEVIT achieves the best performance with both a lower ISR and
complex interference compared to other detection methods.

The main contributions of this paper are:

• Aiming at the problem wherein existing interference detection problems still require
a large amount of manually annotated information, an unsupervised interference
detection model is proposed to achieve interference detection end to end without any
labeled information;
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• For the lower ISR, a feature fusion module based on multi-head attention is proposed,
which achieves better results in the lower-ISR environment while integrating multi-
head attention features;

• For the case of complex interference with multiple numbers and types, a detection
head module combining Canny edge detection and a transformer network is proposed,
further extending the applicability of the interference detection model;

• An SAR time–frequency spectrogram dataset for a complex interference environment
is established.

The rest of the paper is organized as follows: Section 2 models the echo signal and
performs time–frequency characterization. Section 3 describes the proposed model in
detail. Section 4 presents the data used in the experiments and experimental results with
the comparison. Section 5 discusses the experimental results and considers future works.
Section 6 summarizes the work of this paper.

2. Signal Time–Frequency Characterization
2.1. Echo Signal Model

For a normal working SAR system, the received echo signals include real signals, noise
signals, and interference signals. The noise signal mainly comes from the environment,
and the interference signal mainly comes from other strong radiation sources in the same
frequency band. Generally, the energy of interference is much greater than that of both
the target signal and noise; both noise signals and interference signals can be expressed as
additive influences, and, thus, the interfered echo signal S is modeled as Equation (1) [11,15]:

S(m, n) = X(m, n) + N(m, n) + I(m, n), (1)

where n is the time unit in the range, m is the mth pulse in the azimuth, X is the target
signals, N is the noise signals, and I is the interference signals.

The SAR high-resolution imaging process is subject to diverse and complex interfer-
ence, which seriously affects the final imaging results of the SAR. Interference is classified
according to the energy source, bandwidth, and modulation type, etc. According to the
energy source of the interference, it can be divided into two categories: passive interference
and active interference. Typical passive interference includes chaff interference, wave-
absorbing materials, anti-radar camouflage nets, and so on. Active interference refers to
the interference generated by the energy source radiating electromagnetic waves, mainly
including enemy active interference signals, wireless communication signals, radio and
television signals, and other radar signals. According to the relative bandwidth of the
interference relative to the SAR bandwidth, it can be divided into wideband interference
and narrowband interference. Wideband interference generally has a bandwidth greater
than 10% of the transmitted signal [4,7]. In this paper, interference bandwidth signals that
are less than 10% of the transmitted signal are considered as narrowband interference. Cat-
egorized according to the type of modulation, there are various types of actual modulation,
the most common being chirp modulation and sin modulation, among others.

In order to better approximate a real complex interference environment, this paper
models and uses the following interference signals: single-frequency interference (noted
as ISF), narrowband chirp-modulated interference (noted as INBCM), wideband chirp-
modulated interference (noted as IWBCM), narrowband sinusoidal-modulated interference
(noted as INBSM), and wideband sinusoidal-modulated interference (noted as IWBSM). The
expression for the interference signals is as follows:

I(m, n) = ISF(m, n) + INBCM(m, n) + IWBCM(m, n) + INBSM(m, n) + IWBSM(m, n), (2)

where n is the time unit in the range, m is the mth pulse in the azimuth, ISF, INBCM, IWBCM,
INBSM and IWBSM stand for single frequency interference, narrowband chirp -modulated
interference, wideband chirp-modulated interference, narrowband sinusoidal-modulated
interference, and wideband sinusoidal-modulated interference, respectively. The difference
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between wideband and narrowband is the cumulative number of interfered echoes; in
this paper, single-frequency interference, chirp-modulated interference, and sinusoidal-
modulated interference are modeled.

The single-frequency interference can be expressed as:

ISF(m, n) =
L

∑
i=1

Ai(m) exp(j[2π fin + φi]), (3)

where L is the number of single frequency interference, Ai(m), fi and φi represent the
amplitude, frequency and initial phase of the i interference, respectively.

The chirp modulated interference can be expressed as:

ICM(m, n) =
L

∑
i=1

Bi(m) exp(jπ
[
2 fin + kin2

]
), (4)

where L represents the number of chirp modulated interference, Bi(m), fi and ki stand for
the amplitude, the frequency, and the chirp rate of the ith interference, respectively.

The sinusoidal modulated interference can be expressed as:

ISM(m, n) =
L

∑
i=1

Ci(m) exp(jβi sin[2π fin + φi]), (5)

where L stands for the number of sinusoidal modulated interference, Ci(m), βi, fi and φi
represent the amplitude, modulation coefficient, the frequency, and the initial phase of the
ith interference, respectively.

After a thorough analysis and modeling of the echo signals and interference signals, we
proceed to analyze how to use transform domain features and extract interference characteristics.

2.2. Echo Time–Frequency Characterization

The time–frequency characteristics of the echo signal are analyzed using the transform
domain, and the commonly used transform domains are the frequency domain, time–
frequency domain, etc. Frequency domain analysis is the use of Fourier transform to
transform the signal to the frequency domain; frequency domain analysis can be obtained
for the overall frequency components of the signal. Commonly used methods for time–
frequency domain analysis are short-time Fourier transform (STFT), etc. For unknown
appearing interference, in order to obtain its time–frequency characteristics in a smoother
way, the universality feature of STFT is exploited, by dividing the signal into shorter time
segments and using Fourier transform (FT) for these segments, which enables us to observe
the spectral characteristics of the signal in different time segments. The expression for
STFT [11] is:

YSTFT(m, n) =
N−1

∑
i=0

s(i)w∗(i − m) exp(−2πni/N), (6)

where YSTFT(m, n) represents the time-frequency spectrogram of signals, m and n stand for
the number of sampling points in the time domain and frequency domain, s(i) represents
the ith time domain signal, w∗(·) denotes the conjugate form of the window function,
N represents total number of sample. The interference signal established in this paper
is characterized using frequency domain analysis and time–frequency analysis, and the
results of both analyses are shown in Figure 1.

According to Figure 1a–e, it is obvious that the frequency domain analysis is able to show
the single-frequency and narrowband chirp modulation interference more distinctly, whereas
the characterization information is not well captured when facing other types of interference.
This is because frequency domain analysis is good at dealing with signals with more stable
frequency characteristics. But, for non-stationary signals, frequency domain analysis can
only tell us what frequency components are in the signal. Time–frequency analysis can
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reflect the frequency components of the signal more intuitively, we can distinguish between
different types of interference through the time–frequency spectrogram, and we can obtain
the time–frequency characteristics of the interference very well.
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For the complex interference echo signal established in this paper, frequency domain
analysis and time–frequency analysis are used to characterize the interference signal. The
analysis results of the two methods at a lower and higher ISR, respectively, are shown in
Figures 2 and 3.
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(a) Frequency domain analysis results of lower-ISR complex interference; (b) time–frequency analysis
results of lower-ISR complex interference.

Through comparison, it can be clearly seen that, when faced with complex inter-
ference, frequency domain analysis can only obtain information about which frequency
components the signal encompasses as a whole, lacking details about the appearance time
of individual components. Moreover, if the signal parameters have agility and exhibit
complexity, frequency domain analysis struggles to capture information effectively. Con-
versely, interference in the time–frequency spectrograms exhibits prominent edge features,
indicating distinct pixel transitions in the interfered regions. Simultaneously, distinctive
characteristics of each frequency component are clearly visible in these spectrograms.
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Based on the above analysis, the time–frequency spectrogram has the following ad-
vantages over the frequency spectrum:

• It can reflect the interference characteristic information more intuitively. Using STFT to
analyze the non-smooth signal, we can well obtain the time, instantaneous frequency,
and amplitude of the appearance of each component of the signal, and also the change
of signal frequency with time;

• The time–frequency spectrogram contains strong edge feature information. There are
relatively pronounced pixel transitions, which provide information for interference
detection and localization.

3. Methods and Model

Based on the modeling and analysis results in the second section, we observed that
interference detection based on time–frequency representations exhibits strong visual
characteristics. Furthermore, the excellent performance of visual transformer networks
in recent years in computer vision tasks encouraged us to use a transformer network
as the backbone for feature extraction. During experiments, we noticed that the multi-
head attention mechanism in visual transformers assigns different levels of attention to
various types of interference. To avoid unnecessary loss, we designed and utilized a feature
fusion module to combine the multi-head attention feature maps. We also noticed that
time–frequency representations possess strong edge features, even in scenarios with a
low ISR and complex interference types. These representations exhibit noticeable pixel
transitions. Consequently, we designed and used a detection head module that combines
edge detection and bounding box generation strategies. The module extracts interference
edge features, facilitating interference localization and labeling and ultimately producing
the final detection results.

This section first gives the overall framework of the SAR unsupervised interference
detection model that combines Canny edge detection with a vision transformer (CEVIT)
and then goes into detail on each of the key components.

3.1. Overall Framework

Similar to the object detection framework, the interference detection network is com-
posed of backbone and detection head [29–31]. Interference detection work consists of two
main components: a feature extraction module and a detection head module, as shown in
Figure 4.
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The feature extraction module is to extract features from the model input using a deep
learning network and obtain the feature map. The interference detection head module is to
locate and find the bounding box of interference in the feature map and finally output the
result after marking the interference.

3.2. Feature Extraction Module

The feature extraction module consists of two main parts: the backbone and the feature
fusion block.

3.2.1. Backbone

The backbone used to extract the features is the transformer structure. Dosovitskiy
et al. [18] proposed a vision transformer (VIT) to apply the transformer structure in image
classification in the field of computer vision. The core idea is to use the transformer
framework to process the images using non-overlapping patches as tokens. The whole
transformer network can be divided into two parts; one part is the feature extraction part,
and the other part is the classification part. In the feature extraction part, the input size of
H ×W image is divided into patches of K ×K size, and then the whole image is divided into
non-overlapping N = H × W/K2 patches, and then the divided patch is used as a token
and embedded with location information. At the same time, an additional learnable token
(noted as class token) is added into the sequence of images, and the patch token and the class
token are fed into the transformer encoder as embedded tokens for feature extraction. The
transformer encoder is composed of a number of transformer blocks, which are feedforward
networks consisting of a self-attention structure and layer normalization [32]. In the process
of extraction, the class token will interact with other features for feature interaction, fusing
features from other image sequences. In the classification phase, the class token, after
extracting features from the self-attention, is fully connected to achieve classification.
For the CEVIT, we used the semi-supervised learning transformer network proposed in
DINO [24] for feature extraction.
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3.2.2. Feature Fusion Block

The feature fusion block is designed to synthesize the advantages of the acquired
features to obtain more detailed information. The previous work used only one feature
from the last attention layer of the model as the output feature of the model in the feature
extraction part (for example, one of the Key, Query, and Value features) [26–28]. Multiple
attention [33] allows models to co-attend to information from different representational
subspaces at different locations. We note that multi-head attention mechanism of the
transformer network also outputs attention features, and each attention head focuses on
different aspects of the same image, as shown in Figure 5 below.
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To avoid the loss of information that might result from the use of a single feature,
the paper proposes a multi-head attention feature fusion block that averages all the multi-
head attention features and takes the fused feature map as the output of the whole feature
extraction module. The results of the comparison between the single feature map (K feature,
for example) and the fused feature map are shown in Figure 6 (take Figure 5a as an example
of an input image).

The feature map indicates how much attention the model pays to the image, with
blue indicating less attention and yellow indicating more attention. It can be clearly seen
that, compared to a single feature (K feature, for example), the fused feature map contains
less noise and pays more attention to the interference in the time–frequency spectrogram,
which is conducive to subsequent interference localization and framing. Thus, in this paper,
we used the fused feature map as the input to the subsequent detection head module.

3.3. Detection Head Module

The detection head module consists of two main parts: Canny edge detection and
detection box generation strategy. Canny edge detection is to highlight the regions in the
image where the pixel changes are obvious and then locate the regions of interference in
the image. The detection frame generation strategy is to generate the interference detection
frame and output the detection result according to the specified rules.
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3.3.1. Canny Edge Detection

The Canny edge detection algorithm was first proposed by Canny et al. [34]. Among
the current common edge detection methods, Canny edge detection is one with a well-
defined, reliable approach, which can be divided into the following four steps:

1. Apply Gaussian filter to remove image noise: In order to minimize the impact of noise
on edge detection results, noise needs to be filtered out to prevent false detections
caused by noise using a Gaussian filter convolved with the image to smooth the image;

2. Calculate the gradient strength and direction: Determine the edges based on the
gradient value and gradient direction of the image, i.e., calculate the location with the
strongest change in grayscale;

3. Eliminate false detections by using non-maximum suppression: The non-maximum
suppression [35] is to make blurred edges clear by comparing the gradient strength
of the pixel with the pixels in the positive and negative directions of the gradient
direction of the pixel and retaining the pixel if it has the largest gradient strength or
setting it to 0. After traversing the whole image, a thin line with the brightest color
will be retained in the edges;

4. Dual-threshold boundary detection: Using the upper and lower boundaries of the
threshold, the pixels in the image are determined as edges and non-edges, and all the
edge pixels are retained as real edges to form the final edge detection result.

In the edge detection stage, we noted two factors that affect the efficiency of subsequent
interference detection and localization: the size of the convolution kernel of the Gaussian
filter and the dual-threshold boundary. The size of the convolution kernel affects the
computational speed. A large convolutional kernel can cover a larger area of the input
image, which helps to capture global features and structural information, but it requires
more parameters, which increases the complexity and computational cost of the model, and,
at the same time, it is easy to lose the detailed information of the interference in the case of
a lower ISR. Smaller convolutional kernels can better capture local features and texture of
the input image, and can obtain more detailed information when facing the interference of
parameter shortcuts, and, thus, in this paper, when choosing the commonly used Gaussian
convolutional kernels, we chose smaller convolutional kernels to filter out image noise. The
dual-threshold boundary affects the accuracy of edge detection, i.e., it affects the accuracy
of the detection box. In the experimental process, we noticed that the percentage of the
interfered region in the time–frequency spectrogram for the data used in the experiments is
much smaller than that of the not-interfered region, and, at the same time, the pixel value



Remote Sens. 2024, 16, 306 12 of 23

in the time–frequency diagram tends to stabilize after the pixel value is close to 10, i.e.,
there is only a small portion of pixels higher than this value. At the same time, in order to
avoid the misdetection caused by the appearance of the individual strong-point targets in
the time–frequency spectrogram, the authors set the lower bound of the double-threshold
detection at 15. Separately, the distribution function of pixels for different ISRs is shown in
Figure 7 (from left to right, the ISRs are 5 dB, 8 dB, and 10 dB, respectively).
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After Canny edge detection, the interfered edge pixels in the feature map will be
highlighted, and the pixels that are connected to each other and the number of connections
greater than 1 are detected by using the connectivity domain so as to form a number of
closed, unconnected blocks of highlighted pixels in the feature map and to complete the
localization of the interference in the edge detection.

3.3.2. Detection Box Generation Strategy

After generating the edge detection results, the detection box generation strategy
traverses the locations of the highlighted pixel blocks in the whole feature map. We
consider the highlighted pixel blocks on the feature map as the interference to be detected.
At the same time, by setting the detection protection interval to 1, the ones that are larger
than the detection protection interval are considered to be different interference; and, vice
versa, they are considered to be the same interference. In this way, the location of different
interference is recorded, and the interference detection box is generated to output the final
time–frequency spectrogram interference detection result.

4. Experiments and Results

This section first constructs the dataset used for experiments and then introduces the
evaluation metrics employed in this paper. Finally, the performance of the proposed model
is validated through experiments on both simulated and real data.
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4.1. Dataset Preparation

The data used in the experiments consist of X-band airborne SAR echo data and C-
band European Space Agency (ESA) Sentinel-1 echo data. The basic parameters are shown
in Table 1.

Table 1. Basic parameters of two kinds of SAR echoes used in simulation and experiments.

Attribute Airborne SAR Echoes Sentinel-1 Echoes

Wave Length (m) 0.03125 0.05547
Chirp Rate (Hz/s) −2 × 1014 1.1 × 1012

Pulse Width (s) 2.4 × 10−6 5.24 × 10−5

Range Sample Rate (MHz) 548.57 64.34
Velocity (m/s) 154.20 7575.62

Prf (Hz) 533.33 1717.13

The imaging result and original time–frequency spectrogram of the raw echo data of
the airborne SAR are shown in Figure 8.
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Adding interference to the airborne SAR echo data, Equation (1) can be expressed
as follows:

S(m, n) = Xorigin(m, n) + I(m, n), (7)

where n is the time unit in the range, m is the mth pulse in the azimuth, Xorigin(m, n)
repersents the uninterfered echo signal. The formula used in this paper to calculate the
interference-to-signal ratio (ISR) is defined here:

ISR = 10 log10(
∑
∣∣Xs − Xorigin(m, n)

∣∣2
∑
∣∣Xorigin(m, n)

∣∣2 ), (8)

where n is the time unit in the range, m is the mth pulse in the azimuth Xs represents
interfered echoes, Xorigin(m, n) represents the uninterfered echo signal. According to
Equation (8), the interference is added to the echoes after the de-carrier frequency, and
the ISR is between 5 and 10 dB. The specific parameters and types are shown in the
Table 2 below.
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Table 2. Interference type and basic parameters.

Interference Type Parameters Values

ISF Numbers 1 ∼ 3

INBCM

Bandwidth <10 MHz
Chirp Rate 0.1 × 1014 ∼ 0.3 × 1014

Numbers 1 ∼ 3

IWBCM

Bandwidth 80 ∼ 250 MHz
Chirp Rate 0.8 × 1014 ∼ 1.0 × 1014

Numbers 1 ∼ 3

INBSM

Bandwidth <50 MHz
Modulation Coefficient 1 ∼ 5

Initial Phase 0 ∼ π
Numbers 1 ∼ 3

IWBSM

Bandwidth 50 ∼ 100 MHz
Modulation Coefficient 20 ∼ 25

Initial Phase 0 ∼ π
Numbers 1 ∼ 3

The simulation data of airborne SAR interfered echoes under different ISRs are es-
tablished by using the above parameters. Some of the time–frequency spectrogram and
imaging results of the interfered echoes are shown in Figure 9, and the dashed box in
Figure 9b marks the location of the interference.
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Figure 9. Examples of the time–frequency spectrograms and imaging results of the interfered echoes.
Dashed frame of different colors indicates different interference in the image. (a) Time–frequency
spectrograms; (b) imaging results.

Real interfered echo data from the ESA’s Sentinel-1: The SAR data used in the exper-
iment come from Sentinel-1, with Sentinel-1A launched on 3 April 2014 as the first envi-
ronmental monitoring satellite in the Copernicus program. Sentinel-1B was successfully
launched on 25 April 2016, allowing both satellites to operate simultaneously, effectively
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doubling observation efficiency with a repeat cycle of 6 days. On 23 December 2021, the
ESA and the European Commission announced that it was the end of the mission for
Sentinel-1B. The data used in this experiment are the original echo data from Sentinel-1B in
Interferometric Wide Swath (IW) mode on 15 April 2020. The interfered image domain and
the overall interfered echo are shown in Figure 10.
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Figure 10. The interfered image domain and echo domain of Sentinel-1. (a) Interfered image domain
of Sentinel-1; (b) overall interfered echoes of Sentinel-1.

The experimental dataset is composed of a test set without annotations and a val-
idation set with annotations. The test set contains airborne SAR echo data at different
ISRs, including 1000 interference time–frequency spectrograms from each ISR, totaling
5000 images. The validation set is 30% randomly selected from the airborne SAR echo data
with annotation information added, along with 133 real Sentinel-1 interfered data. The
total number of images in the validation set is 1633 with annotation information.

4.2. Evaluation Index and Experimental Details

To validate the detection performance, evaluation indexes are established using
Precision, Recall, F1-score and frame per second (FPS), in this paper, FPS denotes the
time required each time-frequency spectrogram to be detected, and the expressions of
Precision, Recall, F1-score are as follows:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1-score =
2 × Precision × Recall

Precision + Recall
(11)

where TP represents true positive; FP is false positive; FN stands for false negative. The
terms TP, FP, and FP are calculated from the Intersection over Union (IoU) between the
bounding boxes of ground truth and the bounding boxes of prediction as follows:

IoU =
DR ∩ GT
DR ∪ GT

(12)
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where DR represents the bounding boxes of detection result; GT stands for the bounding
boxes of ground truth.

To validate the performance of the proposed model in this paper, we evaluate the
model by comparing several unsupervised target detection models, including LOST, Cutler,
and Tokencut, while evaluating the models based on visual results for the test dataset and
numerical results using evaluation indexes on the validation dataset.

The experiments are conducted using the PyTorch 1.11.0 framework on a computer
running Ubuntu 20.0 with a CUDA version 11.3 and an RTX 3080 GPU for testing and
validation. The input and output image sizes are set to 875 × 656, and the experiments use
a VIT model pre-trained on ImageNet with DINO [24] VIT-B version, patch size 16 × 16.
The Canny edge detection uses a Gaussian convolution kernel size of 3 × 3 [36,37], and
the dual-threshold range is set to [15, 80]. In the interference detection, any pixel block
highlighted by the edge detection with more than 1 is considered candidate interference,
and the protection interval for interference detection is set to 1. IoU > 0.5 is considered
true positive.

4.3. Experimental Results
4.3.1. Test Set Detection Results

In this section, we use data without annotations to compare CEVIT, LOST [26], Cut-
ler [28], and Tokencut [27] from different ISRs to show the detection results of the model
proposed in this paper from the more intuitive visual detection results. Some of the test
results are shown in Figure 11; the ISRs of the five time–frequency spectrograms are 5 dB,
5 dB, 6 dB, 8 dB, and 10 dB.

As shown in Figure 11, the ISR becomes gradually larger from left to right, i.e.,
the interference power is becoming larger and larger. The interference is selected by
the red box or colored box in Figure 11, and it can be clearly seen that the detection
performance of all the models increases with the increase in the ISR. In the case of complex
interference, comparing (a) CEVIT, (b) Cutler [28], and (c) LOST [26], at a lower ISR,
compared to the other two methods, CEVIT is able to detect more interfered regions in the
time–frequency spectrograms and has fewer missed detections. Cutler tends to generate
more false negatives, indicating it might miss some interference, while LOST struggles to
produce robust detection results. As the ISR increases, CEVIT and Cutler perform quite
similarly and can accurately detect interference. However, LOST’s performance is limited as
it can only identify the location of the most prominent interference component in the image.
The generated results and analysis may be attributed to the inclusion of the feature fusion
module, which enables the model to focus more on global changes in the entire image
rather than local variations. Additionally, the inclusion of the detection head module allows
the model to represent the feature changes it captures as variations in interference power
and type. Ultimately, this empowers the proposed model to excel in detecting interference
under conditions of lower ISR and multiple types of interference. In contrast, Cutler’s
self-training mechanism causes the model to depend more on previous detection results,
resulting in a significant influence of previous results on the overall detection when the ISR
is low. LOST, in its target localization process, selects the patch with the highest feature
quantity as the seed and then searches the surroundings, making the detection results
sensitive to the seed’s initial placement. As for the Tokencut method, it only selects the
patch with the second smallest feature vector as the target when choosing feature quantities,
limiting its ability to detect only a single interference source. However, it is notable that the
model performs well in accurately locating the position of the most powerful interference.

Overall, CEVIT appears to offer a strong balance of performance across various ISR
levels, making it an effective choice for interference detection in a complex interference
environment.
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4.3.2. Validation Set Detection Results

This section uses data containing annotation information to verify the performance of
the proposed method in this paper in terms of evaluation indexes of the validation dataset,
comparing CEVIT, Cutler, and LOST from the numerical results of the evaluation indexes
and some of the experimental visualization results. The numerical results of the evaluation
indexes and parts of the visualizations are shown in Table 3 and Figure 12. In Table 3, the
best numerical results are bolded.

Table 3. Performance comparison for interference detection for the validation dataset.

Method 1 Recall Precision F1-Score FPS

Cutler [28] 0.5989 0.8239 0.6448 1.89
LOST [26] 0.4229 0.7408 0.4695 0.82

Ours 0.7802 0.7949 0.7871 1.48

According to the table, the proposed model achieved the best results with a Recall of
0.7802 and an F1-score of 0.7871, demonstrating a significant improvement compared to
the second-best performer. It obtained the second-best results in Precision and FPS, with a
minor reduction compared to the top-performing Cutler.
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In Figure 12, some visualized detection results are presented. Five randomly selected
images from the validation set are used to compare the detection performance of the
three methods. Interference is highlighted by red or colored boxes. It is evident that
CEVIT can generate a higher number of detection boxes but with a slightly decreased
precision in delineating the boundaries of interference. Cutler exhibits high accuracy in
interference detection but may produce some false negatives. LOST can effectively detect
strong interference in a high ISR but falls short in complex interference detection. In terms
of overall detection performance, CEVIT results in fewer false negatives and excels in
interference detection.

Comparing the three methods on real interfered Sentinel-1 echo data, the numerical
results of the evaluation indexes and visualization results are shown in Table 4 and Figure 13.
In Table 4, the best results are bolded.

Table 4. Performance comparison for interference detection for the Sentinel-1 data.

Method 1 Recall Precision F1-Score FPS

Cutler [28] 0.7242 0.8103 0.7552 1.92
LOST [26] 0.6894 0.6724 0.6377 0.62

Ours 0.8722 0.7838 0.9115 1.53
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It is evident that the Cutler model achieves the highest accuracy and detection speed,
while the proposed model in this paper outperforms in terms of Recall and F1-score.
This analysis can be attributed to the fact that the Cutler model places a high emphasis
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on accuracy requirements and is designed for object detection in natural images. This
design leads the model to focus more on global features rather than local pixel variations,
resulting in faster image detection but potentially leading to false negatives for low-power
interference. In contrast, the proposed model attempts to perform feature-based searches
on the feature map, utilizing edge detection within the detection head. This approach pays
attention to pixel transition positions while introducing a relatively smaller computational
overhead. As a result, it detects more interference without significantly compromising
accuracy and detection speed, leading to noticeable improvements in Recall and F1-score.
Some visualized detection results are presented in Figure 13.

5. Discussion

Although the proposed model shows a significant improvement in overall detection
performance, we notice that, at a lower ISR, the model tends to produce more false alarms,
especially for wideband interference, leading to a noticeable drop in accuracy. In Figure 14,
we present a set consisting of an interfered time–frequency spectrogram, a feature map, an
edge detection map, and the detection result.
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The different colors in Figure 14c indicate the level of attention of the model, with
higher highlighting indicating a higher level of attention. The yellow frames in Figure 14d
indicate the result after edge detection. The red frames in Figure 14e indicate the result of
detection The inclusion of narrowband sinusoidal interference, wideband chirp interference,
and single-frequency interference can be clearly seen in the time–frequency spectrogram,
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while, in the attentional characterization plot, clear narrowband sinusoidal and point
frequency interference can be noted, but a weaker characterization of the wideband chirp
leads to its identification as multiple targets in the subsequent processing of the detector
head module. Also, based on our experiments, the presence of such a problem for the
interference of the wideband sin modulation is also noted. We judge that the reason for this
problem is that the energy of the wideband signal tends to be evenly distributed within
the bandwidth, which makes the interference power weaker compared to the narrowband
signal, thus leading to the obvious parts of the extracted features. We note that, in the
multi-head attention map, each attention head pays different attention to different types
of interference, and the feature fusion block used in this paper only adopts the sum mean
approach in fusing multi-head attention features, which lacks the targeted extraction of
interference characteristics for each type of interference and thus results in the power of the
extracted narrowband signal being higher than that of the wideband signal. In subsequent
work, we will design and optimize the optimal weighted feature fusion block from the
characteristics of interference types, weight the output of the attention of different heads,
and realize the optimal extraction of features so as to reduce the false detection rate.

6. Conclusions

In this paper, an unsupervised SAR interference detection network based on a trans-
former and edge detection is proposed. The whole network consists of a feature extraction
block, a feature fusion block, and a detection head module. By transforming the received
echoes into the time–frequency domain, the time–frequency spectrogram is used as the
input of the network; the pre-trained transformer is used as the backbone network to
extract features; the multi-attention features are fused through the feature fusion block
and fed into the detection head module; and the time–frequency spectrogram interference
detection results are generated using Canny edge detection combined with the detection
box generation strategy. Experiments on an airborne SAR simulation dataset and Sentinel-1
real interference echo data show that the method can obtain better detection results for
many types of interference under a complex interference environment, and the detection
consumes less time while obtaining good detection results. The Recall and F1-score im-
prove by nearly 20%. The detection results on Sentinel-1 real interference echo data are the
best results compared to those of other methods (Recall reaches 0.8722 and F1-score reaches
0.9115). The proposed method in this paper provides a new way and idea for real-time
detection of interference in SAR systems.

However, the method proposed in this paper still has shortcomings, with more missed
detections of wideband interference at a lower ISR. We will consider the characteristics
of different interference, and our subsequent work will be centered around an optimally
weighted feature fusion block and will attempt to lighten the model to maintain a faster
detection speed while improving the detection accuracy.
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