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Abstract: The accurate detection of relevant vehicles, pedestrians, and other targets on the road plays
a crucial role in ensuring the safety of autonomous driving. In recent years, object detectors based
on Transformers or CNNs have achieved excellent performance in the fully supervised paradigm.
However, when the trained model is directly applied to unfamiliar scenes where the training data
and testing data have different distributions statistically, the model’s performance may decrease
dramatically. To address this issue, unsupervised domain adaptive object detection methods have
been proposed. However, these methods often exhibit decreasing performance when the gap between
the source and target domains increases. Previous works mainly focused on utilizing the style gap to
reduce the domain gap while ignoring the content gap. To tackle this challenge, we introduce a novel
method called IDI-SCD that effectively addresses both the style and content gaps simultaneously.
Firstly, the domain gap is reduced by disentangling it into the style gap and content gap, generating
corresponding intermediate domains in the meanwhile. Secondly, during training, we focus on one
single domain gap at a time to achieve inter-domain invariance. That is, the content gap is tackled
while maintaining the style gap, and vice versa. In addition, the style-invariant loss is used to narrow
down the style gap, and the mean teacher self-training framework is used to narrow down the content
gap. Finally, we introduce a multiscale fusion strategy to enhance the quality of pseudo-labels, which
mainly focus on enhancing the detection performance for extreme-scale objects (very large or very
small objects). We conduct extensive experiments on four mainstream datasets of in-vehicle images.
The experimental results demonstrate the effectiveness of our method and its superiority over most
of the existing methods.

Keywords: domain adaptation; object detection; domain gap disentanglement; inter-domain
invariance

1. Introduction

Object detection (i.e., accurate classification and localization of objects of interest) based on
optical images is a fundamental task [1] for remote sensing technology applied in autonomous
vehicles. In recent years, due to the rapid development of deep learning, object detection
methods has made huge breakthroughs. However, the performance mentioned above mainly
obtained through training with labeled datasets under the fully supervised paradigm, but in
real scenes, it is not feasible to always obtain labeled images. The variance of data will result in
a significant decrease when these methods are applied to unfamiliar scenes. For autonomous
driving, a remedy is to install many auxiliary sensors (such as LIDAR, etc.) to ensure the robust
detection, but the cost is extremely high, far from reaching practicality.

Many studies [2–4] have shown that the domain shift between the training and the
testing dataset primarily makes the performance degradation. To tackle this, many un-
supervised domain adaptations (UDA) [5] have been used. In an UDA framework, the
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labeled datasets often play as a “source” domain while the unlabeled one plays as the
“target” domain; the method will try to transfer the knowledge from the source domain
to the target domain. Thus, the UDA methods can maximize the utilization of both la-
beled/unlabeled data while mitigating the impact of domain discrepancy. Existing UDA
methods can be divided into two categories: based on adversarial learning [4,6–15] and
based on self-training [16–18]. Adversarial learning leverages GAN [19] or its variants to
acquire domain-invariant features, enabling the transfer of detection knowledge, thereby
enabling the model to perform well in the target domain. Self-training involves generating
pseudo-labels directly using the model, then retraining the model to optimize the pseudo-
labels, incrementally improving the model’s adaptability. However, it is difficult for both
of these methods to cross large domain gaps [20] due to the rough alignment strategy, for
example, adversarial learning is unstable and easily obtains artifacts. Self-training methods
have the same problem.

To tackle this problem and narrow the domain gap, some works [20,21] use intermedi-
ate domains to progressively implement unsupervised domain-adaptive object detection
(UDA-OD) [22], but these methods mainly focus on how to reduce the style gap (e.g.,
the difference in color, texture, and brightness between the source and target domain)
while ignoring the content gap (e.g., the variance in the traffic patterns and landscapes
between the source and target domain). Inspired by previous research, we have discovered
the ability to change image styles while preserving image content through stylization
operations. Figure 1 illustartes our idea. CycleGAN [23], with its bi-directional nature,
allows us to obtain intermediate domain images that possess distinct style and content
gaps compared to the source domain images, simultaneously. Therefore, in this paper, we
use CycleGAN to decouple the domain gap into the style and content gap, and generate a
corresponding “synthetic domain” for subsequent model training. In order to make the
model learn inter-domain-invariant features, we only deal with one gap at a time during
the training process, adopting an alternating training strategy. For the style gap, we use
the “style-invariant” loss to force the model to output the same prediction results under
style changes. As for the content gap, we mainly adopt the mainstream mean teacher
self-training [24] framework to enable the model to learn inter-domain content-invariant
features. Finally, we transfer knowledge from the source domain to the target domain and
make great improvement.

Our proposed method has the following four main contributions:

(1) Due to the negative relationship between the size of the domain gap and the perfor-
mance of the detector, as well as the neglect of the content gap within the domain gap,
we decouple the domain gap into the style and content gap to reduce the domain gap
and generate the corresponding synthetic intermediate domain datasets.

(2) To ensure the effective learning in the inter-domain invariance, we employ alternating
learning to separately handle the style and content gap. Additionally, we utilize
style-invariant loss and the mean teacher self-training framework to address the style
and content gap, respectively.

(3) We introduce a multiscale fusion strategy to enhance the detection performance of
extreme-scale (very large or very small) objects, thereby improving the quality of
pseudo-labels.

(4) Through comprehensive experiments conducted on various adaptation benchmarks
in the context of autonomous driving scenarios, we have demonstrated that our
proposed method outperforms the majority of existing methods.
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Figure 1. Main idea of traditional method and our method. (a) In most traditional methods, both
advertised training and self-training directly handle the domain gap to achieve cross domain object
detection. (b) Due to the adverse effect of domain gap on the performance of cross-domain object
detection, we employ CycleGAN [23] to decouple the domain gap into the style and content gap,
thereby reducing the domain gap. At the same time, in order to ensure inter-domain invariance,
we adopt alternating training to separately handle the style and content gap to avoid interference
between the two information about the style and content factor.

2. Related Work
2.1. Object Detection

The main task of object detection is to locate the bounding boxes of objects and deter-
mine their categories. Relevant research can be divided into traditional methods [25–28]
and deep learning-based methods [29–43]. Traditional object detection algorithms are
essentially sliding window + traditional machine learning classifiers, which mainly rely on
handcrafted algorithms and the corresponding generated features. However, with the ad-
vent of big data and the era of deep learning in recent years, significant breakthroughs have
been made in object detection. Currently, object detection models are mainly divided into
two categories: two-stage and one-stage. In two-stage object detection algorithms, the pri-
mary ones are the RCNN series algorithms [29–32], which consist of two steps: generating
candidate regions, extracting features from these regions and performing object classifica-
tion and bounding box regression. Due to the limitations of the two-stage approach, this
method inevitably leads to lower detection efficiency. On the other hand, one-stage object
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detection techniques effectively address this issue. This category of algorithms includes the
YOLO series [33–36] and SSD [37,38], among others.

In recent years, after the application of ViT [39] in object detection, transformer-based
detection algorithms have emerged. These algorithms can mainly be divided into two series:
Transformer Neck and Transformer Backbone, which focus on replacing CNN-based Neck
(Backbone) with Transformer-based Neck (Backbone). For Transformer Neck, the main works
are DETR [40] and its variant Deformable DETR [41]. For Transformer Backbone, the most
significant works are Swin Transformer [42] and PVT (Pyramid Vision Transformer) [43]. These
works mainly focus on how to better extract image feature using Transformer. Due to the state-
of-the-art performance of the Swin Transformer algorithm and its variants on the COCO [44]
dataset, we choose Swin Transformer [42] as our baseline detector to improve its cross-domain
detection performance in autonomous driving scenarios.

2.2. Unsupervised Domain Adaptive Object Detection (UDA-OD)

UDA-OD is an effective method that uses the UDA approach to solve cross-domain
object detection from the labeled source domain to the target domain. Among these
approaches, they can be mainly divided into two categories: adversarial learning and self-
training. Adversarial learning approaches primarily utilize GAN [19] to align the features
between the source and target domains, aiming to achieve cross domain object detection.
Domain-adaptive faster RCNN (DAF) [4] is the first method that utilizes adversarial
training to address unsupervised domain adaptive object detection by aligning features.
Subsequent works based on adversarial learning differ mainly in the location of feature
alignment: image-instance feature alignment [6–8], global-local feature alignment [9–12],
and object region feature alignment [13–15].

In recent years, studies have shown that self-training is more stable and effective
compared to adversarial training. One of the most prominent approaches is utilizing the
mean teacher [24] self-training framework, which extends the idea from semi-supervised
object detection to UDA-OD. MTOR [16] utilizes the mean teacher framework to consider
consistency at both the region level and graph structure level, enabling cross-domain object
detection. Unbiased mean teacher (UMT) [17] reduces the student and teacher model bias
by combining CycleGAN with mean teacher [24]. Despite the performance improvement
achieved by MTOR and UMT, during the training process, the pseudo-labels generated by
the teacher model still have a certain error rate due to domain shift. Ref. [20] proposed uti-
lizing CycleGAN to stylize the source domain and generate intermediate domain with the
style of the target domain. By leveraging the intermediate domain and the target domain,
the aim is to effectively reduce the domain gap and subsequently perform cross-domain
object detection. Adaptive teacher (AT) [18] combines adversarial learning with the mean
teacher framework to narrow the domain gap through adversarial learning in the student
model, thereby enhancing the quality of pseudo-labeling and further improving model
performance. Contrastive mean teacher (CMT) [45] delves into the intrinsic connection
between mean teacher self-training and contrastive learning. Based on this, it naturally
integrates the two paradigms of contrastive learning and mean teacher, aiming to maximize
beneficial learning signals. This method uses pseudo-labels to extract object-level features
and optimizes them through contrastive learning without requiring labeling in the target
domain. Owing to the popularity of DETR-style detectors, sequence feature alignment
(SFA) [14] has introduced a cross-domain detector based on deformable DETR. O2net [46]
also proposed an end-to-end detector based on multilevel feature alignment and a mean
teacher framework.

While the aforementioned generation of intermediate domain images effectively re-
duces the domain gap, they only utilize labeled source domain images with the style of
the target domain, overlooking the unlabeled source domain images with the style of the
target domain. In this paper, we consider two intermediate domains that have both style
and content gaps from the source domain. We employ alternating training to address these
two differences separately, thereby preserving inter-domain invariance.
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2.3. Pseudo-Label Optimization

In the mean teacher self-training framework, one crucial aspect for cross-domain
performance of models is the quality of pseudo-labels. Therefore, improving the quality
of pseudo-labels has become a research focus for many scholars. PCdKD [47] proposes a
two-stage strategy that combines domain adaptation and knowledge distillation, gradually
achieving feature-level adaptation to obtain reliable pseudo-labels. SC-UDA [48] utilizes
uncertainty-based detection pseudo-labeling to obtain better pseudo-labels for training.
Mixteacher [49] generates high-quality pseudo-labels using a mixed-scale feature pyramid.
Inspired by Mixteacher [49], we are giving more attention to extreme scale targets, i.e.,
very large or very small size targets. Therefore, in this paper, we apply a multiscale fusion
strategy to optimize the pseudo-label generation process in the teacher model.

3. Method
3.1. Overview

In the context of UDA-OD problem, we require a source domain S and a target domain
T , where S contains Ns labeled images Ds = {(Xs, Ys)}, and T contains Ts unlabeled images
Dt = {Xt}. Xs and Ys represent the image and its corresponding label in the source domain,
while Xt represents the image in the target domain. Due to the negative correlation between
the size of the domain gap between the source and target domains and the performance
of cross-domain detector mentioned above, we utilize CycleGAN [23] to decouple the
domain gap into the style and content gap, and simultaneously generate two corresponding
synthetic intermediate domains (M1 andM2).

The main structure of the IDI-SCD proposed in this paper is shown in Figure 2.
Regarding the models used during training, we primarily establish two models: the student
model Fs and the teacher model Tt. The student model serves as the main model and is
utilized for supervised training in the source domain and style-invariant training to adress
the style gap. Additionally, it forms the Mean Teacher self-training framework along with
the teacher model to handle the content gap. During the model training, it is essential to
ensure inter-domain invariance, meaning that the content varies while the style remains
the same, and vice versa. To achieve this, we employ alternating training, ensuring that
each iteration during training only one gap is addressed, thus avoiding mutual interference
during knowledge transfer.

3.2. Supervised Training in the Source Domain

In the mean teacher self-training framework, it is of utmost importance to ensure that
the teacher model obtains reliable pseudo-labels at the beginning of training. To achieve
this goal, we employ supervised training and initialization of the student model using
labeled images Ds = {(Xs, Ys)} from the source domain. The supervised loss can be defined
as follows:

Lsup(Xs, Ys) = Lcls(Xs, Ys) + Lreg(Xs, Ys) (1)

where Lcls(Xs, Ys) and Lreg(Xs, Ys) represent the classification loss and bounding box
regression loss, respectively.

3.3. Style Invariant Loss

Through the stylization operation of CycleGAN, we have discovered that each image
inputted into the student model possesses two styles: the source domain style and the target
domain style. Most methods [20,21] only utilize the source domain images with the target
domain style while disregarding the the images in the source domain. However, when it
comes to cross-domain object detection, it is crucial to achieve output invariance for images
with different styles but identical content. In this paper, We ensure output invariance by
maintaining the invariance of features generated by Feature Encoder (Backbone) for both
S andM1, thereby enabling the model to maintain invariance for images with the same
content as the input.
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Figure 2. The proposed method. (a) By decoupling the inter-domain gap into the style and content
gap, we simultaneously obtain two datasets that have distinct style and content gap from the source
domain. To address the style and content gap, we have designed two separate sub-workflows
specifically tailored to handle each of them. For style gap, we utilize the style-invariant loss to ensure
that the student model maintains feature invariance when there is only a change in style in the input
image, thereby ensuring consistency in the output results. On the contrary, we employ the mean
teacher self-training framework to address content gap, while utilizing a multiscale fusion strategy
to obtain higher-quality pseudo-labels. (b) To maintain inter-domain invariance and prevent infor-
mation interference during the handling of different domain gaps, we train the two sub-workflows
alternately. Additionally, to ensure effective gradient backpropagation, we only perform gradient
backpropagation on the student model, while updating the parameters of the teacher model using
exponential moving average (EMA) based on the student model’s parameters.

More specifically, we divide the model into two parts: Feature Encoder (Backbone) g and
Detector (Bbox Decoder) h. For two input images Xs and Xm1 with the same size and different
style, the output feature representations of the model are denoted as g(Xs) and g(Xm1). We
define the feature invariance loss, also known as style-invariant loss, as follows:

Lstyle
inv (g(Xs), g(Xm1)) =

1
K

K

∑
i=1

1
Ci HiWi

||gi(Xs)− gi(Xm1)||22 (2)

where gi is output of the ith layer of the Feature Encoder (Backbone) g(x) when processing the
image x, which is a feature map of shape Ci×Hi×Wi. || ∗ ||22 represents the Euclidean distance.

3.4. Self Training in the Target Domain

As obtaining real labels for supervised training in the target domain is not feasible,
we utilize the pseudo-labels generated in the target domain to train the model. However,
relying solely on pseudo-labels for training may lead to deviation in the model’s prediction
results due to their quality. Therefore, in this paper, we adopt the ConfMix [50] to mix the
source domain and the target domain, which imposes certain constraints on the model
using the real labels of the source domain, achieving a similar “semi-supervised” purpose.

To be specific, first, the image Xt from the target domain is input into the teacher model
to obtain a series of classification scores for candidate foreground objects, as well as their
corresponding bounding box coordinates. Next, the scores that are greater than a threshold
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τ are retained to obtain the final pseudo-labels Ỹt. In this step, we utilize a multiscale
fusion strategy to improve the quality of the pseudo-labels. Finally, based on the scores
of the pseudo-labels, the average score of each region (here, each image is divided into
four regions) is calculated to determine which area will be blended with the source domain
image. As a result, we can obtain the mixed image Xmix along with its corresponding labels
Ymix. With this setup, we train the model with Xmix and Ymix; the loss Lmix can be defined
accordingly:

Lmix(Xmix, Ymix) = Lcls(Xmix, Ymix) + Lreg(Xmix, Ymix) (3)

As illustrated in Figure 2 ➁, the gradient backpropagation of the teacher model is
frozen. However, as the training progresses, we need to update the teacher model param-
eters to obtain better pseudo-labels, so we employ exponential moving average (EMA)
to update the parameters of the teacher model using a subsequent formula. Specifically,
during training, the parameters of current teacher model is the linear sum of the parameters
of previous student and teacher model from the previous training iteration.

ϕt+1 ← αϕt + (1− α)θt (4)

where θt and ϕt represent the parameters of the student and teacher models at time t,
respectively, and ϕt+1 represents the parameters of the teacher model at time t + 1. In the
context of t and t + 1, they denote the previous iteration and the current iteration during
model training. The smoothing coefficient hyperparameter is denoted as α.

3.5. Pseudo-Label Optimization Based on Multi-Resolution

In previous methods [17,18], resized images were input into the teacher model to obtain
pseudo-labels. However, images at that size are not able to effectively detect extremely large
or small objects. Therefore, in this paper, we perform upsampling and downsampling on the
images separately, making them suitable for detecting extremely small or large targets and
propose the multiscale fusion strategy. The detail is illustrated in Figure 3.

Figure 3. Illustration of the multiscale fusion strategy. When generating pseudo-labels with the
teacher model, we simultaneously input three images of different resolutions and generate three sets
of pseudo-labels. Next, we will perform the inverse operation on the coordinates of the pseudo-labels
generated from the upsampled and downsampled images, in order to map the coordinates back to
the original image’s coordinate space. Finally, we merge the three sets of processed pseudo-labels
and perform non-maximum suppression (NMS) to obtain the optimized pseudo-labels.
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Specifically, firstly, we upsample and downsample the images and input them together
with the original image into the teacher model, obtaining three sets of pseudo-labels. Next,
we will map all the coordinates from three sets of pseudo-labels back to the original image’s
coordinate space. Finally, we merge the three sets of pseudo-labels and filter the merged
pseudo-labels using NMS to obtain the final pseudo-labels.

3.6. Total Loss

As illustrated in Figure 2, We utilize the alternation of ➀ and ➁ for training to sep-
arately address the style and content gap. For the alternating training, the models are
trained with ➀ during odd iterations (l = 2n + 1) and ➁ during even iterations (l = 2n).
Meanwhile, we utilize EMA to update the parameters of the teacher model in each iteration.

As a result, the total loss can be calculated as follows:

Ltotal =

{
Lsup(Xs, Ys) + λ1Lmix(Xmix, Ymix) l = 2n

Lsup(Xs, Ys) + λ2Lstyle
inv (g(Xs), g(Xm1)) l = 2n + 1

(5)

where λ1 is a dynamically changing hyperparameter based on the quality of the pseudo-
labels and λ2 is a tunable hyperparameter.

4. Experimental Result
4.1. Datasets

In our experiments, we use four public datasets: Sim10k [51], BDD100K [52], Cityscapes [53]
and Kitti [54] to evaluate our proposed method.

Sim10k [51] is an synthetic dataset rendered directly by the GTA5 game engine,
consisting of 10,000 images and 58,701 corresponding car annotations.

Kitti [54] is a real-world dataset collected in various road scenes, which comprises
7481 training images. The annotations of this dataset mainly consist of eight classes related
to road targets. In this paper, we only use the “car” category to evaluate the performance
of the model in cross-camera adaptation.

BDD100K [52], a large-scale autonomous driving dataset with various time periods,
diverse weather conditions (including sunny, cloudy, and rainy, as well as different times
of day such as daytime and evening), and driving scenes. In our experiment, we select and
obtain images captured under sunny weather conditions to validate the adaptability of our
model to scene variations.

Cityscapes [53] is a dataset captured in urban autonomous driving scenarios, including
2975 images for training and 500 images for validation.

Based on the aforementioned four datasets, we can obtain two cross-domain scenarios
under autonomous driving conditions: (1) synthetic to real adaptation (Sim10k→ Cityscapes),
where the images in the source domain and target domain are captured from the syn-
thetic and real-world scenarios; (2) across-cameras adaptation (Cityscapes→ BDD100k and
KITTI→ Cityscapes), where all the three datasets are taken from various cities using different
cameras. The combination of all datasets and cross-domain scenarios is presented in Table 1.

Table 1. The combination of different cross domain scenarios. S, C, K and B represent Sim10k,
Cityscapes, KITTI, and BDD100k, respectively.

Trainig Set Validation Set
Cross Domain Scenarios

Source Domain Target Domain Target Domain
KITTI Cityscapes Cityscapes

S→ C
10,000 2975 500

Sim10k Cityscapes Cityscapes
K → C

7481 7481 500

Cityscapes BDD100k BDD100k
C → B

2975 36728 5258
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4.2. Implementation Details

In this paper, RetinaNet [38] serves as the benchmark detector, and the original ResNet
is replaced with Swin-T as the new backbone. During training, the student model is trained
by the SGD [55] with a learning rate of 0.00125 and a batch size of 2. Moreover, in order
to make model training more stable, we implement a linear learning rate warmup in the
first 0.5k iteration. Regarding the image size, We followed [18] to adjust the shorter side
of all images to 600 and keep the image aspect ratio constant. For the hyperparameters in
the mean teacher self-training framework, we set the score threshold τ for pseudo-label
filtering to 0.7, and the smoothing coefficient α for EMA to 0.999. The total number of
iterations is set to 80k. The default value λ2 of the weights in Equation (5) is set to 10 for
synthetic-to-real adaptation, and 5 for across-cameras adaptation. All experiments were
conducted using the mmdetection framework [56] and PyTorch [57].

4.3. Performance Comparison

Synthetic-to-Real Adaptation. In previous research, we have typically collected data
manually and annotated it artificially. However, this approach is time-consuming, labor-
intensive, and costly. With the advancement of data synthesis engines, it is now possible to
automatically generate synthetic datasets and corresponding labels based on actual needs.
Therefore, it is highly worthwhile to investigate how models trained on synthetic datasets can
be adapted to real-world scenarios. In this setting, we utilize the Sim10k dataset as the source
domain and Cityscapes as the target domain to evaluate the cross-domain performance of
our proposed method in the synthetic-to-real adaptation. We compare several state-of-the-art
methods, and the experimental results are shown in Table 2. From the experimental results,
we can observe that our proposed method achieve an improvement of +1.1 compared to the
state-of-the-art method OADA [58] in the car category.

Table 2. Performance Comparison I. Comparative results of different unsupervised domain adaptation
methods on Sim10k→ Cityscapes benchmark (car AP).

Method Detector Backbone Car AP
Source RetinaNet Swin-T 41.5

DAF [4] Faster R-CNN VGG-16 41.9
SWDA [9] Faster R-CNN ResNet-101 44.6
SCDA [13] Faster R-CNN VGG-16 45.1
MTOR [16] Faster R-CNN ResNet-50 46.6
CR-DA [59] Faster R-CNN VGG-16 43.1
CR-SW [59] Faster R-CNN VGG-16 46.2

SAD [60] Faster R-CNN ResNet-50 49.2
ViSGA [8] Faster R-CNN ResNet-50 49.3

D-adapt [61] Faster R-CNN ResNet-101 53.2

EPM [62] FCOS ResNet-101 47.3
SIGMA [63] FCOS ResNet-50 53.7
MGA [64] FCOS ResNet-101 55.4

OADA [58] FCOS VGG-16 56.6

SFA [14] D-DETR ResNet-50 52.6
O2net [46] D-DETR ResNet-50 54.1

Our (IDI-SCD) RetinaNet Swin-T 57.7
Note that, the best car AP is highlighted in bold format.

Across Cameras Adaptation. On the other hand, due to the thriving development
of autonomous driving, numerous scholars have proposed different road object detection
datasets. These datasets are obtained from various cities using different cameras, resulting
in significant variations in terms of style, resolution, and other aspects of the captured im-
ages. Such variations can negatively affect the performance of trained detectors in practical
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applications, so we need to make sure that our proposed approach is able to mitigate the do-
main shift in different datasets so as to ensure robust performance and generalization. And
in order to compare it with existing state-of-the-art methods, we have chosen three public
datasets: Cityscapes, KITTI, and BDD100k. We conduct two experiments in across-cameras
adaptation: KITTI→ Cityscapes and Cityscapes→ BDD100k. The results of these two
experiments are shown in Tables 3 and 4, respectively. For KITTI→ Cityscapes, our model
receives +0.6 improvement in the “car” category. Moreover, a performance improvement
of +1.7 is achieved in Cityscapes→ BDD100k.

Table 3. Performance Comparison II. Comparative results of different unsupervised domain adapta-
tion methods on KITTI→ Cityscapes benchmark (car AP).

Method Detector Backbone Car AP
Source RetinaNet Swin-T 42.3

DAF [4] Faster R-CNN VGG-16 41.8
SWDA [9] Faster R-CNN ResNet-101 43.2

RKTMG [15] Faster R-CNN ResNet-50 43.5
SCDA [13] Faster R-CNN VGG-16 43.6
ViSGA [8] Faster R-CNN ResNet-50 47.6

EPM [62] FCOS ResNet-101 45.0
SIGMA [63] FCOS ResNet-50 45.8
OADA [58] FCOS VGG-16 46.3
MGA [64] FCOS ResNet-101 47.6

MS-DAYOLO [65] YOLOv5 CSP-Darknet53 47.6
DAYOLO [66] YOLOv5 CSP-Darknet53 48.7

S-DAYOLO [66] YOLOv5 CSP-Darknet53 49.3

Our (IDI-SCD) RetinaNet Swin-T 49.9
Note that, the best car AP is highlighted in bold format.

Table 4. Performance Comparison III. Comparative results of different unsupervised domain
adaptation methods on Cityscapes→ BDD100k benchmark (mAP).

Method Detector Backbone Person Rider Car Truck Bus Mcycle Bicycle mAP
Source RetinaNet Swin-T 35.0 27.4 54.7 17.3 11.2 15.1 22.8 26.2

DAF [4] Faster R-CNN VGG-16 28.9 27.4 44.2 19.1 18.0 14.2 22.4 24.9
SWDA [9] Faster R-CNN ResNet-101 29.5 29.9 44.8 20.2 20.7 15.2 23.1 26.2
SCDA [13] Faster R-CNN VGG-16 29.3 29.2 44.4 20.3 19.6 14.8 23.2 25.8
CR-DA [59] Faster R-CNN VGG-16 30.8 29.0 44.8 20.5 19.8 14.1 22.8 26.0
CR-SW [59] Faster R-CNN VGG-16 32.8 29.3 45.8 22.7 20.6 14.9 25.5 27.4

EPM [62] FCOS ResNet-101 39.6 26.8 55.8 18.8 19.1 14.5 20.1 27.8

SFA [14] D-DETR ResNet-50 40.2 27.6 57.8 19.1 23.4 15.4 19.2 28.9
O2net [46] D-DETR ResNet-50 40.4 31.2 58.6 20.4 25.0 14.9 22.7 30.5

Our (IDI-SCD) RetinaNet Swin-T 43.5 34.0 61.1 18.4 15.6 21.1 32.3 32.2
Note that, the best AP in each category and mAP are highlighted in bold format.

4.4. Discussion

The optimal value of the hyperparameter λ1 and λ2. First, we discuss the optimal
value of λ1. During the training process, there are differences in the quality of pseudo-
labels obtained from different images. Based on this, we apply a dynamically changing
hyperparameter λ1 to Lmix, which is proportional to the quality of pseudo-labels. To
validate the effectiveness of λ1, we conducted comparative experiments by setting λ1 to
different constant values of 0.2, 0.4, 0.6, 0.8, and 1. The experimental results are shown
in Table 5. We found that utilizing λ1 achieves the best detection performance, with a
performance improvement of 0.7 compared to when the weight is set to a constant value
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0.6. This well demonstrates that dynamically adjusting the proportion of Lmix based on the
quality of pseudo-labels can allow the model to achieve the optimal performance. Now, we
compare the the default value 10 of λ2 with five other values. As depicted in Table 6, when
λ2 = 10, the model has the best performance. However, we also observed that when λ2
changes, the car AP fluctuates within a small range, indicating a weak correlation between
the optimal performance that the model can achieve and λ2. Based on the experimental
process, it is highly likely due to the sufficiently large total number of iterations, which
allows the model to fully learn relevant knowledge about the style factor, resulting in
minimal fluctuations in model performance.

Table 5. Ablation study on hyperparameter λ1. All the experiments are conducted on the Cityscapes-
value dataset. We compare the λ1 with five other constant weights.

Weight 0.2 0.4 0.6 0.8 1.0 λ1

car AP 52.1 56.3 57.0 56.7 51.2 57.7
Note that, the best car AP is highlighted in bold format.

Table 6. Ablation study on hyperparameter λ2. All the experiments are conducted on the Cityscapes-
value dataset. We compare the default value 10 with five other values.

λ2 1 2 5 10 15 20
car AP 57.3 57.6 57.0 57.7 57.5 57.4

Note that, the best car AP is highlighted in bold format.

Effectiveness of the multiscale fusion strategy. As mentioned above, in the mean
teacher self-training framework, improving the quality of pseudo-labels is the most ef-
fective method to enhance cross-domain knowledge transfer. Typically, we only obtain
corresponding pseudo-labels using single-resolution images. Therefore, we propose a
multiscale fusion strategy. To validate the effectiveness of our proposed module, we con-
ducted a series of ablation experiments on the Cityscapes dataset. The experimental results
are shown in Table 7. With the addition of low-resolution images, there is a significant
improvement of +1.5 in car AP for large objects compared to the absence of such images.
Moreover, by solely incorporating high-resolution images, there is a notable enhancement
of +2.2 in car AP for small objects. These findings further reinforce the positive impact of
integrating high-resolution or low-resolution images on performance enhancement while
ensuring that the detection performance of objects of other sizes is either maintained or
even slightly improved. Finally, by simultaneously combining pseudo-labels obtained from
high-resolution and low-resolution images, we achieve a “1 + 1 > 2” effect, whereby the
detection performance of objects of different sizes has been further improved compared to
solely adding a single resolution image. This validates the effectiveness of the multiscale
fusion strategy in enhancing the detection performance of large and small objects.

Table 7. Analysis of multiscale fusion strategy. We conduct different combinations of the fusion
strategies on Cityscapes-value datasets. 1.0×, 0.5× and 2× indicate the image with original size,
downsampled to 0.5× and upsampled to 2×, respectively.

Different Combinations of Image Inputs
1.0× 0.5× 2×

Car AP Car APs Car APm Car APl

✓ 55.2 24.2 66.2 86.0
✓ ✓ 55.8 25.5 66.0 87.5
✓ ✓ 56.3 26.4 66.9 87.3
✓ ✓ ✓ 57.7 28.0 68.8 88.5

Note that, the best car AP is highlighted in bold format.
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Comparison of methods for dealing with the domain gap. Table 8 illustrates the
results of different methods for dealing with the domain gap. Due to our decoupling of
the domain gap into the style gap and content gap, we conducted a series of ablation
experiments to validate the superiority of our proposed method. Currently, we primarily
encounter the style gap, content gap, and the genuine domain gap that arises from the
combination of both in the source and target domains. Therefore, we first conducted
experiments on the style gap, content gap, and domain gap between S andM1, S andM2,
S and T . Based on the experimental results shown in Table 2, we observed that among the
three methods, S → M2 achieved the best performance, followed by S → T . This can
be attributed to two main factors: (1) Compared to S → T , S →M2 reduces the domain
gap, resulting in improved quality of the pseudo-label obtained by the teacher model
in the mean teacher self-training framework, thereby enhancing cross-domain detection
performance. (2) Compared to S → T , although the style gap handled between S and
M1 have significantly reduced compared to the original gap between S and T in actual
domains, we also discovered that this will result in quite small gap between S andM1.
At this moment, when we utilize style-invariant loss for style knowledge learning, even if
we can fully learn the relevant knowledge, the cross-domain performance achieved cannot
reach the level of directly using S → T . In summary, we find that both the style gap
and the content gap play a significant role in improving the cross-domain performance of
the model. From the last two rows of Table 8, we find that dealing with both of the two
gaps can effectively promote the performance improvement of cross-domain detectors. In
particular, the use of alternate learning to deal with the style and content gap separately can
achieve the optimal performance. This is because when dealing with two domain gaps at
the same time, the relevant knowledge transferred can interfere with each other. Therefore,
in this paper, we use the alternating training strategy to deal with style and content gaps,
respectively. The specific details of the performance enhancement achievable through this
training strategy will be further elucidated in the subsequent section, where visualized
results will provide a more comprehensive explanation.

Qualitative results. Based on the various quantitative analyses provided above, in
order to provide a more intuitive visualization and facilitate discussion, we visualized and
compared the model’s predicted results. The intuitive results are shown in Figures 4 and 5.

Table 8. Combination of two sub-workflows in train pipeline. All the experiments are conducted
on Cityscapes-value dataset. And the multiscale fusion strategy has been used.

Combination of Two Sub-Workflows in Train Pipeline w/AT 1 mAP
S →M1 48.3
S →M2 53.9
S → T 52.7

55.2S →M1 S →M2
✓ 57.7

1 AT means alternate training. The best car AP is highlighted in bold format.

As shown in Figure 4, we compared the results of four model training approaches:
source, + S → M1, + S → M2 and our proposed IDI-SCD, against the ground truth
labels. We observe that without cross-domain model training, there are significant instances
of duplicate detections, missed detections, and false detections in the predicted results.
However, with the inclusion of either S → M1 or S → M2 (e.g., dealing with the style
gap or the content gap). there was a substantial reduction in duplicate detections and false
detections within the model. Furthermore, by combining both approaches and effectively
addressing the both the style and content gap, there is further improvement in detection
performance for overlapping or small objects. For more detailed information about these
results, please refer to Figure 5.
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Figure 4. Qualitative performance of ablation study in our method. These experiments are
conducted on the Cityscapes-value dataset. It demonstrates the improvement in cross-domain
detection performance achieved by addressing the style or the content gap in our proposed methods,
leading to the optimal performance when these two components are integrated.
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Figure 4, showcasing additional details.
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5. Conclusions

In this paper, our aim is to improve the performance of the cross-domain domain object
detector in autonomous driving across domain scenarios. Instead of focusing on using
adversarial learning to align features or improve the quality of pseudo-labels in self-training
frameworks, we primarily focus on how to build a simple, efficient, and plug-and-play
plugin. As a result, We first discuss the relationship between the size of the domain gap and
the performance of the detector and find that they are negatively correlated. Based on the
aforementioned finding, we need the intermediate domain to narrow the domain gap. To
achieve this, we decouple the domain gap into the style and content gap using CycleGAN
and generate the corresponding synthetic intermediate domain datasets for model training.
In the meantime, the effectiveness in narrowing the domain gap is validated through a
series of experiment. Due to the reduction in domain discrepancy, we decompose the
original cross-domain knowledge transfer into two steps, focusing on either style or content
differences during each training iteration. Based on this, we propose a novel unsupervised
domain adaptive object detection method named IDI-SCD in autonomous driving cross
domain scenarios. In addition, we propose the multiscale fusion strategy to enhance the
detection performance of the model for extreme scale objects, specifically those with either
very large or very small sizes.

Finally, our proposed method has been tested on two cross-domain scenarios (three
domain adaptation benchmarks), which demonstrates that our method achieves certain
performance improvements compared to current mainstream methods. Specifically, our
proposed method achieves an improvement of +1.1 and +0.6 compared to the state-of-the-
art method MGA in the car category on Sim10k→ Cityscapes and KITTI→ Cityscapes,
respectively. Moreover, on Cityscapes→ BDD100k, it also increases the performance by
O2net by 1.7 in terms of mAP.

Due to the certain limitations in decoupling the domain gap with CycleGAN, we will
investigate how to better decouple the domain gap and achieve better transfer of cross-
domain knowledge in the future. Additionally, we will conduct more in-depth research
on methods to improve the quality of pseudo-labels. We will also study universal object
detectors applicable to various scenarios.
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