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Abstract: Convolutional neural networks (CNNs) and transformers have achieved great success in
hyperspectral image (HSI) classification. However, CNNs are inefficient in establishing long-range
dependencies, and transformers may overlook some local information. To overcome these limitations,
we propose a U-shaped convolution-aided transformer (UCaT) that incorporates convolutions into a
novel transformer architecture to aid classification. The group convolution is employed as parallel
local descriptors to extract detailed features, and then the multi-head self-attention recalibrates these
features in consistent groups, emphasizing informative features while maintaining the inherent
spectral–spatial data structure. Specifically, three components are constructed using particular strate-
gies. First, the spectral groupwise self-attention (spectral-GSA) component is developed for spectral
attention, which selectively emphasizes diagnostic spectral features among neighboring bands and
reduces the spectral dimension. Then, the spatial dual-scale convolution-aided self-attention (spatial-
DCSA) encoder and spatial convolution-aided cross-attention (spatial-CCA) decoder form a U-shaped
architecture for per-pixel classifications over HSI patches, where the encoder utilizes a dual-scale
strategy to explore information in different scales and the decoder adopts the cross-attention for
information fusion. Experimental results on three datasets demonstrate that the proposed UCaT
outperforms the competitors. Additionally, a visual explanation of the UCaT is given, showing its
ability to build global interactions and capture pixel-level dependencies.

Keywords: convolutional neural networks; transformers; hyperspectral image classification; spectral
attention; spatial attention

1. Introduction

Hyperspectral images (HSIs) are data cubes captured by hyperspectral sensors, which
simultaneously reveal 2-D spatial and 1-D spectral information about land cover sub-
stances [1]. What distinguishes HSIs from panchromatic and multispectral images is that
their pixels record the distinctive spectral signatures using hundreds of nearly continuous
spectral bands [2–4]. The high-resolution spectral response curves reflect detailed character-
istics of land cover substances [5]. Consequently, hyperspectral image (HSI) classification,
defined as “assigning a certain category to each pixel [6]”, has become a fundamental but
crucial aspect of remote sensing applications. However, abundant spectral information
could also be redundant due to some highly correlated spectral bands [7–9]. Moreover,
there are some other hindrances to HSI classification. The spectral variability [10,11] and
the lack of labeled training samples, for example, would negatively affect the HSI fea-
ture extraction and make the classification more challenging. These adverse effects have
heightened the need for advanced feature extraction networks.

Over recent years, deep learning has emerged as the most preferable approach to
extracting informative features thanks to its ability in feature representation. Typical deep
learning networks, such as stacked autoencoders (SAEs) [12,13], recurrent neural networks
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(RNNs) [14–16], convolutional neural networks (CNNs), and transformers, have been
widely used in HSI classification. Among them, CNN- and transformer-based networks,
which excel at local perception and global interaction, respectively, have established their
superiority in HSI classification.

In general, there are three types of HSI classification methods based on different
ways of feature extraction [17]: spectral-feature networks, spatial-feature networks, and
spectral–spatial-feature networks. Accordingly, CNN-based networks could also be intu-
itively divided into 1-D CNNs [18,19], 2-D CNNs [20], and 3-D CNNs [21]. Facing the same
problem as SAEs and RNNs, 1-D CNNs only exploit spectral features, whereas spatial
features are somewhat weakened [22,23]. However, 2-D CNNs are inclined to assemble
only spatial information. Nevertheless, previous studies have indicated that the individual
spectral or spatial features may not achieve a satisfactory performance [24]. Spectral fea-
tures provide the most revealing insight into land cover substances, while spatial features
could add some complementary information, and an integration would achieve better
classification performance than the individual ones. Therefore, 3-D CNNs were employed
to extract features in spectral and spatial dimensions jointly. For example, Zhong et al. [25]
proposed a spectral–spatial residual network (SSRN) that adopts 3-D CNN as the basic
element to extract spectral–spatial features, achieving impressive performance. In fact,
3-D CNNs are just the most direct ways of spectral–spatial feature extraction, and there
are some other approaches. Zhao et al. [26] developed two kinds of 1-D CNNs to extract
spectral and spatial features and then fused these features. Zhang et al. [27] combined
1-D CNN with 2-D CNN to exploit spectral–spatial features efficiently. Roy et al. [28]
proposed a hybrid spectral CNN (HybridSN) that combines 3-D CNN with 2-D CNN and
thus reduces the computation overload. Huang et al. [29] used a 3-D CNN and a pyramid
squeeze-and-excitation attention module to extract spectral–spatial features jointly.

Based on the multi-head self-attention (MSA) mechanism [30], transformers have
become a dominant paradigm of natural language processing (NLP) and have made signif-
icant progress in computer vision (CV) tasks as well. In 2020, vision transformer (ViT) [31]
pioneered the use of transformers for CV tasks, which provides an efficient method for
modeling long-range dependencies and establishing global interactions. Then, many re-
searchers committed to adapting ViT to HSI classification. Specifically, for the patches
embedding layer, there are three different perspectives of tokenization: spectral, spatial,
and spectral–spatial perspectives. The spatial–spectral transformer (SST) [32] and spectral
former [33] treated HSIs as spectral sequential data for tokenization. The main difference is
that the former utilized a VGG-like architecture to tokenize each band separately, while
the latter designed a groupwise spectral embedding layer to tokenize overlapped bands.
HSI-BERT [34], on the other hand, concentrated on modeling spatial dependencies among
pixels in a spatial perspective. From a spectral–spatial perspective, Sun et al. [1] devel-
oped a model called the spectral–spatial feature tokenization transformer (SSFTT), which
extracts spectral–spatial features and then makes samples more separable using a Gaussian-
weighted feature tokenizer. As for the transformer encoder layer, many improvements have
also been made in order to facilitate feature representation. For example, Liang et al. [35]
developed a dual multi-head contextual self-attention (DMuCA) network that decouples
spatial and spectral contextual attention into two subblocks, capturing rich contextual
dependencies from both the spatial and spectral domains.

Albeit the exciting progress the aforementioned methods have made, there are still
some imperfections:

(1) CNNs are good at local perception and extracting low-level features. However,
they treat all features equally without considering different significances. Moreover,
capturing global contextual information and establishing long-range dependencies
can be inefficiently limited by their inherent structure [36].

(2) Transformers are good at global interaction and capturing salient features. However,
they often manifest difficulty in local perception [37,38], which is nevertheless critical
to the collection of refined information. Furthermore, transformers usually have
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a considerable demand for training data [39], yet annotated HSI data are mostly
inadequate. Moreover, the internal spectral–spatial data structure can be damaged in
the transformer architecture, which deteriorates the classification performance.

(3) Most of these CNN- and transformer-based networks follow a patch-wise classification
framework; that is, each pixel with its adjacent pixels can form a coherent whole that
is labeled as the category of the center pixel [40,41]. This framework is grounded on
the spatial homogeneity assumption that the adjacent pixels will share the same land
cover category with their center pixel. However, the assumption is not always tenable
because the cropped patch is too complicated in spatial distribution to be roughly
represented by its center pixel.

To alleviate the above problems, we propose a U-shaped convolution-aided trans-
former (UCaT) that embeds group convolutions into a U-shaped transformer architecture
to aid the per-pixel identifications over cropped HSI patches, making full use of both the ad-
vantages of CNNs and transformers. Hence, it is the classification map, not one label, that is
generated for a patch. Accordingly, the spatial homogeneity assumption we mentioned in
the third problem can be a guide, not a hard constraint. And in response to the limitations
of CNNs and transformers, we introduce such reasonable inductive bias of CNNs as locality
to the transformer. Specifically, by replacing linear projection with group convolutional
projection, the UCaT is dominated by a transformer to focus on salient features and capture
global dependencies. And it cooperates with convolutions for local perception and lower-
ing the demand for training data. Based on this, three components are constructed using
particular strategies. First, the spectral groupwise self-attention (spectral-GSA) component
treats HSIs as sequential spectral data for extracting discriminative spectral features. Then,
the spatial dual-scale convolution-aided self-attention (spatial-DCSA) encoder and the spa-
tial convolution-aided cross-attention (spatial-CCA) decoder form a U-shaped architecture
for building spatial attention, which effectively assembles local-global spatial information.
Overall, the main contributions can be summarized as:

(1) A UCaT network, which incorporates group convolutions into a novel transformer
architecture, is proposed. The group convolution extracts detailed features locally,
and then the MSA recalibrates the obtained features with a global field of vision
in consistent groups. This combination takes full account of the characteristics of
HSI data, emphasizing informative features while maintaining the inherent spectral–
spatial data structure.

(2) The spectral-GSA builds spectral attention and provides a new way of dimensionality
reduction. It divides the spectral bands into small groups and builds spectral attention
in groups, which possesses the ability to capture subtle spectral discrepancies. And a
convolutional attention weight adjustment is constructed, which efficiently reduces
the spectral dimension.

(3) The spatial-DCSA encoder and the spatial-CCA decoder form a U-shaped architecture
to assemble local-global spatial information, where a dual-scale strategy is employed
to exploit information in different scales, and the cross-attention strategy is adopted
to compensate high-level information with low-level information, which contributes
to spatial feature representation.

(4) The UCaT achieves better classification results and better interpretability. Extensive
experiments demonstrate that the UCaT outperforms the CNN- and transformer-
based state-of-the-art networks. A visual explanation shows that the UCaT can not
only distinguish homogeneous areas to eliminate semantic ambiguity but also capture
pixel-level spatial dependencies.

The remaining sections of this article are organized as follows. Section 2 revisits the
related works, i.e., transformer-based networks and segmentation networks. Section 3
gives a brief introduction to the proposed network. Section 4 presents experimental details
and classification results, and Section 5 visually explains the proposed network. Finally,
Section 6 concludes this article.
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2. Related Works
2.1. Transformer-Based Networks

As the basic part of transformers, MSA provides a new topology for feature extraction.
As the name suggests, MSA is assembled of multiple self-attention blocks that selectively
emphasize discriminative features. Specifically, given the input X ∈ Rn×d, where n is the
number of sequences, d is the dimension of each sequence. X is initially linear mapped into
Query Q ∈ Rn×dk , Key K ∈ Rn×dk , and Value V ∈ Rn×dv , where dk indicates the dimension
of Q and K, and dv indicates the dimension of V. The attention weight matrix A ∈ Rn×n can
then be calculated to measure the similarity between Q and K using the scaled dot-product.
Then, the output can be obtained by assigning the matched attention weight to V. This
calculation can be expressed as:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (1)

To further capture richer information from different subspaces, the self-attention
blocks can be concatenated, and then a linear transformation is performed to integrate
information from these self-attention blocks. This whole process is known as the MSA and
can be formally described as:

MSA(Q, K, V) = concat(head1, head2, . . . , headh)W
O (2)

where WO represents the trainable parameter matrix, h is the number of heads, and
headi = Attention(Qi, Ki, Vi).

In recent years, transformer-based networks have been broadly studied. Liu et al. [42]
proposed a swin transformer that calculates MSA over non-overlapping local windows and
enables cross-window interactions through the shifted windowing operation. Touvron et al. [39]
established a data-efficient image transformer (DeiT) with a novel distillation procedure
that uses a distillation token to reproduce teacher’s labels, performing well without a very
large amount of training data. It has been further pointed out in their paper that CNNs
could be better teachers than transformers, probably because the inductive bias of CNNs
can be implicitly inherited through distillation. On the other hand, some research directly
grafted CNNs to transformers and performed well, e.g., CvT [43], CeiT [38], LeViT [44],
etc. Despite the great success the foregoing networks have achieved in CV tasks, there
are still problems. For example, it is inappropriate to directly utilize the networks that are
commonly designed for conventional RGB images for high-dimensional HSI images.

2.2. Segmentation Networks

To solve the aforementioned problem that the center pixels are insufficient to represent
the categories of the whole patches, two main methods can be used. The first method is to
distinguish the center pixels from others. The central attention network (CAN) [45] and
cross-attention spectral–spatial network (CASSN) [46], for example, paid extra attention to
the center pixels, outperforming the traditional patch-wise classification methods. Second,
instead of assigning a certain category to a whole patch, segmentation networks make dense
predictions for all pixels in a patch simultaneously, yielding a simpler yet more efficient
network structure than the first method. UNet [47], significantly, is a classical segmentation
network. It was designed based on an encoder-decoder framework. The encoder branch
extracts hierarchical features with downsampling and channel expansion, while the decoder
branch restores the resolutions of features by upsampling, and features from both branches
can be combined using feature concatenation method. In this paper, we use the U-shaped
encoder-decoder architecture of UNet and propose a new convolution-aided transformer
for HSI classification.
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3. Methodology

In this section, we will first give a brief introduction to the overall structure of the
proposed UCaT and then describe its individual components.

3.1. Overview

The overall structure of the proposed UCaT is depicted in Figure 1. The classification
flowchart inherits the work in [48], where a few modifications to the traditional patch-wise
classification flowchart were made so that it can take classification maps as output. And we
propose a UCaT network that makes dense identifications of cropped HSI patches. Thus,
the spatial homogeneity assumption could also provide a soft spatial prior with the aim
of avoiding the salt-and-pepper noise but not forcing the labels of a whole patch to be the
label of its center pixel.
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Figure 1. Network structure of the proposed UCaT.

Let H ∈ RC×H×W represent the original HSI data, where H, W, and C denote the
spatial height, width, and the number of bands, respectively. And Y ∈ RN×H×W indicates
the ground truth of H, where N is the number of land cover categories (note that all the
unlabeled pixels are subsumed into an additional category, i.e., 0). After removing all
the unlabeled pixels, the remaining pixels can be randomly divided into training pixels
and testing pixels. For each pixel pi as one of the training pixels, the patch Xi ∈ RC×h×w

centered on pi is cropped from H to set up the training set, where h × w indicates the
cropped window size. And so does the ground truth map: Yi ∈ RN×h×w (note that here the
testing pixels are also subsumed into the additional category, i.e., 0, which can be deemed
as the ignore index that does not contribute to backpropagation). To sum up, the training
set can be expressed as: Dtrain = {(X1, Y1), (X2, Y2), . . . , (Xm, Ym)}, where m represents the
number of training pixels. During the test phase, dense predictions can be made through
the sliding window across H.

The UCaT is mainly comprised of three components: the spectral-GSA component,
the spatial-DCSA encoder, and the spatial-CCA decoder. The former is a shallow spectral
feature extractor that extracts discriminative spectral features and suppresses redundant
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features, transforming X ∈ RC×h×w into Xspe ∈ Rc×h×w, where c is the new channel di-
mension (set to 64). Then, the last two components form a U-shaped encoder-decoder
architecture that assembles local-global spatial information. Both the encoder and decoder
contain five blocks; each is a three-tier structure with a skip connection, except that the last
block of the decoder is a transposed convolution with an upsampling stride of 2. In each
block, the first and third layers are both the 1 × 1 convolutional layers for integrating infor-
mation. The middle layer undertakes the core work to extract informative spatial features,
in which the convolution-aided self-attention with downsampling or the convolution-aided
cross-attention with upsampling is performed. In the encoder, the downsampling strides
of the five blocks are {2, 1, 2, 1, 1}, and the channel dimension remains c unchanged, so the
output resolutions are:

{(
c, h

2 , w
2

)
,
(

c, h
2 , w

2

)
,
(

c, h
4 , w

4

)
,
(

c, h
4 , w

4

)
,
(

c, h
4 , w

4

) }
. The

upsampling strides of the first four blocks in the decoder are set to {1, 1, 2, 1}, thus the
output resolutions can be restored as:

{(
c, h

4 , w
4

)
,
(

c, h
4 , w

4

)
,
(

c, h
2 , w

2

)
,
(

c, h
2 , w

2

)}
; the

fifth block is a transposed convolutional block and outputs (c, h, w).

3.2. Spectral Groupwise Self-Attention Component

The high-dimensional spectral bands provide a revealing insight into the physical
properties of land cover substances; however, they suffer from data redundancy. Inspired
by the channel attention [49], we use the transposed version of MSA for building spec-
tral attention. Then, we add a convolutional attention weight adjustment operation and
propose the spectral-GSA, which extracts discriminative spectral features and reduces the
channel dimension.

The spectral-GSA is a one-block spectral feature extractor with a skip connection. It
is designed based on a fundamental principle, that is, the subtle spectral discrepancies
and the internal spectral–spatial structure should be retained to the maximum. As seen in
Figure 2, we divide the spectral bands into groups and then extract subtle spectral features
per group; the yellow series and blue series represent two different groups for illustration.
For each group, the spectral attention is built based on the correlations between three
neighboring bands. And a novel way of dimensionality reduction is designed by imposing
an asymmetric depthwise convolution on the attention weight.
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Formally, the max pooling and average pooling operations are adopted to map
X ∈ RC×h×w into Q and K, V is directly duplicated from X:

Q = MaxPool(X) ∈ RC× h
4 ×

w
4 , K = AvgPool(X) ∈ RC× h

4 ×
w
4 , V = Identity(X) ∈ RC×h×w (3)

Then, the obtained Q, K, and V matrices can be divided into small groups and flattened
among the spatial dimensions, and then transpose the last two dimensions
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{
Q

′
/K

′
= reshape(Q/K) ∈ R C

3 ×
hw
16 ×3

V
′
= reshape(V) ∈ R C

3 ×hw×3
(4)

After the reshape operation, the spectral attention weight A can be calculated using
the scaled dot-product:

A =
K

′ T
Q

′

√
dk

∈ R
C
3 ×3×3 (5)

where dk = hw
16 . It can be seen that the spectral attention weight collects the correla-

tions between channels in the same group. With the aim of dimensionality reduction,
a convolutional attention weight adjustment with kernel size (1, 3) and stride (1, 3) is
attached, mapping the A into A

′
. After that, the output can be obtained by allocating the

corresponding attention weight to V
′
:

A
′
= DWConv1×3,s=(1,3)(A) ∈ R

C
3 ×3×1 (6)

GSA(Q, K, V) = V
′
(

softmax
(

A
′
))

∈ R
C
3 ×hw×1 (7)

where the DWConv(·) denotes the depthwise convolution.
Finally, a 1 × 1 convolutional layer is performed for channel mixing, and c is the

output dimension. As the output of the spectral-GSA block is obtained, a skip connection
can then be carried out to mitigate the vanishing-gradient problem.

Xspe = Conv1×1(reshape(GSA(Q, K, V))) + Conv1×1(X) (8)

3.3. Spatial Dual-Scale Convolution-Aided Self-Attention Encoder

The spatial-DCSA encoder assembles spatial features hierarchically using a stack of five
blocks, and each block contains three layers with a skip connection. As shown in Figure 3a,
the first and the third layers are both the 1 × 1 convolutional layers for channel mixing
rather than the aim of dimensionality reduction or expansion in the residual [50] or the
inverted residual [51] module. A batch normalization (BN) and a rectified linear unit (ReLU)
are executed after each layer. The middle layer is a DCSA layer that extracts informative
spatial features while maintaining the inherent spectral–spatial data structure. The DCSA
layer is shown in Figure 3b. In an attempt to keep the spectral–spatial data structure,
the spatial feature extraction can be conducted in groups. Since group convolution is a
great substitute for group operation, we directly use it. By aligning the groups in group
convolution with the heads in MSA, convolution-aided self-attention can be executed.

First, we use group convolutions with different kernel sizes to transform X ∈ Rc×h×w

into Q, K, and V; the number of groups is g, and the stride is s. As illustrated in Figure 4,
when s is 2, the kernel size is also set to 2. When s is 1, the kernel size for obtaining K and
V is set to 1 while 3 is for Q, which is termed the dual-scale that helps to fully explore
information on different scales without inducing too many parameters. Besides, Q can
have a larger receptive field for better guiding the allocations of attention weight.{

Q/K/V = GConv2×2,s=2,groups=g(X) s = 2
Q = GConv3×3,s=1,groups=g(X), K/V = GConv1×1,s=1,groups=g(X) s = 1

∈ Rc× h
s ×

w
s (9)

where the GConv(·) denotes the group convolution.
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Then, a reshape operation is carried out to adjust the data structure for follow-up
calculations:

Q
′
/K

′
/V

′
= reshape(Q/K/V) ∈ Rg× hw

s2 × c
g (10)

After that, self-attention can be used to calculate spatial attention. Notably, since
convolutions naturally have an intuition for positions [43], the positional encoding will not
be used in our network

DCSA(Q, K, V) = softmax

(
Q

′
K

′T

√
dk

)
V

′
(11)

where dk =
c
g .

Finally, restoring the data shape: Rg× hw
s2 × c

g 7→ Rc× h
s ×

w
s .
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3.4. Spatial Convolution-Aided Cross-Attention Decoder

The spatial-CCA decoder restores the resolutions of feature maps progressively. For
designing a decoder, previous studies have demonstrated the benefits of attaching the
low-level but high-resolution features obtained earlier by the encoder to the high-level
features in the decoder. Apart from the feature concatenation method proposed in UNet,
there are also some other context fusion methods. For example, the UNet transformer [52]
used cross-attention in an encoder-decoder skip connection manner, achieving good perfor-
mance in medical image segmentation. Inspired by it, we adopt a skip connection level
cross-attention operation to effectively transfer refined information from the encoder to
the decoder.

Symmetrical to the encoder, the decoder is constructed from four CCA blocks and a
transposed convolutional block. The difference lies in the middle layer: the encoder utilizes
the self-attention mechanism while the decoder adopts the cross-attention mechanism.
The CCA layer is shown in Figure 3c; one input Xde ∈ Rc×h×w comes from the existing
block, and another input Xen ∈ Rc×(h·s)×(w·s) was obtained earlier from the previous
encoder block. The transposed convolution is employed to upsample Xde ∈ Rc×h×w into
Q ∈ Rc×(h·s)×(w·s) with a stride s. And two group convolutions with kernel size 1 are used
to transform Xen ∈ Rc×(h·s)×(w·s) into K/V ∈ Rc×(h·s)×(w·s). Since Q contains high-level
information while K and V provide details such as edge and texture, an integration could
facilitate feature expression. Thus, the cross-attention is carried out to recalibrate the
obtained features, which aggregates low-level but high-resolution features with high-level
but low-resolution features. This process can be formulated as follows:

Q =

{
DConv2×2,s=2,groups=g(Xde) s = 2
GConv1×1,s=1,groups=g(Xde) s = 1

, K/V = GConv1×1,s=1,groups=g(Xen) (12)

Q
′
/K

′
/V

′
= reshape(Q/K/V) ∈ Rg×(hw·s2)× c

g (13)

CCA(Q, K, V) = softmax

(
Q

′
K

′T

√
dk

)
V

′
(14)

Xde
′ = reshape(CCA(Q, K, V)) ∈ Rc×(h·s)×(w·s) (15)

where dk =
c
g and DConv(·) denotes the transposed convolution.

4. Experiment

In this section, the proposed UCaT is quantitatively evaluated using three publicly
available HSI datasets. These datasets and the implementation details of experiments are
briefly introduced at first. Then, the important parameters, such as the input patch size,
the network width, and the number of groups, are selected experimentally. After that,
extensive experiments are conducted for comparison with several state-of-the-art classifica-
tion algorithms, evaluating the classification performance of the UCaT. Finally, ablation
experiments are carried out to further confirm the effectiveness of the main components.

4.1. Data Description

Three publicly available HSI datasets, i.e., Indian Pines (IP), Pavia University (PU),
and Salinas Valley (SV), are used to evaluate the effectiveness of the proposed UCaT, the
false-color images and the ground-truth maps are shown in Figure 5.

(1) IP dataset: The first dataset was acquired by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor over the Indian Pines field in Northwestern Indiana.
After discarding some spectral bands that are affected by the water absorption, the
remaining 200 bands in a spatial size of 145 × 145 pixels are used for experiments.
The dataset has 10,249 labeled pixels that can be partitioned into 16 land cover types.
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(2) PU dataset: The second dataset was gathered by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor at Pavia University, Northern Italy. The image consists
of 610 × 340 pixels; among them, 42,776 pixels were labeled. The dataset has 9 types
of land cover classes and 103 spectral bands.

(3) SV dataset: The third dataset was also collected by the AVIRIS sensor over Salinas Val-
ley, California. After removing the water absorption bands, the remaining 204 bands
with a spatial size of 512 × 217 pixels are used for experiments. The dataset has
16 land cover classes, and a total of 54,129 pixels were labeled.
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4.2. Experimental Setup

(1) Metrics: Three evaluation metrics, i.e., overall accuracy (OA), average accuracy (AA),
and kappa coefficient (K), are used to measure the classification performance quantita-
tively. To ensure the reliability of the experiment results, all subsequent experiments
are repeated ten times, and each is conducted on randomly selected training and
testing sets.

(2) Data partition: For the IP, PU, and SV datasets, 10% (1024 pixels), 5% (2138 pixels),
and 3% (1623 pixels), respectively, of the labeled samples, are randomly selected for
training. The random seeds for the ten times repeated experiments are set to 0~9 for
reducing random error.

(3) Implementation details: All experiments are implemented with the Python 3.7 com-
piler and the PyTorch platform, running on a desktop PC with an Intel Core i7-9700
CPU and an NVIDIA GeForce RTX 3080 graphics card. Before training, the original
HSI datasets are normalized to the range [0, 1] using the min-max scaling. Then,
the cross-entropy loss and the AdamW optimizer (the weight decay is set to 0.03)
are used to supervise training. Specifically, we train the network for 105 epochs
with a mini-batch size of 128. The learning rate is initialized to 0.03, and then the
CosineAnnealingWarmRestarts learning rate scheduler is employed to adjust it, where
the number of iterations for the first restart T_0 is set to 5, and the increase factor after
each restart T_mult is set to 4.
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4.3. Parameter Analysis

The exploration of the main parameters, such as the input patch size, the network width,
and the number of groups, is indispensable since they have considerable influences on the
classification performance. The proper parameters will be selected through experiments.

4.3.1. Influence of Patch Size

To a certain extent, the larger input patch size could produce more neighborhood
information for classification. However, as the patch size continues to grow, the compu-
tational complexity and the number of parameters increase significantly, yet the gain in
classification performance decelerates gradually. We therefore compare the classification
performance with different input patch sizes in the range of {12 × 12, 16 × 16, 20 × 20,
24 × 24, 28 × 28, 32 × 32} and report the variation trends in Figure 6. It can be found that
the OA curves show an improvement along with the expansion of patch size, especially
for the IP and SV datasets. However, if the patch size exceeds 20 × 20, the increase in OA
is not statistically significant. Accordingly, follow-up experiments set the patch sizes for
the IP, PU, and SV datasets to 24 × 24, 20 × 20, and 24 × 24, respectively, as a compromise
between classification performance and computational complexity.
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4.3.2. Influence of Network Width and the Number of Groups

We report the classification results under different types of network width: {32, 64, 128,
[32, 64, 128, 256, 512]} with different numbers of groups: {1, 2, 4, 8, 16, 32}, the last setting
of the network width represents the increasing width of each block. As seen in Figure 7,
when the width is 64, the accuracy is generally better. The accuracy presents an increasing
and then a slightly downward trend with the increasing numbers of groups. We set the
network width to 64 and the number of groups to 8 for follow-up experiments.
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4.4. Classification Results

Eight state-of-the-art networks, including CNN- and transformer-based networks, and
segmentation networks, are selected for comparative experiments to analyze the classifica-
tion performance of the proposed network in HSI classification. They are spectral–spatial
residual network (SSRN) [25], hybrid spectral CNN (HybridSN) [28], double-branch dual-
attention mechanism network (DBDA) [53], vision transformer (ViT) [31], spectral former
(SF) [33], spectral–spatial feature tokenization transformer (SSFTT) [1], UNet [47], and UNet
transformer (UT) [52]. The hyperparameters of the SSRN, HybridSN, DBDA, SF, and SSFTT
are set based on the recommendations in their respective literature. As for the ViT, UNet,
and UT, the hyperparameters are consistent with our proposed UCaT for a fair comparison.

Detailed results of these networks on the IP, PU, and SV datasets are presented in
Tables 1–3, where the best results are in bold. We can observe that the classification results
of CNN-based networks are generally better than those of transformer-based networks
except for the SSFTT. This suggests that CNNs can capture more detailed information than
pure transformers for refined classification. Since the SSFTT used convolutional layers to
extract low-level spectral and spatial features first and then developed the transformer
encoder module for capturing global contextual dependencies, it produced better results
than pure CNNs or transformers. Moreover, we can also observe that the traditional
patch-wise classification networks are generally worse than the segmentation networks,
possibly because it is not robust to force the labels of a patch to be the label of its center
pixel. Besides, despite the total number of labeled training pixels being the same, the
segmentation networks can repeatedly use the training pixels in different patches, which
enriches the feature representation. Most notably, among all the networks, the proposed
UCaT achieves the highest classification results with 99.48% OA, 99.09% AA, 99.41% K
on the IP dataset, 99.92% OA, 99.86% AA, 99.90% K on the PU dataset, and 99.94% OA,
99.90% AA, 99.93% K on the SV dataset. The high classification accuracy confirms that our
proposed network can exploit both the advantages of CNNs and transformers. Besides, it
can improve the classification performance of the segmentation networks.

Table 1. Comparison experimental results on the IP dataset using 10% training samples.

Class
CNN-Based Transformer-Based Segmentation Network Proposed

SSRN HybridSN DBDA ViT SF SSFTT UNet UT UCaT

1 87.81 86.10 91.95 62.68 39.02 94.39 95.85 96.34 98.05
2 97.99 94.20 98.10 89.35 89.25 98.48 98.91 98.86 99.25
3 98.05 96.20 97.87 88.73 88.70 97.95 98.85 98.38 99.22
4 97.23 93.24 96.34 88.26 78.12 96.71 97.28 98.73 99.20
5 96.60 95.59 95.45 91.68 93.56 96.05 96.58 96.94 97.68
6 99.59 98.19 98.90 98.01 97.84 98.33 99.56 99.36 99.88
7 99.20 88.00 98.00 80.40 56.80 99.60 92.40 90.00 96.80
8 99.79 99.70 99.86 98.79 99.56 99.98 99.98 99.91 100
9 80.00 62.22 90.00 81.67 75.00 85.00 93.89 93.33 100
10 96.83 95.46 96.79 87.89 87.21 96.99 98.66 98.37 99.29
11 98.47 98.36 98.26 96.03 90.95 99.05 99.72 99.65 99.86
12 96.52 91.85 96.76 79.59 80.82 96.91 98.15 98.28 99.03
13 99.78 98.76 99.03 99.51 98.00 99.73 99.68 99.41 99.95
14 99.37 98.89 99.51 98.16 96.69 99.80 99.92 99.76 99.99
15 97.90 94.41 97.23 85.53 89.05 98.42 92.48 99.42 99.54
16 99.05 86.91 95.60 99.76 97.14 92.74 96.31 98.69 97.74

OA (%) 98.17 96.42 97.99 92.42 90.79 98.34 98.81 99.02 99.48
AA (%) 96.51 92.38 96.85 89.13 84.86 96.88 97.39 97.84 99.09
K (%) 97.91 95.91 97.70 91.34 89.50 98.10 98.65 98.88 99.41
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Table 2. Comparison experimental results on the PU dataset using 5% training samples.

Class
CNN-Based Transformer-Based Segmentation Network Proposed

SSRN HybridSN DBDA ViT SF SSFTT UNet UT UCaT

1 99.75 99.82 99.72 94.91 96.19 99.93 99.74 99.79 99.95
2 99.82 99.99 99.94 98.02 99.38 99.96 100 100 100
3 97.17 98.33 98.55 82.69 90.92 98.04 99.76 99.97 99.96
4 98.93 96.96 98.52 97.52 96.19 98.16 99.06 99.08 99.23
5 100 99.70 99.88 99.91 100 99.85 100 100 100
6 99.74 99.87 98.81 76.47 97.60 99.93 100 100 100
7 99.81 99.76 99.87 83.86 87.55 99.95 99.26 100 100
8 98.15 98.35 98.84 92.00 91.83 98.74 99.59 99.76 99.96
9 99.80 97.30 98.82 99.28 97.64 97.03 99.80 99.89 99.61

OA (%) 99.47 99.43 99.48 93.34 97.00 99.56 99.82 99.88 99.92
AA (%) 99.24 98.90 99.22 91.63 95.26 99.07 99.69 99.83 99.86
K (%) 99.29 99.25 99.31 91.10 96.02 99.41 99.76 99.83 99.90

Table 3. Comparison experimental results on the SV dataset using 3% training samples.

Class
CNN-Based Transformer-Based Segmentation Network Proposed

SSRN HybridSN DBDA ViT SF SSFTT UNet UT UCaT

1 99.75 99.96 99.79 99.80 99.15 100 99.94 99.95 100
2 97.94 100 100 98.89 99.72 100 99.91 99.96 100
3 99.09 100 99.97 99.54 99.00 100 99.91 100 99.99
4 99.60 99.10 99.16 97.96 99.03 99.94 99.57 99.59 99.93
5 93.58 99.43 98.18 99.24 99.12 99.37 99.55 99.69 99.51
6 100 99.85 99.89 99.74 99.56 99.99 100 100 100
7 99.97 99.92 99.88 98.89 99.23 99.92 99.91 99.96 100
8 95.99 99.58 97.83 91.15 88.15 99.42 99.76 99.98 100
9 99.99 100 99.94 99.66 99.60 100 99.95 99.96 100
10 99.43 99.27 98.92 93.54 94.28 99.80 99.25 99.48 99.83
11 98.49 99.69 99.49 95.55 93.77 99.87 99.62 99.32 99.86
12 99.93 99.85 99.96 99.51 99.02 99.96 100 100 100
13 99.62 99.48 98.67 99.11 98.20 99.78 99.74 99.78 99.91
14 99.01 98.98 97.94 99.02 97.04 99.86 99.31 99.06 99.48
15 89.49 99.64 96.92 83.33 87.01 99.46 99.86 99.85 99.95
16 99.42 99.94 99.39 97.29 97.66 99.65 98.45 99.19 99.99

OA (%) 97.13 99.71 98.83 94.98 94.83 99.73 99.75 99.84 99.94
AA (%) 98.21 99.67 99.12 97.01 96.85 99.81 99.67 99.74 99.90
K (%) 96.80 99.68 98.70 94.40 94.25 99.70 99.72 99.82 99.93

Specifically, on the IP dataset (see Table 1), the classification results of the proposed
UCaT are significantly higher than those of the other networks. It achieves the highest
accuracy in 14 of a total of 16 land cover categories. And the classification results of
all the land cover categories are more than 96% despite the extremely unbalanced data
distribution of the IP dataset, which demonstrates that our proposed network can still
achieve promising results under the extremely unbalanced data distribution.

The improvement in the PU dataset is also obvious (see Table 2). Out of a total of
9 land cover categories, 7 can achieve the highest accuracy. All the land cover classes could
achieve a classification accuracy of over 99.2%. In particular, classes 2, 5, 6, and 7, which
are meadows, painted metal sheets, bare soil, and bitumen, respectively, achieve a straight
100% accuracy.

On the SV dataset (see Table 3), all the classes could achieve a classification accu-
racy of over 99.4%. Classes 1, 2, 6, 7, 8, 9, and 12, which are Brocoli_green_weeds_1,
Brocoli_green_weeds_2, Stubble, Celery, Grapes_untrained, Soil_vinyard_develop, and
Lettuce_romaine_5wk, respectively, could attain an accuracy of 100%.
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The classification maps of the comparison networks and the proposed network on the
three datasets are shown in Figures 8–10. On the whole, it can be seen that the proposed
UCaT can obtain better classification maps than others, showing its superiority in HSI
classification. Specifically, first, the classification maps of the proposed network are the
closest to the ground truth maps for all the three datasets. Moreover, it can be seen that
there is no apparent noise scatter in the classification maps of the proposed network for
all the three datasets, which demonstrates that the proposed network could effectively
eliminate semantic ambiguity by capturing pixel-level spatial dependencies. Moreover,
the edges in the classification maps of the proposed network are also relatively smooth,
especially on the PU dataset, which may suggest that the proposed UCaT has the spatial
feature representation ability.
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have the same meaning as in Figure 5.
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have the same meaning as in Figure 5.
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4.5. Ablation Study

The proposed UCaT contains three key components: the spectral-GSA component, the
spatial-DCSA encoder, and the spatial-CCA decoder. This part investigates the necessity of
the three components experimentally on the IP dataset using 10% training data. Then, the
effectiveness of the particular strategies in the spatial-DCSA encoder and the spatial-CCA
decoder is also evaluated.

The classification results in the absence of the three components are evaluated in
terms of OA, AA, and K. If the spatial-DCSA or the spatial-CCA is not used, then the
1 × 1 convolution (2 × 2 convolution or 2 × 2 transposed convolution for the encoder or
decoder, respectively, when the stride is 2) is utilized as the substitute for it. If the spectral-
GSA component is removed, then the 1 × 1 convolution shall be used for dimensionality
reduction. As listed in Table 4, combining all three components can achieve the best
classification performance. The classification results decrease in the absence of the spatial-
DCSA or the spatial-CCA, indicating that they do help in spatial feature learning; however,
if the spatial-DCSA and the spatial-CCA are both absent, the classification results drop
sharply. A possible reason is that the network can capture informative spatial features by
either of the two components, and when one is absent, the other will work. However, the
network can only achieve the highest classification results when the two components work
collaboratively. Moreover, the decline in classification results in the absence of the spectral-
GSA component, which, to some extent, confirms that the spectral-GSA can capture more
discriminative spectral features. To make the difference easier to observe, an additional
experiment was also conducted by reducing the proportion of training data to 5%. The
vanilla UCaT achieves the higher classification accuracy with 97.99% OA, 90.92% AA,
97.71% K, and it obtains 97.59% OA, 90.61% AA, 97.25% K in the absence of the spectral-
GSA. The decline in OA is 0.4%, further indicating that the spectral-GSA can be helpful in
feature learning.

Table 4. Ablation experiments of the three main components on the IP dataset.

Spectral-GSA Spatial-DCSA Spatial-CCA OA (%) AA (%) K (%)
√ √ √

99.48 99.09 99.41√ √
99.39 98.78 99.31√ √
99.38 98.94 99.29√
98.97 97.74 98.82√ √
99.42 99.02 99.34

Moreover, to verify the effectiveness of the dual-scale strategy in the spatial-DCSA
encoder, we conduct experiments under a series of different kernel sizes for obtaining
Q, K, and V when the stride is 1. From Table 5, it can be seen that when the kernel size
for obtaining Q, K, and V is 1, the classification results are the worst compared with the
other configurations. Changing the kernel size for obtaining Q into 3 can improve the OA,
AA, and K by 0.12%, 0.21%, and 0.14%, respectively, and the parameters increase by 12k.
However, when the kernel sizes for obtaining K and V are also changed into 3, the classifi-
cation results do not have further improvement anymore, and the number of parameters
continues to increase. In summary, the dual-scale strategy can achieve better classification
results without inducing too many parameters, demonstrating its effectiveness.

Table 5. Classification results of the UCaT with different kernel sizes for the spatial-DCSA encoder
on the IP dataset.

Q K/V OA (%) AA (%) K (%) Params

1 1 99.36 98.88 99.27 175k
3 1 99.48 99.09 99.41 187k
3 3 99.46 98.92 99.39 212k
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Furthermore, Table 6 lists the classification results under the cross-attention, the
concatenate, and the add approaches in the spatial-CCA decoder. By contrast, the network
outperforms other strategies when using the cross-attention strategy for information fusion
between the encoder and decoder, confirming the effectiveness of the cross-attention
strategy in the spatial-CCA decoder.

Table 6. Classification results of the UCaT with different feature fusion methods for the spatial-CCA
decoder on the IP dataset.

OA (%) AA (%) K (%) Params

Cross-Attention 99.48 99.09 99.41 187k
Concatenate 99.39 98.94 99.30 207k

Add 99.41 98.98 99.33 190k

5. Discussion

To make the UCaT more explainable, the heatmaps [54] which indicate the salient
regions for classification, are generated with respect to different land cover classes on the
IP dataset. The ground truth map of the cropped HSI patch is shown in Figure 11a. We
chose two kinds of classes, i.e., the Corn-notill and the Stone-Steel-Towers, for illustration.
The heatmaps that take all the pixels in the same class and one of a pixel in this class as
outputs for calculating the gradients of loss are shown in Figure 11. When taking all the
pixels in the same class as output, we can observe that the heatmaps are similar to the
land cover locations of this class, which confirms that the UCaT has the capacity for spatial
information perception.
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Figure 11. Class-specific visualizations. (a) Ground truth; (b) ground truth of Corn-notill; (c–g) heatmaps
of blocks 1, 3, 5, 7, 9; (h) a random pixel of Corn-notill; (i–m) heatmaps of block 1, 3, 5, 7, 9; (n) ground
truth of Stone-Steel-Towers; (o–s) heatmaps of block 1, 3, 5, 7, 9; (t) a random pixel of Stone-Steel-Towers;
(u–y) heatmaps of block1, 3, 5, 7, 9. Colors have the same meaning as in Figures 5 and 7.
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It can also be found that when taking one pixel as output for backpropagation, the
heatmaps are almost the same as the heatmaps that take all pixels in the same class as
output for backpropagation. This is proof that the proposed UCaT can capture pixel-level
spatial dependencies.

In sum, these heatmaps indicate the advantages of the cooperation among convolu-
tion, MSA, and the U-shaped segmentation architecture. With regard to a whole patch,
the network differentiates several homogeneous regions by spatial relations and gives
comprehensive consideration, which helps to eliminate semantic ambiguity caused by the
inadequacy of training samples. With respect to a pixel, the network can capture pixel-level
spatial dependencies, which finds similar pixels to assist the classification of this pixel. We
think it is a good quality for HSI classification.

6. Conclusions

In this paper, a novel U-shaped convolution-aided transformer (UCaT) network with
spectral attention and spatial attention is proposed for HSI classification, which tries to
take full advantage of CNNs and transformers for better classification. This network grafts
group convolutions to MSA as compensation for loss of local information. And different
from other combination methods, the UCaT is particularly adaptable to the characteristics
of HSI data. It decouples channels into groups when extracting informative features
and simultaneously maintaining the inherent spectral–spatial data structure. Moreover,
the dual-scale strategy and the cross-attention strategy are adopted for richer feature
representation. On the IP, PU, and SV datasets, the proposed method could achieve an
overall accuracy of 99.48%, 99.92%, and 99.94%, respectively. The computational complexity
is acceptable since the calculation is conducted on the cropped HSI patches instead of the
raw dataset. The quite competitive classification performance suggests that the proposed
network has the potential to be generally applied to varied HSI analysis tasks and is worth
conducting further research. In the future, we will continue to study how to extract more
discriminative spectral features and how to improve the generalization ability.
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