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Abstract: To ensure global food security, crop breeders conduct extensive trials across various loca-
tions to discover new crop varieties that grow more robustly, have higher yields, and are resilient to
local stress factors. These trials consist of thousands of plots, each containing a unique crop variety
monitored at intervals during the growing season, requiring considerable manual effort. In this
study, we combined satellite imagery and deep learning techniques to automatically collect plot-level
phenotypes from plant breeding trials in South Australia and Sonora, Mexico. We implemented two
novel methods, utilising state-of-the-art computer vision architectures, to predict plot-level pheno-
types: flowering, canopy cover, greenness, height, biomass, and normalised difference vegetation
index (NDVI). The first approach uses a classification model to predict for just the centred plot. The
second approach predicts per-pixel and then aggregates predictions to determine a value per-plot.
Using a modified ResNet18 model to predict the centred plot was found to be the most effective
method. These results highlight the exciting potential for improving crop trials with remote sensing
and machine learning.

Keywords: agriculture; deep learning; object-based image analysis; optical imagery; plant breeding

1. Introduction

Grave food insecurity concerns caused by a growing human population [1] and
disruption from climate change [2] have led to significant interest in improving the yield
and resilience of staple crops. Methods of genetic analysis have advanced greatly in recent
years, but this is only one piece of the crop breeding puzzle. Crop genetics must also be
linked to real physiological improvements, which in turn require extensive in-field data
collection efforts [3]. Currently, the scale of such data collection is severely limited by the
high labor costs associated with operating measurement apparatuses [4]. A promising
alternative is remote sensing, which can non-destructively provide data on a range of
physiological and agronomic traits throughout the growth cycle. This approach offers
significant economy of scale for large field experiments and breeding programs [5,6].

Most crop breeding programs focus on accumulating genes of major effect [7] through
targeted insertion of alleles into existing lines. Successful insertion of these alleles improves
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both grain quantity and end-use quality parameters [8]. Breeding programs from organi-
sations such as the International Maize and Wheat Improvement Center (CIMMYT) and
Australian Grain Technologies (AGT) have made steady genetic gains with the available
resources by maintaining this focus [9]. However, there are labour-intensive and expertise-
dependent phenotypic traits that are not economically viable to measure everywhere [4,10]
but could still improve breeding programs were they to become available at low cost.
An example of this would be designing crosses based on trait combinations and/or hap-
lotypes shown to be adaptive to target environments. Coupling satellite imagery with
machine learning to automatically measure such traits cheaply and at scale could make
such experiments viable, but so far this has been a largely unrealised goal.

Remote sensing has long been used to predict plant phenology, albeit at a very coarse
resolution where each pixel covers an area wider than a large field (>1 km per pixel) [11–13].
Such tasks are framed using the relationship between average reflectances and some
aggregated value within the pixel; e.g., crop yield [14,15] or soil moisture [16,17]. As
finer-resolution images became available, smaller targets have become resolvable. There
now exist works which resolved counties at hundreds of metres per pixel [18], fields at
tens of metres per pixel [19], and individual trees at <1 m per pixel [20,21]. Operating at
a sub-metre pixel resolution has created new opportunities for detecting and describing
crops, fields, and farm infrastructure with unprecedented precision [22–24]. In particular
for this work, the plots used in crop trials are visually distinct in these highest-resolution
satellite images. Previously, the precision necessary for resolving individual plots was only
possible with UAV images, but UAVs are not always legally or physically able to fly and
collect images. Satellite images are rapidly becoming a viable alternative to UAV images [6].
Despite being susceptible to atmospheric effects, satellite images have the benefit of global
availability and much easier automation.

Parallel to this improvement in satellite image resolution, computer vision algorithms
have been developed to identify complex spatial structures within RGB images using
convolutional neural networks (CNNs) [25–27]. CNNs have been successfully applied in
diverse areas such as ground-level plant identification and segmentation [28–30], medical
imaging [31–33], pedestrian/athlete tracking [34–36], and game playing [37,38]. Following
this, other agricultural remote sensing works found that spatial CNNs are more accurate
than traditional machine learning models when each pixel is labelled [23,39,40]. Encouraged
by this trend, we predicted canopy traits using spatial CNNs for small plots (approximately
2–5 m2) to investigate the viability of the plot-level phenotyping of canopy traits multiple
times per season from satellite images.

Although there are existing works which applied CNNs to agricultural tasks, these
tasks were typically formulated as predicting a value that does not change over time. A
prominent example is crop classification. A common approach to crop classification is
using a sequence of images as input, so that the model is able to learn features related to
the growth of crops [41–43]. This is made possible by temporally reliable data sources of
freely available satellite images such as Landsat-7/8 [44] and Sentinel-2 [45]. Unfortunately,
the resolution of these images is too low for plot-level analysis (30 m and 10 m per pixel,
respectively). It is practically difficult to obtain a sequence of images with uniform temporal
spacing for very high-resolution images (<1 m). As a result, works that require fine-
resolution images generally predict from a single image at a time [23,46]. We faced the
same issue with our data, and therefore we predicted traits in each image independently
using spatial 2D CNNs.

Another vital task is yield prediction. Whereas crop classification is typically utilises
prediction for each pixel, yield prediction usually uses county-level labels [14,15,47–49].
These county-level labels encourage researchers to pose the problem as a purely sequential
modelling problem, ignoring spatial information. This is achieved by averaging the colour
information (often normalised difference vegetation index (NDVI)) over all pixels in a
county, and then training a model to predict the final yield based on the changes in
averaged colour [50]. This pixel aggregation is called superpixel [51] or object-based image
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analysis (OBIA) [52]. Our labels are also area-based (within much finer plot regions),
so we used the superpixel method as a baseline. Unlike yield prediction, we predicted
once per image, rather than once per sequence. This is because crop canopy traits change
throughout the growing season. County-level regions are very large, including many
thousands of pixels. In contrast, the regions we investigated are much smaller, with plots
being 1.5 m × 3.8 m in size. It is therefore possible for spatial CNNs to operate on an entire
region of interest (a plot), as well as relevant context (neighbouring plots), which may
improve prediction results over superpixel methods [23,39,40]. While there have been
pixel-level yield predictions [53,54], there have been no applications of spatial CNNs to
area-based labels, large or small.

In this work, we propose two novel methods for using spatial CNNs on small plots and
compare them to the superpixel method. The first is our centred method, where we apply a
spatial CNN only to an image patch centred on a plot. The second is our per-pixel method,
where we create per-pixel labels from our per-plot labels, train a segmentation CNN in a
per-pixel fashion, and then aggregate the predictions to create per-plot predictions.

To our knowledge, no prior work has attempted to predict time-varying crop canopy
phenotype traits at such fine scales directly from satellite images using deep learning.
Unlike the popular tasks of crop classification and yield prediction, crop canopy phenotype
trait values change throughout the growing season and require independent images with
sub-metre pixel resolution to be reliably observed. The most similar existing method is that
of Gonzalo-Martin et al. [55]. During training, they used a simple CNN to make per-pixel
classification predictions. During evaluation, the process was optimised by clustering
regions of the image together into superpixels using simple linear iterative clustering
(SLIC) [56] and applying the CNN once per superpixel. This is similar to our centred
method, but only performed for evaluation time and over a larger area.

In terms of analysing small plots, other similar works focused on trying to predict
yield directly, rather than canopy phenotype traits. Sankaran et al. [6] worked on plot-level
assessments using a superpixel approach to characterise each plot. Their primary focus
was to align UAV and satellite imagery to find correlations between various vegetation
indices, but they also compared lasso and random forest for predicting final yield using
both types of images. They found that using UAV images resulted in a significantly higher
accuracy than satellite images but noted the added technical challenges of obtaining UAV
images. Sagan et al. [57] worked on plot-level yield prediction using very high-resolution
satellite images and a ResNet18 [27] CNN architecture. They found that their approach of
using a spatial CNN gave more accurate predictions than the superpixel alternatives. The
authors clipped and rescaled the plots from 28 × 28 to 224 × 224 to feed the spatial image
data into their CNN model, intentionally removing all contextual pixels for each prediction.
In contrast, our approach preserves contextual pixels, as they may provide useful features
to help the model correct for atmospheric effects and otherwise improve predictions.

There have been some works using UAV images instead of satellite images for high-
throughput quantitative phenotyping. Chapman et al. [5] used visual and thermal cam-
eras on a UAV to image small plots, to measure canopy temperature and plant height,
and used these to predict relative transpiration index, crop lodging, and ground cover.
Tattaris et al. [58] used UAV imagery and simple thresholding of spectral bands to auto-
matically identify plot boundaries and correlated the average spectral data in each plot
directly with biomass and yield. They also used satellite imagery but did not describe
the process for choosing pixels for each plot. Both of these works discarded UAV image
pixels between the plots, as well as “mixed” pixels which touched the plot boundaries.
Unfortunately, satellite imagery does not yet have a fine enough resolution to enable this
(some plots consist entirely of “mixed” pixels).

The objective of this study was to create and compare novel and superpixel methods
for predicting the phenotype of small plots during crop breeding trials. To do this, we
used ground-measured data from field trials of canola and wheat crops from two sites
across the globe, aligned to very high-resolution satellite images. Canola was grown in
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South Australia by AGT using 5.75 m2 plots, which could be resolved individually from
the satellite images. From these data, we obtained reliable results for predicting canopy
cover, greenness, flowering, and height. The second site was run by CIMMYT in Sonora,
Mexico. At this site, wheat was grown in plots as small as 2.5 m2, at the limit of resolvability.
In some cases, not even a single whole pixel lay entirely within the plot boundaries. We
obtained positive results from these data for biomass and NDVI. However, the results were
less reliable at this limit of resolvability.

2. Materials and Methods
2.1. Data
2.1.1. Image Sources

Our image data consisted of 14 images from two separate trial sites on different
continents. The images were from the KOMPSAT-3a (K3a), GeoEye-1 (GE1), WorldView-2
(WV2), and WorldView-3 (WV3) satellites. These satellites have panchromatic resolutions
of 55 cm, 41 cm, 46 cm, and 31 cm, respectively. The WV2 and WV3 satellites have 8 spectral
bands, but the GE1 and K3a satellites only have 4 (red, green, blue, and near infrared).
Thus, we only used these four bands from all of our satellite images.

2.1.2. Roseworthy

The Roseworthy site (34.5°S, 138.7°E) is located near the South Australian town of
Roseworthy (see Figure 1). This site is in a representative grain-growing region of Aus-
tralia’s southern wheat belt, representing a long-term stable environment where breeding
trials have been carried out for over 100 years. In 2019, Australian Grain Technologies
(AGT) performed standard crop trials with 1464 canola lines at their Roseworthy site. Each
plot covered approximately 5.75 m2, and the total area was 14, 700 m2. During this trial,
they measured several traits at multiple time points during the season: canopy cover,
greenness, flowering, and height.

Figure 1. Roseworthy site, showing canola plots in South Australia at the end of their growth. The
raster data reproduced here are slightly worse than the 30 cm original resolution and do not reflect
the true data given to the models.

Canopy cover is the percentage of soil surface covered by plant foliage and is a
measurement of establishment and early vigour. Greenness is a broad estimation of general
vigour. Flowering is the percentage of blooming buds on each stem. Seven UAV mosaics
were obtained from a DJI Phantom 4 Pro throughout the season. Canopy cover, greenness,
and flowering were measured via image analysis by Hiphen; a business specialising in
agricultural image analysis. Height is a coarse measurement of overall plant growth and
was measured in the field using a ruler.
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To assemble our Roseworthy dataset, AGT generously provided their 2019 crop trial
measurements, and we purchased five very high-resolution satellite images taken during
the same time period. These consisted of one GE1 image, two WV2 images, and two
WV3 images. Altogether, we had 1464 plots × 5 images = 7320 data points for each
canola trait. The plots’ spatial boundaries were not initially recorded by AGT, but the
individual plots were visibly distinct in the satellite images. So, we drew a uniform
grid of all plot boundaries onto the satellite images to match the pixels to the recorded
ground measurements.

2.1.3. Obregón

The Obregón site (27.4°N, 109.9°W) is located in Sonora, Mexico near the town of
Ciudad Obregón (see Figure 2). This site is in the Northwestern grain growing region of
Mexico, chosen by CIMMYT as a key region for global wheat breeding. The data for the
Obregón site were split into two trials covering different areas, with different plot sizes.
In 2015, the trial area was 6180 m2, and each plot was 2.48 m2. In 2019, the trial area was
4610 m2 and each plot was 5.72 m2.

Figure 2. Obregón site, showing wheat plots in Sonora, Mexico at the beginning of their growth. The
raster data reproduced here are slightly worse than the 50 cm original resolution and are not the true
data given to the models.

For over 50 years, the International Maize and Wheat Improvement Center (CIM-
MYT) has performed crop trials on wheat, collecting various data from hundreds of thou-
sands of plots. CIMMYT generously provided their measurements during their 2015–2016,
2016–2017 and 2019–2020 crop trials for our research. For each growing season during
this period, they measured above-ground biomass and ground NDVI multiple times. In-
season biomass tracks crop growth rate and consequently determines a plot’s radiation
use efficiency (RUE) and photosynthetic efficiency. The in-season above-ground biomass
was measured through cutting, drying, and weighing a 50 cm quadrat sample of plants.
Ground NDVI is a simple measure of general plant growth and is strongly associated with
canopy size, greenness, and pre-anthesis biomass. It was measured with a Greenseeker
NDVI portable sensor. More details can be found in CIMMYT’s published data collection
protocols [59].

NDVI, being a vegetation index, can be directly calculated from a satellite image, but
this is not the same NDVI that is measured at ground level using hand-held devices. These
measurements are taken at different times, using different bandwidth sensors, covering
different physical areas, and under different lighting/atmospheric effects. Predicting the
ground NDVI from the satellite colour bands is useful as an estimate of consistency between
ground and satellite sources. Assuming a reliable mapping can be found, NDVI predictions
can be fed into existing models that relate ground NDVI to other ground properties, such
as canopy cover or greenness.
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We purchased nineteen very high-resolution satellite images taken during CIMMYT’s
2015–2016, 2016–2017, and 2019–2020 crop trials. Four of these images were from the
Deimos-2 and KOMPSAT-2 satellites. Since these have a panchromatic resolution of 1 m,
the images did not have a high enough resolution to distinguish between plots in the trials.
Additionally, we were unable to adequately align the images for the 2016–2017 crop trial.
This left us with three images for the 2015–2016 crop trial (two WV2 and one GE1) and
six images for the 2019–2020 crop trial (one K3a, two GE1, two WV2, and one WV3). In
the 2015 trial, there were 1200 smaller plots—0.6 m × 4.1 m—and in the 2019 trial there
were 450 larger plots—1.1 m × 5.1 m. Unfortunately, many plots/measurements were
excluded due to some plots being measured just once, poor alignment between image
and measurement, and plots not containing whole distinct pixels. For example, NDVI
was not measured in 2015, and only 2/3 of the plots had multiple biomass measurements.
Altogether, we included 1200 data points for NDVI and 2385 data points for biomass.

The plot boundaries were smaller at Obregón than at Roseworthy, and the plots were
closer together. This made image alignment more difficult, as the plot boundaries were not
visible within our satellite images. We addressed this by utilising UAV footage, which was
taken during the crop trials. Crop boundaries were drawn to align with the UAV imagery,
and the satellite images were then spatially aligned to match the UAV footage using various
landmarks. This ultimately allowed us to assign satellite image pixels to specific plots.

2.1.4. Ground Data Interpolation

Since the satellite images were purchased retroactively, they did not precisely match
the times that the ground measurements were taken. To account for this, labels for each plot
were determined by linearly interpolating between the nearest two ground measurements.
We are cognisant of the fact that linear interpolation introduces error, and this error is
directly related to the infrequency and non-linearity of the measured values. Figure 3
shows the most extreme case for interpolation of Roseworthy Image 3, which was eight
days away from the nearest ground measurement. The median time to the nearest ground
measurement for the interpolated values was 4 days for Roseworthy, 3.2 days for Obregón
(Biomass), and 2.5 days for Obregón (NDVI). Plants undergoing senescence generally do
not vary linearly. Consequently, we did not extrapolate after the last measurement for
any trait, even though none of the images showed large amounts of senescence. We only
extrapolated earlier in the season, where we saw reliable trends towards zero in our data.
This included all traits except NDVI.
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Figure 3. The measurements for each image of each plot were interpolated between measurement
dates (green dots) to the date of each image (pink dots) to produce the ground truth values used
during training.

2.1.5. Image Preprocessing

The images were converted to reflectances using published information about the
sensors for GeoEye-1, WorldView-2, WorldView-3 [60], and KOMPSAT-3a [61] along with
the exoatmospheric solar irradiance measurements by Thuiller et al. [62]. The images
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were then pansharpened using the Weighted Brovey algorithm, as implemented in the
GDAL library [63]. All images were taken during very clear days, so it was not necessary
to perform any additional atmospheric correction.

The initial spatial alignment from the image providers had error in the order of metres,
which was not precise enough for this work. The plots on the ground are less than 1.5 m in
either dimension (see Figure 4), so a misalignment of more than one pixel would completely
misalign the ground measurements with the pixels that the plots occupy. We annotated
between 4 and 40 ground control points on each image to align them using a combination
of Quantum GIS (QGIS) software and external scripts. In general, precisely aligning
images (georeferencing) involves resampling the image to warp the images and match the
coordinate systems. Resampling is equivalent to a small amount of blurring, which we
wanted to avoid in order to preserve image integrity. Therefore, the images were aligned by
modifying only the geotransform, to avoid the blurring effect, and only precisely aligned
within the field of interest.

4.1m
8px

0.6m
1px

Obregon
2015

5.1m
10px

1.1m
2px

Obregon
2019

3.8m
7px

1.5m
3px

Roseworthy
2019

Figure 4. The Obregón 2015 plots were too narrow to extract many pixels within the plot boundary.
And even though the Obregón 2019 plots had a similar area to the Roseworthy plots, they were more
narrow and thus had fewer pixels that were wholly within the plot boundary.

2.2. Methods for Per-Plot Prediction

The goal of this work was to create a model capable of predicting phenotypic traits for
each plot in an image. The algorithm, denoted fθ , must take an image X ∈ RH×W×C and
make a prediction fθ(X) = Ŷ ∈ RN×P for each plot in that image, ideally which matches
the ground measurements Y ∈ RN×P. Where H is the image height, W is the image width,
C = 4 is the number of colour bands (red, green, blue and near infrared), N is the number
of visible plots, and P is the number of properties being predicted. All models were trained
with the supervised learning objective of minimising mean squared error (MSE).

L(Y, Ŷ) = MSE(Y, Ŷ) = ∑ (Yi − Ŷi)
2

We describe three different methods used to perform these predictions: superpixel,
centred, and per-pixel (see Figure 5). The superpixel method (also known as object-based
or OBIA) is an existing method [51,52], which we present as a baseline. This method
uses aggregated statistics of the pixels contained within the plot boundaries and lacks any
contextual information. There are a number of reasons why the aggregated statistics of
only the pixels within the plot boundaries may not provide enough information to make
accurate predictions. For example, the whole image might have a slight blue tinge due to
atmospheric haze. Without the contextual information that everything appears slightly
more blue than usual, the superpixel method cannot detect and automatically adjust its
prediction in response. Additionally, the plot boundaries are unlikely to precisely align with
the pixels in the crop. Sometimes they will include some of the ground or a neighbouring
plot. The superpixel method has no way to distinguish between pixels that are relevant
and those that are not. In contrast, a CNN is able to see the intra-plot spatial structure and
can learn which pixels are important. So, here, we propose two novel methods for making
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per plot predictions: centred and per-pixel. These methods use contextual information and
thus are empowered to handle the aforementioned problems automatically.

Centred

Superpixel

Per-pixel

OutputInput

Figure 5. Per-plot predictions can be obtained via various methods. In this paper, we compared three
methods: superpixel, centred, and per-pixel. In superpixel, each plot is aggregated into a fixed-length
vector for RF and MLP models. In centred, an image crop is provided to a classification CNN to make
a prediction for the centred plot. In per-pixel, an image crop is given to a segmentation CNN to make
a prediction per-pixel, which is then aggregated into a prediction for the whole plot.

2.2.1. Superpixel

The superpixel method uses the known plot boundaries to extract a subset of pixels
from X for each separate plot and independently aggregates the colour information to
form a fixed-length feature vector for each plot V ∈ RN×D. This condenses an arbitrary
number of pixels into a fixed-length vector of size D. Fixed-length input vectors can
be used by many kinds of machine learning models, including random forest (RF) [64],
extreme gradient boosting (XGB) [65], support vector machine (SVM) [66], and multilayer
perceptron (MLP/ANN) [67].

We used RF and MLP models to represent the superpixel method. These are two very
common algorithms used for remote sensing tasks, and they performed better on average
than XGB and SVM in our preliminary testing. We aggregated statistics across all pixels
that intersected each plot’s boundary, to create a vector of size D = 15 for each plot. These
statistics consisted of the minimum, mean, and maximum of each colour band, as well as a
derived NDVI channel.

2.2.2. Centred

The centred method directly uses pixel information from a small image crop centred on
a plot X̂ ∈ R32×32×C to predict for a single plot at a time ŷ ∈ RP. This specifically provides
contextual information, so that the model has a chance to learn to adjust its predictions
based on that context. Since the prediction refers only to the centre of the image, the centred
method also does not depend on knowledge of the plot boundary, making it more flexible
than the superpixel method.

A centred method was constructed for use with a straight-forward CNN architecture
and applied to per-plot predictions. The centred method uses a whole image crop to
regress to continuous, real-valued numbers. Classification models could be adapted for
regression, which allowed us to use existing well-known image classification architectures
in the centred method. We replaced both the first and last layers of these architectures.
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Replacing the last layer is standard for transfer learning, because the original models were
designed for a different task. Unlike typical transfer learning, replacing the first layer was
also necessary here because pretrained CNNs use only RGB colour bands, but our data
also have the NIR colour band. To handle this, a new first layer was initialised, which
used 4 colour bands, and only the pretrained weights for the RGB bands were copied. The
remaining NIR band weights were randomly initialised, so we also fine-tuned all weights
throughout the model.

The best known classification architectures were initially created for the ImageNet
dataset [68], using an input crop size of 224. However, because the plots being imaged were
barely more than 3 pixels in each dimension, such an input size would contain much more
information than is necessary. So here, we used a crop size of 32 × 32, which represents a
side length somewhere between 10 and 16 m, depending on image resolution. This value
was chosen to align with the well-known CIFAR10 dataset. Due to the popularity of both
datasets, architectures designed for ImageNet have been minimally adapted to the input
of 32 × 32 used in CIFAR10 [69]. Thus, we compared VGG-A, ResNet18, ResNet50, and
Densenet161 models that were modified to work on CIFAR10, and used weights pretrained
on CIFAR10.

2.2.3. Per-Pixel

The centred method is somewhat inefficient, because to predict for just the plot in the
centre we must feed it an image crop which contains many other plots. In order to predict
for a whole image, this requires running a sliding window across the whole field area,
frequently repeating calculations on contextual pixels. The per-pixel method is designed to
generalise the centred method to predict for all pixels within a crop X̂ ∈ R128×128×4 in a
single pass of the network.

By predicting per-pixel, the number of outputs scales with the number of inputs,
which theoretically makes it more efficient than the centred method. Thus, we used a crop
size of 128 × 128 for the per-pixel methods, to give the model even more context.

Our per-pixel model does not make per-plot predictions directly, so we introduced
fixed functions to translate between per-plot and per-pixel values, and vice versa. A per-
pixel-to-per-plot fixed function aggregates model predictions identically to the way the
superpixel method aggregates input pixels. A per-plot-to-per-pixel fixed function spatially
duplicates the per-plot labels to render a per-pixel prediction map. These fixed functions
introduce two new hyperparameters. The first hyperparameter is an overlap threshold,
which determines when a pixel is considered part of a plot. We trialled several values
during preliminary testing and found that an overlap threshold of 75% was most effective.
Below 75%, the results were dramatically worse, but there was little difference between
75% and 100%. The second hyperparamenter is the aggregation function used to aggregate
per-pixel predictions within a plot. We used the 75th percentile of the included predicted
pixel values to make a per-plot prediction, because of the large proportion of mixed pixels,
which we assumed would be given a lower value.

The per-pixel method is a form of dense prediction, which mirrors the common
computer vision task of semantic segmentation. Consequently, we were able to experiment
with well-known segmentation architectures as the backbones of our per-pixel CNN models.
In this work, we compared the UNet++ [31] and DeepLabv3 [70] models, as they are two
popular generic segmentation architectures. We did not use transfer learning for these
models because it did not improve the results during preliminary testing.

2.3. Training Details

Each of the 5 images for Roseworthy and 9 images for Obregón showed different
stages of growth, so they could not meaningfully be split into train/test by image. Instead,
we split by groups of rows in the image (see Figure 6). All results shown here were cross-
validated across 4 (Roseworthy) or 6 (Obregón) folds. All reported results are for the full
cross-validation, but all hyperparameters were tuned on the first fold only. Additionally,
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the hyperparameters were determined by training models that predicted all properties
at Roseworthy at once. However, the results were obtained by training a separate model
per trait to optimise individual performance. More training details can be found in the
Supplementary Materials.

Partition 1

Partition 2

Partition 3

Partition 4

Figure 6. The data for the Roseworthy site were split by row into four partitions, which applied across
all images (different images shown as diagonal stripes). Each fold then used a different partition as
the test set. Note: the colours in this figure are for illustrative purposes only and do not represent any
modification made to the training data.

3. Results

We trained superpixel (RF and MLP), centred (VGG-A, ResNet18, ResNet50, and
DenseNet161), and per-pixel (UNet++ and DeepLabv3) models on both Roseworthy
(Table 1) and Obregón (Table 2) data. The models were cross-validated across the folds
described in Figure 6 to obtain error bars. A separate model was trained independently
on each trait, and the hyperparameters did not change across the traits or folds. Strikingly,
there was only a small difference in overall predictive ability between models, despite the
large difference in computation required.

Table 1. Results of training models on the Roseworthy site. There were four traits available at this
site: flowering, canopy cover, green, and height. The reported values are the mean of R2 over the
different folds; higher is better. The standard deviation is shown as a plus-or-minus error in a smaller
font size. The best performing model within each method for each trait is bolded. The last row is a
hypothetical method, showing the performance of a model that always correctly identifies the image
and then always uses the average trait value as the prediction for all plots in each image.

Method Model Flowering Canopy Cover Green Height Average

Superpixel RF 0.825 ± 0.008 0.991 ± 0.003 0.982 ± 0.004 0.963 ± 0.005 0.940 ± 0.005
MLP 0.858 ± 0.006 0.994 ± 0.001 0.985 ± 0.001 0.969 ± 0.001 0.952 ± 0.002

Centred

VGG-A 0.880 ± 0.009 0.989 ± 0.002 0.985 ± 0.001 0.973 ± 0.003 0.957 ± 0.004
ResNet18 0.888 ± 0.015 0.993 ± 0.000 0.986 ± 0.001 0.975 ± 0.001 0.960 ± 0.004
ResNet50 0.886 ± 0.010 0.989 ± 0.002 0.983 ± 0.003 0.969 ± 0.003 0.957 ± 0.004

DenseNet161 0.863 ± 0.017 0.991 ± 0.003 0.983 ± 0.002 0.970 ± 0.004 0.952 ± 0.007

Per-pixel UNet++ 0.871 ± 0.029 0.994 ± 0.001 0.986 ± 0.002 0.974 ± 0.002 0.956 ± 0.008
DeepLabv3 0.824 ± 0.008 0.994 ± 0.001 0.983 ± 0.002 0.966 ± 0.002 0.941 ± 0.003

Hypothetical use avg per img 0.782 ± 0.010 0.991 ± 0.002 0.978 ± 0.003 0.952 ± 0.003 0.926 ± 0.005

We posit that the performance of all models was generally quite high because there
was a bias in our data that promoted predicting the average trait value for each image.
This bias existed because there was a strong relationship between trait value and days after
sowing (DAS). Each image presented the model with a unique DAS, and there were few
images, which led to a strong relationship between trait value and image in our training
data (see Figure 7).Using DAS to inform predictions is not a problem in general, but there is
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a hypothetical degenerate solution where the model can obtain a relatively high R2 without
ever looking at the plots individually. This is because a model could theoretically learn to
identify each image, determine the average trait value for that particular DAS, and then
use that average value as its prediction. Such a model is undesirable, as it would be unable
to distinguish between plots or generalise effectively to new images. We calculated the
performance of such a degenerate solution and include it as a point of reference for the
high R2 values in the overall results (Tables 1 and 2).
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Figure 7. The evolution of the Roseworthy properties over time from measurements. Days after
sowing was a strong indicator for these properties. That is, the range of values in each image was
often smaller than the range between means of images. The filled dots denote “high-variance” images,
while the empty dots denote “low-variance” images.

Table 2. Results of training models on the Obregón site. There were two traits available for Obregón
data: biomass and NDVI. The reported values are the mean of R2 over the different folds; higher
is better. The standard deviation is shown as a plus-or-minus error in a smaller font size. The best
performing model within each method for each trait is bolded. The last row is a hypothetical method,
showing the performance of a model that always correctly identifies the image and then always uses
the average trait value as the prediction for all plots in each image.

Method Model Biomass NDVI Average

Superpixel RF 0.834 ± 0.130 0.899 ± 0.031 0.867 ± 0.080
MLP 0.823 ± 0.140 0.948 ± 0.010 0.885 ± 0.075

Centred

VGG-A 0.863 ± 0.121 0.884 ± 0.154 0.873 ± 0.137
ResNet18 0.855 ± 0.123 0.949 ± 0.017 0.902 ± 0.070
ResNet50 0.832 ± 0.135 0.866 ± 0.142 0.849 ± 0.138

DenseNet161 0.857 ± 0.123 0.949 ± 0.014 0.903 ± 0.068

Per-pixel UNet++ 0.820 ± 0.146 0.956 ± 0.020 0.888 ± 0.083
DeepLabv3 0.837 ± 0.140 0.709 ± 0.179 0.773 ± 0.160

Hypothetical use avg per img 0.843 ± 0.139 0.952 ± 0.005 0.898 ± 0.072

Among the Roseworthy traits, the hypothetical degenerate solution was most promi-
nent for canopy cover. In Table 1 and Figure 7, we show that canopy cover was almost
entirely predictable using DAS. There was very little variation for canopy cover within
each image, and thus little room for improvement with machine learning on this trait. In
contrast, flowering had more variation within each image, and thus more opportunity for
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machine learning. Indeed, all machine learning models substantially outperformed the
degenerate hypothetical solution for flowering. Thus, while the R2 values were inflated by
the image-average bias (see Figure 8), the models learned a more substantial relationship
than just the image-average bias.
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RMSE: 7.43
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Figure 8. A ResNet18 model’s predictions compared to the ground truth values. Each point is a single
plot, coloured by image. Thus, we can see that two of these images are clustered close to zero (red
and purple). The other three images are much more spread out and harder to predict (blue, orange,
and green). So, while the ResNet18 model obtained a very good R2 of 0.976 for height, this value was
inflated by correctly predicting the large proportion of values close to zero.

The Roseworthy results show that a consistent model performed best within each
method: MLP was the best superpixel model, ResNet18 was the best centred model, and
UNet++ was the best per-pixel model. The superpixel models performed surprisingly well
overall, despite being simpler and lacking context from surrounding pixels. The superpixel
MLP even outperformed the per-pixel DeepLabv3 model. However, the centred ResNet18
and UNet++ performed equally or better than the superpixel MLP on all Roseworthy traits.
This shows that the contextual pixels provided some value. The centred ResNet18 model
performed the best overall; however, the per-pixel UNet++ model was equivalent to the
ResNet18 model on three out of the four properties, with a large error bar for flowering, so
it is difficult to differentiate the two.

For Obregón, several models were not able to improve on the performance of the
hypothetical degenerate solution (Table 2). This is likely due to the relatively small amount
of training data at this site and the unknown amount of spatial alignment error between
images creating confusing labels. Similarly to the Roseworthy site, the centred and per-pixel
methods slightly outperformed the superpixel methods at the Obregón site. However, the
Obregón results were less reliable. The variance between folds for the Obregón site was
substantially larger than for the Roseworthy site, and there was no consistent best model
across traits within each method. Since the Obregón results were unreliable, they provide
only weak evidence that ResNet18 was the best model.

3.1. High-Variance Per-Image Evaluation

We noticed a strong image-average bias during early experimentation. This bias was
concerning, because a key end-use for predicting canopy phenotype traits is to differentiate
between plots within the same image. This motivated us to more clearly evaluate how
effectively our machine learning models could differentiate between plots. Figure 8 shows
the predictions of a Roseworthy height model. It shows that that two of the images have
trait values mostly around 0, which the model correctly predicted as very low values.
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However, the relative trait values in the images with a higher variance were much less
accurate. Thus, we evaluated our models only on high-variance images to directly measure
each model’s ability to differentiate within an image (see Table 3). For the low-variance
images, the trait values were very similar, showing plots at similar stages of growth and
the model would have been completely correct to use the average trait value. For the high-
variance images, the trait values were quite different, showing plots at different stages of
growth, and the model would have been incorrect to use the average trait value. We defined
high-variance images as those which had at least 5% of the total variation visible within
the image. To remove any benefit from predicting the per-image average, we measured R2

within each image independently.

Table 3. Results of evaluating models on the Roseworthy site using only the high-variance images.
The R2 was averaged per image across the folds, then averaged across the images; which is why the
error for canopy cover is 0. The images used are denoted in the columns as numbers in brackets;
e.g., to evaluate flowering, we only used the 3rd and 4th images. The reported values are the mean
and standard deviation of R2 over the different images. The standard deviation is shown as a plus-
or-minus error in a smaller font size. The best performing model within each method for each trait
is bolded.

Method Model Flowering (3, 4) Canopy Cover (2) Green (2, 3, 4) Height (3, 4, 5)

Superpixel RF 0.268 ± 0.203 −0.156 ± 0.000 0.146 ± 0.178 0.237 ± 0.138
MLP 0.364 ± 0.123 0.250 ± 0.000 0.262 ± 0.087 0.327 ± 0.129

Centred

VGG-A 0.442 ± 0.055 0.364 ± 0.000 0.296 ± 0.034 0.401 ± 0.100
ResNet18 0.473 ± 0.002 0.208 ± 0.000 0.337 ± 0.054 0.468 ± 0.084
ResNet50 0.470 ± 0.062 0.290 ± 0.000 0.219 ± 0.089 0.325 ± 0.141

DenseNet161 0.362 ± 0.055 0.083 ± 0.000 0.235 ± 0.021 0.358 ± 0.070

Per-pixel UNet++ 0.401 ± 0.032 0.258 ± 0.000 0.342 ± 0.098 0.433 ± 0.056
DeepLabv3 0.166 ± 0.028 0.274 ± 0.000 0.171 ± 0.087 0.252 ± 0.073

When we evaluated only using high-variance images, we observed a substantially
lower R2 than for the overall results. These results better reflected the model performance
within a single image. But they also represented a substantially more difficult challenge,
because the models received no benefit for being able to correctly identify image and
implicitly used the DAS to inform predictions. Instead, the models were solely evaluated
on their ability to distinguish between values within an image. Whereas the overall results
describe an absolute measurement of model performance, these high-variance results
describe how clearly the model could identify plots that, for example, began flowering
earlier than others or reached certain heights before others. Despite being numerically
lower, these results are consistent with the overall results, showing a clear improvement
of the centred ResNet18 and per-Pixel UNet++ over the superpixel MLP. This reinforces
that, when models are not able to use the per-image average, the ability of CNN models to
consider contextual pixels still improves prediction accuracy.

Note that there were no images with sufficient variance in NDVI, and several models
learned to predict a single biomass value for each image, which gives further evidence that
the results from Obregón are unreliable.

3.2. High-Variance Image Training

If a major end-use of the models is to be able to differentiate between plots within
an image, then one might wonder if there is some benefit to only training the models on
high-variance images. This might be beneficial, because it would force the model to ignore
the identification of the image and emphasise learning to identify features useful in general.
However, this might be a disadvantage, because restricting the dataset naturally means
showing fewer independent examples.
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To test this, we selected the two best performing models (ResNet18 and UNet++)
and compared training them on the overall dataset vs. training them using only the high-
variance images. To make it a fair comparison, we conducted a new hyperparameter
search for each of these models on the restricted dataset. We found that training only on
the high-variance images generally decreased performance on those images for both the
ResNet18 and the UNet++ model (see Table 4). This implies that the model was more
disadvantaged by restricting the dataset than it was advantaged by using a dataset that
was more aligned with differentiating between plots.

Table 4. Results of training models on only the high-variance images from the Roseworthy site
(subset column is ticked) as compared to training on all images at Roseworthy and just evaluating
on the high-variance images (subset column is not ticked). The images used are denoted in the
columns as numbers in brackets. The reported values are the mean and standard deviation of R2

over the different images. The standard deviation is shown as a plus-or-minus error in a smaller
font size. Note that there is only one image used for canopy cover, hence the standard deviation is
reported as 0.

Model Subset Flowering (3, 4) Canopy Cover (2) Green (3, 4, 5) Height (2, 3, 4)

ResNet18 0.473 ± 0.002 0.208 ± 0.000 0.337 ± 0.054 0.468 ± 0.084
ResNet18 ✓ 0.500 ± 0.055 0.089 ± 0.000 0.328 ± 0.075 0.455 ± 0.095

UNet++ 0.401 ± 0.032 0.258 ± 0.000 0.342 ± 0.098 0.433 ± 0.056
UNet++ ✓ 0.414 ± 0.053 0.287 ± 0.000 0.289 ± 0.087 0.294 ± 0.023

4. Discussion

While the different methods are only presented as competing on R2, their different
properties mean they have different costs, benefits, and opportunities. Superpixel methods
are much faster than deep learning-based centred and per-pixel methods. The superpixel
and per-pixel methods require that precise plot boundaries are known, whereas the centred
method only requires the centre of the plot, making the centred method the most flexible.
Additionally, most existing works at a similar scale pose per-pixel problems [22,24]. Thus,
our per-pixel models are most appropriate for transfer learning between our task and other
remote sensing tasks.

The lower accuracy we observed in the per-image results for high-variance images
was not completely unexpected. On top of the small dataset, there was some unknown
amount of error in creating the ground labels used for training. At the ground level, there
was error with the instruments used to measure the traits. Then, there was some error in
calculating reflectances across different satellites and days [71]. While our image capture
and ground measurement dates aligned reasonably well, the necessary linear interpolation
would still have introduced noteworthy uncertainty to any labels. And finally, there was
error in how well aligned the images could be with the plot boundary annotations. These
factors combined to make the labels somewhat error-prone in the applied settings.

The scale of data is important here. In this work, we show that, using just a handful
of images in one field, we can learn a small–moderate correlation between satellite image
data and plant traits. To progress further in this direction, it is clear that larger datasets are
required. Measuring the 1464 plots at Roseworthy multiple times per season represents
a substantial effort for agronomists, but data from a single site are unlikely to generalise
well to other sites [72]. A future model that could operate across sites and years would
need both training data showing such variation and testing data to show that it is effective.
Models trained on larger datasets are also less prone to overfitting and more robust to
errors in measurement. As such, more samples are needed, but this promises substantial
performance improvements.

Using only a handful of images limits the models’ ability to generalise, as only a
limited range of plant growth is represented. However, it is not as dire as it first appears,



Remote Sens. 2024, 1, 282 15 of 19

as each plot develops at a slightly different rate, and thus their phenotypic traits vary
from plot to plot, even within the same image. This is precisely why high-variance images
exist. So, although there were only five images, there are thousands of slightly different
development stages represented. Unfortunately, the early growth stages were especially
poorly represented in our data. For future work, we could represent more varied stages
of plant growth within a single image by staggering the planting of the plots or by using
breeds with very different flowering times.

Many of the sources of noise in image data could be mitigated by pro-actively collecting
images from the same satellite during future trials. For example, the misalignment between
image times and key biological dates could be reduced further by coordinating ground
measurements with image captures. Additionally, by tasking a satellite, we could collect
data that better represents the whole growing season. Here, we show a promising minimum
performance that will only improve as satellite images become cheaper, more frequent, and
more accessible.

Limit of Resolvability

In related UAV research, it is common to discard mixed pixels at the edges of the plot
boundary [5,58]. However, when using satellite imagery for per-plot predictions, there are
very few pixels to work with, so each pixel is valuable, and discarding pixels on the border
of the plot boundaries needs to be carefully considered. For smaller plot boundaries, and
for coarser resolution images, this is a greater problem. Eventually, if the plot boundaries
are too small compared to the resolution of the image, it becomes impossible to reliably
select the pixels that primarily contain the plants in question (see Figure 4). We call this the
limit of resolvability, and in this work we showed results all the way up to this limit. In
this work, we were forced to use some mixed pixels, otherwise many more plots would
have had no pixel data. However, even this substantial challenge did not prevent us from
making a model that could predict phenotypic traits.

The Roseworthy data used plots sized 1.5 m × 3.8 m, which were approximately
3 pixels across for our coarsest image (50cm resolution) and showed robust results across
all folds, for all models. The Obregón data used plots sized 0.6 m × 4.1 m for the 2015 data,
and 1.1 m × 4.8 m plots for the 2019 data. The NDVI was only recorded for the 2019 trial,
so the biomass models were the only ones to use the smallest plots at only one pixel across.
The biomass results were unreliable, likely due to a combination of the relatively small
plots and the inherent difficulty in predicting biomass from satellite imagery. The NDVI
results showed a high overall R2; however, all of the images had a low variance in NDVI, so
we could not evaluate them per-image. Qualitatively, however, all of the models preferred
predicting the mean value per image for NDVI more than for any trait at Roseworthy, and
for some models, the performance variance across folds was also very high (see Table 2).

This work, then, describes results at three levels increasingly close to the limit of resolv-
ability (Roseworthy canola traits, CIMMYT wheat NDVI, and CIMMYT wheat biomass),
and shows that the results became increasingly less reliable towards this limit. It should
be noted that there are more factors than just resolution that explain these unreliable re-
sults, but clearly the resolution and plot size at Roseworthy was sufficient for generating
robust prediction models. Thus, we make a suggestion for any future work: to stay clear
of the limit of resolvability, the plots in the image must contain at least three pixels in
each dimension.

5. Conclusions

We worked at the limit of resolvability and showed that promising plot-level predic-
tions can be made with only a handful of satellite images. We proposed two novel methods
for spatial CNNs to predict phenotypic traits at a per-plot level and compared them against
more traditional superpixel methods. We showed that even with this small dataset, spatial
CNNs can improve predictions for phenotypic traits from satellite images. Although the
improvement in the overall metrics between these methods was limited, this was largely a
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consequence of the average for each image being a very strong baseline. Our analysis found
that the CNN methods performed better than the superpixel methods, both for overall met-
rics and when using a restricted dataset of images with high label variance. We posit that
this was because contextual pixels and intra-plot spatial information hold predictive power
that is inaccessible to superpixel models. In particular, the centred ResNet18 and per-pixel
UNet++ models performed best. Out of these, due to its simplicity, we recommend the
centred ResNet18 model for high-throughput quantitative phenotyping. More generally,
we suggest that these results point to the exciting future utility of high-resolution satellites
and machine learning for constructing prediction models and informing the breeding of
vital crops.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16020282/s1, Table S1: Model hyperparameters.
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