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Abstract: Stereo cameras can capture the rich image textures of a scene, while LiDAR can obtain
accurate 3D coordinates of point clouds of a scene. They complement each other and can achieve
comprehensive and accurate environment perception through data fusion. The primary step in data
fusion is to establish the relative positional relationship between the stereo cameras and the 3D
LiDAR, known as extrinsic calibration. Existing methods establish the camera–LiDAR relationship
by constraints of the correspondence between different planes in the images and point clouds.
However, these methods depend on the planes and ignore the multipath-closure constraint among the
camera–LiDAR–camera sensors, resulting in poor robustness and accuracy of the extrinsic calibration.
This paper proposes a trihedron as the calibration object to effectively establish various coplanar
and collinear constraints between stereo cameras and 3D LiDAR. With the various constraints,
the multipath-closure constraint between the three sensors is further formulated for the extrinsic
calibration. Firstly, the coplanar and collinear constraints between the camera–LiDAR–camera are
built using the trihedron calibration object. Then, robust and accurate coplanar constraint information
is extracted through iterative maximum a posteriori (MAP) estimation. Finally, a multipath-closure
extrinsic calibration method for multi-sensor systems is developed with structurally mutual validation
between the cameras and the LiDAR. Extensive experiments are conducted on simulation data with
different noise levels and a large amount of real data to validate the accuracy and robustness of the
proposed calibration algorithm.

Keywords: stereo camera; 3D LiDAR; multiple constraints; multipath-closure calibration

1. Introduction

The combination of stereo cameras and 3D LiDAR is widely used in robotics [1–8], mo-
bile measurement [9,10], and autonomous driving [11,12]. The stereo camera can provide
color, texture information, and dense depth data of the scene, but the resulting depth data is
not highly accurate and is easily affected by the environment. LiDAR can provide accurate
depth information and is not easily affected by the environment, but the resulting depth
data is sparse and lacks texture and color information. Therefore, the different information
provided by the two systems complement one another, and more accurate environmental
perception can be achieved through fusion of the two data sources. However, since the
installation positions of the stereo camera and the 3D LiDAR are different, the primary
problem in the fusion of the two data sources is the extrinsic calibration between the sen-
sors, which involves calculating the rotation matrix and the translation vector between the
different coordinate systems of the sensors.

The extrinsic calibration between the stereo camera and the 3D LiDAR relies on the
geometric correspondence of specific calibration objects between the three sensors. The
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chessboard calibration object [13–18] is the most widely used in this context. Unnikrish-
nan et al. [19], Pandey et al. [20], Mirazei et al. [21], Liu et al. [22], Khoscovian et al. [23],
Zhou et al. [24], Lu et al. [25], Liu et al. [26], and Li et al. [27] established coplanar constraint
relationships through checkerboard calibration objects to accomplish the extrinsic calibra-
tion of cameras and 3D LiDAR. Zhou et al. [28] added edge detection of the checkerboard
on the basis of Unnikrishnan’s method, establishing coplanar and collinear constraint rela-
tionships. However, due to the limitation of the distance between LiDAR points, the edge
of the checkerboard plane could not be accurately obtained. Thus, Zhou’s method cannot
establish an accurate collinear constraint relationship, which primarily uses the geometric
constraint relationship of coplanarity. Although the extrinsic calibration between sensors
can be completed through a single coplanar constraint relationship, to obtain more accurate
extrinsic parameters more accurate geometric constraint relationships need to be explored.

Closed-loop interconnection is formed between three sensors, including the stereo
cameras and the 3D LiDAR. The three extrinsic parameters between the three sensors are
interrelated, and the direct extrinsic parameters between two sensors can be derived from
their round-way interconnection with the third sensor. However, due to the noise of the
data collected by the sensor, there is inevitable error in the extrinsic parameter, which
will accumulate with the round-way iterative calibration between neighboring sensors.
Based on the closed-loop interconnection between sensors, the closed-loop interconnection
constraint between the three relative extrinsic parameters can be constructed, reducing
the accumulated error and improving the calibration accuracy [29–32]. Numerous studies
have been conducted in the calibration of multi-sensor systems. Quoc et al. [33] proposed
a method of calibrating the extrinsic parameters of multi-sensor systems through sensor
grouping, where each sensor group produces 3D data in a unified form and the extrinsic
parameters between groups are calibrated through the geometric constraints established by
the calibration object. Li et al. [34] and Li et al. [35] regarded the stereo camera and the Li-
DAR as a sensor group, respectively, and applied Quoc’s method to the extrinsic calibration
of the stereo camera and the 2D LiDAR. These methods did not consider the closed-loop
interconnection constraints between multiple sensors, which would introduce cumulative
errors and affect the accuracy of the calibration algorithm. Joris et al. [36], LIU et al. [37],
and Sim [38] considered the closed-loop interconnection of multiple sensors and added
closed-loop interconnection constraints to calibrate multi-sensor systems. However, it is
impossible to directly obtain the analytical solution of the extrinsic calibration in solving
the extrinsic parameters of the sensors. Instead, an optimization function based on the data
collected by the sensors needs to be established, and the numerical solution of the extrinsic
parameters are obtained by iterative optimization using nonlinear optimization methods.
The closed-loop interconnection constraints proposed by Joris et al. [36], LIU et al. [37],
and Sim [38] are in the matrix form independent of the sensor’s data, making it difficult to
optimize them iteratively in the nonlinear optimization process.

Aimed at the problem that the current method primarily uses the single coplanar
constraint and does not make full use of the closed-loop interconnection between sensors,
this paper proposes a multipath-closure calibration method of the stereo cameras and the
3D LiDAR with multiple constraints, and the main innovations are as follows:

Firstly, although coplanar constraint relationships are widely used and mature, obtain-
ing more accurate extrinsic parameter results requires exploring more accurate geometric
constraint relationships. Therefore, this paper uses trihedrons as the calibration object [39]
to establish various geometric constraint relationships, such as coplanar and collinear,
and iteratively estimates the noise parameters of the point cloud to obtain more robust and
accurate geometric constraint relationships.

Secondly, a camera–LiDAR–camera closed-loop interconnection exists in both stereo
camera systems and 3D LiDAR systems, and many methods disregard this closed-loop
interconnection, which can introduce accumulated errors during calibration and affect
calibration accuracy. Even if there are methods that consider the application of closed-loop
interconnection constraints to reduce the cumulative error, the closed-loop interconnec-
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tion constraints of these methods are challenging to iterate in the process of nonlinear
optimization. Therefore, this paper proposes a new type of closed-loop constraint called
the multipath-closure constraint. The constraint converts the closed-loop interconnection
constraint in the form of a matrix independent of the data collected by the sensor into the
vector form of data correlation, which can efficiently perform iterative optimization in the
nonlinear solution while reducing the accumulated error.

Finally, this paper conducted extensive experiments on real and simulated data. In the
actual experiment, the algorithm proposed in this paper was quantitatively evaluated for
its applicability in real scenes by projecting LiDAR points onto images. In the simulation
experiment, both the accuracy and the robustness of the algorithm under different noise
and pose conditions were quantitatively evaluated, along with the influence of differ-
ent constraint relationships on the extrinsic parameter results. The experimental results
demonstrate the accuracy and robustness of the algorithm proposed in this paper.

2. Methodology
2.1. Problem Definition

For the multi-sensor system used in this paper, composed of stereo cameras and a 3D
LiDAR, as shown in Figure 1, a world coordinate system (Ow − XwYwZw) is established,
with one vertex of a trihedron calibration object as the origin. Two camera coordinate
systems, (OC1 − XC1 YC1ZC1) and (OC2 − XC2YC2ZC2), are established, with the optical cen-
ters of the two cameras as the origins, respectively, and the imaging plane parallel to
the XOY plane and the Z axis pointing forward. With the LiDAR scanning center as the
origin and the horizontal scanning surface as the XOY surface, the LiDAR coordinate
system (OL − XLYLZL) is established according to the right-hand rule, where the coordi-
nates of the LiDAR point,PL, in the two camera coordinate systems can be expressed as
PC1 =

(
xC1 , yC1 , zC1

)
and PC2 =

(
xC2 , yC2 , zC2

)
, and the homogeneous coordinates on the

image plane are qC1 =
(
uC1 , vC1 , 1

)
and qC2 =

(
uC2 , vC2 , 1

)
. According to the position rela-

tionship
[

RC1
L , TC1

L

]
between the No.1 camera coordinate system and the LiDAR coordinate

system, the relationship between the LiDAR point, PL, and the corresponding point, PC1 ,
in the No.1 camera coordinate system can be obtained by

PC1 = RC1
L PL + TC1

L (1)

In Equation (1), RC1
L is the rotation matrix and TC1

L is the translation vector. Similarly,
based on the positional relationship between the coordinate systems of the No.2 camera
and the LiDAR

[
RC2

L , TC2
L

]
and the positional relationship between the coordinate systems

of the No.1 camera and the No.2 camera
[

RC2
C1

, TC2
C1

]
, we can obtain the relationship between

the LiDAR point, PL, and the corresponding point PC2 , in the coordinate system of the
No.2 camera, as well as the relationship between PC2 and PC1 :

PC2 = RC2
L PL + TC2

L (2a)

PC2 = RC2
C1

PC1 + TC2
C1

(2b)

According to the pinhole imaging model, the relationship between the points PC1 and
PC2 in the camera coordinates system and the corresponding image points qC1 and qC2 can
be derived by

qC1 = sKC1 PC1 (3a)

qC2 = sKC2 PC2 (3b)
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In Equation (3), KC1 and kC2 represent the intrinsic indexes of two cameras, which can
be obtained in advance through camera calibration, while s denotes the scale factor.

Figure 1. Spatial relationship between stereo camera and LiDAR.

2.2. The Multipath-Closure Calibration Method with Multiple Constraints

The extrinsic calibration of the stereo camera and the 3D LiDAR involves two aspects:
one is the pair-wise calibration of multiple sensors and the other is the optimization of
closed-loop interconnection between multiple sensors. The calibration of multiple sensors
depends on the multiple geometric constraint relationships established by the calibration
object, and the more geometric constraint relationships established by the calibration object,
the higher the accuracy of the extrinsic calibration. The planar characteristics of the checker-
board calibration object provide accurate coplanar constraint relations, which are widely
used in the extrinsic calibration of sensors. However, the low scanning resolution of LiDAR
and the significant distance between points make it difficult to accurately scan the edges
of a checkerboard, and it is impossible to establish accurate line constraint relationships
directly. A trihedron calibration object can provide three robust plane parameters in image
data and LiDAR point clouds, establish three coplanar constraint relationships, and obtain
three precise plane intersection lines through the three robust planes. The three intersec-
tion lines correspond one-to-one in image and point clouds, establishing three accurate
line constraint relationships. Therefore, this paper chooses a trihedron as the calibration
object to establish accurate coplanar and collinear geometric constraint relationships. Fur-
thermore, more accurate coplanar and collinear constraint relationships are obtained by
modeling the noise of the point cloud. In addition, based on the camera–LiDAR–camera
multipath-closure structure of the stereo camera and 3D LiDAR, we establish multipath-
closure constraint relationships to reduce accumulated errors in the calibration process and
improve calibration accuracy.

This section mainly introduces how to establish various geometric constraint relation-
ships through the trihedron calibration object and how to achieve accurate extrinsic calibra-
tion parameters through the multipath-closure constraint between three sensors. As shown
in Figure 1, the trihedron calibration object is composed of three checkerboard grids placed
perpendicular to one another, which can provide the parameters of three checkerboard grid
planes and the intersection line parameters of the planes, building geometric constraint
relationships such as coplanarity and collinearity. Meanwhile, the three sensors form a
multipath-closure interconnection, which can establish the multipath-closure constraint.
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2.2.1. Geometric Constraint Relationships Established by Trihedron Calibration Object

The extrinsic calibration of sensors depends on geometric constraints established
by the calibration object. The establishment of geometric constraints originates from the
geometric information, such as lines and planes, obtained from the sensor’s calibration data.
As shown in Figure 2, three checkerboard planes, πL

1 , πL
2 , πL

3 , of the trihedron calibration
object, as well as three plane intersection lines, lL

1 , lL
2 , lL

3 , can be obtained from the point
cloud data acquired by the LiDAR. Similarly, three checkerboard planes, πC

1 , πC
2 , πC

3 , three
plane intersection lines, l I

1, l I
2, l I

3, and corresponding 3D lines, lC
1 , lC

2 , lC
3 , in the camera

coordinate system can be obtained from the image data acquired by the camera.

Figure 2. Geometric information obtained from the calibration object.

(1) Coplanar constraint: The geometric constraint of coplanarity, collinearity, can be
established through the geometric information provided by the calibration object. The copla-
nar relationship established by the calibration object is shown in Figure 3, and the position
relationship between the camera coordinate system and the LiDAR coordinate system is

[R C
L , TC

L

]
. From the planar perspective, the parameters of the same checkerboard plane

in the camera coordinate system and the LiDAR coordinate system are
[
nC

i , dC
i
]
,
[
nL

i , dL
i
]
,

respectively(i = 1, 2, 3), where nC
i and nL

i represent the normal vectors of the checkerboard
plane and dC

i and dL
i represent the distance from the coordinate system origin to the checker-

board plane. Vectors have translation invariance, and the relationship between the normal
vectors nC

i and nL
i are only related to the rotation matrix RC

L :

RC
L nL

i = nC
i (4)

The distance is a scalar quantity with rotational invariance, exactly opposite to the
normal vector. The relationship between the distances dC

i and dL
i only depends on the

translation vector TC
L . According to the geometric relationship between the distances dC

i
and dL

i and the translation vector TC
L in Figure 3, the projection value of the translation

vector TC
L on the normal vector nC

i is the difference between the distances:(
nC

i

)T
TC

L = dL
i − dC

i (5)

Equations (4) and (5) are the coplanar constraint relations obtained from the plane
perspective for solving the initial values of the extrinsic parameter [R C

L , TC
L

]
. Considering

from the point perspective, the checkerboard plane
[
nC

i , dC
i
]

in the camera coordinate
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system and the checkerboard plane
[
nL

i , dL
i
]

in the LiDAR coordinate system are the same
in space, as shown in Figure 3; the point PL

ij on the checkerboard plane
[
nL

i , dL
i
]

is projected

to the point RC
L PL

ij + TC
L in the camera coordinate system and is located in the checkerboard

plane
[
nC

i , dC
i
]
, and the relationship is as follows:(

nC
i

)T(
RC

L PL
ij + TC

L

)
− dC

i = 0 (6)

Since the data collected by the sensors are noisy and the data volume is large,
Equation (6) cannot be used directly. Thus, the error adjustment function is constructed
by Equation (6) and then iteratively solved. Assuming there are data from N poses, ac-
cording to Equation (6) the error adjustment term corresponding to the point PL

ijk on the

checkerboard plane j in the pose ith can be obtained as

eplane

∣∣∣PL
ijk =

((
nC

ij

)T(
RC

L PL
ijk + TC

L

)
− dC

ij

)2
(7)

Accumulating the error adjustment terms for all points to obtain the error adjustment
terms for the coplanar constraint is as follows:

eplane =
N

∑
i=1

3

∑
j=1

1
Kij

Kij

∑
k=1

eplane

∣∣∣PL
ijk (8)

In Equation (8), Kij represents the number of laser points on the j-th checkerboard
plane under the i-th pose.

Figure 3. Coplanar constraint diagram.

(2) Collinear constraint: The collinear constraint relationship is shown in Figure 4,
and the position relationship between the camera coordinate system and the LiDAR co-
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ordinate system is [R C
L , TC

L

]
, similar to the way of thinking about the coplanar constraint,

from the perspective of a straight line: the parameters of the same checkerboard plane
intersection line in the camera coordinate system and the LiDAR coordinate system are[

lC
i , QC

i

]
,
[
lL
i , QL

i

]
, (i = 1, 2, 3), respectively, where lC

i and lL
i are the directional vectors of

the intersection lines and QC
i and QL

i are the endpoints of the intersection lines. Similar to
the normal vectors of the plane, the relationship between the direction vectors lC

i and lL
i

only relies on the rotation matrix RC
L :

RC
L lL

i = lC
i (9)

The position relationship between the intersection endpoints QC
i and QL

i is the position
relationship between the two coordinate systems:

QC
i = RC

L QL
i + TC

L (10)

Equations (9) and (10) provide a collinearity constraint obtained from a linear per-
spective, which is used to compute the initial value of the extrinsic parameter [R C

L , TC
L

]
.

Considering from the point perspective, as shown in Figure 4, there exists a straight line[
lC
i , QC

i

]
and a point PC

ij outside the straight line. The vector
(

PC
ij − QC

i

)
connects point

PC
ij and the endpoint QC

i of the line projects onto the line direction vector lC
i as a projection

vector l∥ =
(

lC
i

)T(
PC

ij − QC
i

)
lC
i , and the projection vector on the perpendicular direction

of the line
[
lC
i , QC

i

]
is

l⊥ =
(

PC
ij − QC

i

)
− l∥

=
(

PC
ij − QC

i

)
−
(

lC
i

)T(
PC

ij − QC
i

)
lC
i

=
(

PC
ij − QC

i

)
− lC

i

(
lC
i

)T(
PC

ij − QC
i

)
=

(
I − lC

i

(
lC
i

)T
)(

PC
ij − QC

i

)
(11)

In Equation (11), I represents the unit matrix. As shown in Figure 4, the line
[
lC
i , QC

i

]
in the camera coordinate system and the line

[
lL
i , QL

i

]
in the LiDAR coordinate system are

the same line in space, then the LiDAR point PL
ij on the line

[
lL
i , QL

i

]
is projected to the

point RC
L PL

ij + TC
L in the camera coordinate system, which is located on the line

[
lC
i , QC

i

]
;

thus, the projection vector of the vector connected by the point RC
L PL

ij + TC
L and the endpoint

QC
i in the perpendicular direction of the line

[
lC
i , QC

i

]
is a zero vector. Substituting the

point RC
L PL

ij + TC
L and the zero vector 03×1 into Equation (11) for PL

ij and l⊥, respectively,
we can obtain (

I − lC
i

(
lC
i

)T
)(

RC
L PL

ij + TC
L − QC

i

)
= 03×1 (12)

Similar to the coplanar constraint, the error adjustment function is constructed through
Equation (12) and then solved iteratively. Assuming that there are N poses of data, ac-
cording to Equation (12) the error adjustment term corresponding to the point PL

ijk on the

checkerboard intersection j in the ith pose can be written as

eline

∣∣∣PL
ijk =

∣∣∣∣(I − lC
ij

(
lC
ij

)T
)(

RC
L PL

ijk + TC
L − QC

ij

)∣∣∣∣2 (13)
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Accumulating the error adjustment terms for all points to obtain the error adjustment
terms for the coplanar constraint is as follows:

eline =
N

∑
i=1

3

∑
j=1

1
Kij

Kij

∑
k=1

eline

∣∣∣PL
ijk (14)

Figure 4. Collinear constraint diagram.

2.2.2. Geometric Information Extraction of Trihedron Calibration Object

Due to the existence of noise in point cloud data, the accurate estimation of geometric
feature parameters, such as plane parameters in point clouds, will be affected, which in
turn affects the accuracy of coplanar constraints and collinear constraints, and ultimately
affects the precision of the calibration. Therefore, this paper estimates the noise parameters
through the iterative maximum a posteriori (MAP) of the planar constraint to obtain more
accurate checkerboard plane parameters, as well as coplanar and collinear constraints.
Specifically, for any LiDAR point Pij = (x, y, z), we can obtain its corresponding polar form
(r, φ, θ), and the conversion relationship between the two is

x = rsin(φ)cos(θ) (15a)

y = rsin(φ)sin(θ) (15b)

z = rcos(φ) (15c)

Owing to the change of the surface material, the noise of the LiDAR point Pij mainly
comes from its distance parameter r, in polar coordinates, while the other two angular
parameters φ, θ are relatively accurate. Let the coordinates of the truth-value estimation
point corresponding to the LiDAR point Pij on the checkerboard plane [ni, di] be expressed
as P′

ij = (r′, φ, θ); the calculation formula for its distance parameter r′ can be obtained
as follows:

ni

r′sin(φ)cos(θ)
r′sin(φ)sin(θ)

r′cos(φ)

− di = 0 (16a)

r′ =
di

n1
i sin(φ)cos(θ) + n2

i sin(φ)sin(θ) + n3
i cos(φ)

(16b)

In Equation (16), ni =
[
n1

i , n2
i , n3

i
]
. The above noise estimation idea needs to obtain

the exact parameters of the checkerboard plane in the point cloud, but due to the existence
of point cloud noise, the exact plane parameters cannot be obtained directly. Therefore, this
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paper adopts an iterative maximum a posteriori (MAP) estimation method. Firstly, a rough
plane parameter is estimated through the RANSAC [40] method. Subsequently, the noise
parameters of the point cloud are estimated based on the obtained plane parameters. Then,
optimizing the plane parameter by the obtained noise parameter and continuously iterating
to obtain the final plane parameter and noise parameter, the specific process is as follows:

I: Obtain the initial parameters using the random sampling consistency (RANSAC)
algorithm to obtain the initial plane parameters [ni, di] of the LiDAR point cloud.

II: Calculate the noise parameters. Based on the plane parameters and Equations (15)
and (16), obtaining the truth estimation points corresponding to each point in the point
cloud, and the noise parameters

[
µ, σ2] are calculated as follows:

µ =
1
N ∑

Pij

(
r − r

′)
(17a)

σ2 =
1

N − 1∑
Pij

(
r − r

′ − µ
)2

(17b)

In Equation (17), N is the total number of the point cloud.
III: Construct the optimization function of maximum a posteriori (MAP) probability.

The planar projection error ePij = nT
i Pij − di for each LiDAR point Pij; according to the

noise parameters of the point cloud, the mean µPij and the variance σ2
Pij

of the ePij can be
obtained, and the optimization function of maximum a posteriori (MAP) probability can be
written as

(ni, di) = argmin
ni , di

∑
i

∑
Pij

(
ePij − µPij

)2

σ2
Pij

(18)

IV: Using iterative optimization, we can obtain the optimal estimates of the planar
parameters corresponding to Equation (18).

V: Repeat steps II–IV until the results converge, which means that the difference
between the error function values corresponding to the optimized and pre-optimized
planar parameters is less than a particular threshold value.

With the noise parameters of the point cloud and the more accurate checkerboard
plane parameters, the coplanar constraint error adjustment term based on the point cloud
noise can be obtained. The surface projection error term of each LiDAR point Pij in the
camera coordinate system can be expressed as

e
PL

ij
plane =

(
nC

i

)T(
RC

L PL
ij + TC

L

)
− dC

i (19)

According to the noise parameters
[
µ, σ2] of the point cloud, the mean value µPL

ij
and

standard deviation σPL
ij

of the e
PL

ij
plane in Equation (19) can be derived as

µPL
ij
=
(

nL
i

)T
sin

(
φij
)
cos
(
θij
)

sin
(

φij
)
sin
(
θij
)

cos
(

φij
)

µ (20a)

σ2
PL

ij
=
(

nL
i

)T
sin

(
φij
)
cos
(
θij
)

sin
(

φij
)
sin
(
θij
)

cos
(

φij
)

σ2 (20b)
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According to Equation (20), given the coordinates of the LiDAR point PL
ij, the posterior

probability distribution of the extrinsic parameters from the LiDAR to the camera can be
determined as

P
(

RC
L , TC

L

∣∣∣PL
ij

)
=

exp

−

(
e

PL
ij

plane−dC
i −µPL

ij

)2

2σ2
PL

ij


σPL

ij

√
2π

(21)

This can be estimated from the maximum posterior probability:

MLP
[

P
(

RC
L , TC

L

∣∣∣PL
ij

)]
= argmin

RC
L ,TC

L

− ln P
(

RC
L , TC

L

∣∣∣PL
ij

)

= argmin
RC

L ,TC
L

((
nC

i
)T
(

RC
L PL

ij + TC
L

)
− dC

i − µPL
ij

)2

σ2
PL

ij

(22)

According to Equation (22), the final error adjustment term for the coplanar constraint
based on the noise parameter can be written as

eplane_new =
N

∑
i=1

3

∑
j=1

1
Kij

Kij

∑
k=1

−ln P
(

RC
L , TC

L

∣∣∣PL
ijk

)
(23)

In Equation (23), the error adjustment term incorporates point cloud noise parameters,
rendering it more robust and accurate compared to Equation (8).

2.2.3. Multipath-Closure Constraint between Sensors

It is illustrated in Figure 5 that the extrinsic parameter
[

RC2
C1

, TC2
C1

]
between the binoc-

ular camera, the extrinsic parameter
[

RC1
L , TC1

L

]
from the No.1 camera to the LiDAR,

and the extrinsic parameter
[

RL
C2

, TL
C2

]
from LiDAR to the No.2 camera are interrelated,

and
[

RL
C2

, TL
C2

]
can be calculated from

[
RC2

C1
, TC2

C1

]
and

[
RC1

L , TC1
L

]
. However, since the ex-

trinsic parameters
[

RC2
C1

, TC2
C1

]
,
[

RC1
L , TC1

L

]
obtained from the calibration have errors, the er-

rors will accumulate during the calculation process of
[

RL
C2

, TL
C2

]
from

[
RC2

C1
, TC2

C1

]
and[

RC1
L , TC1

L

]
. In order to reduce the accumulation errors, this paper establishes a closed-loop

constraint relationship based on the closed-loop interconnection between sensors:[
RL

C2
TL

C2
0 1

][
RC2

C1
TC2

C1
0 1

][
RC1

L TC1
L

0 1

]
= I (24)

However, the closed-loop constraint form of Equation (24) is difficult to iteratively
optimize in nonlinear optimization processes. It is necessary to transform the form of the
matrix of Equation (24) into the vector form. We utilized the multipath-closure constraint
characteristic illustrated in Figure 6, which indicates that the LiDAR points located on
the checkerboard plane first pass through the extrinsic parameters of the LiDAR to the
No.1 camera, then project onto the coordinates of the No.2 camera using the extrinsic
parameters from the No.1 camera to the No.2 camera, and this projection is consistent
with the projection of the LiDAR points directly to the No.2 camera using the extrinsic
parameters of the LiDAR to the No.2 camera. Transforming Equation (24) into the vector
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expression form, which is convenient for iterative optimization in the nonlinear solution,
can be carried out as follows:

RC2
C1

(
RC1

L PL
i + TC1

L

)
+ TC2

C1
−
(

RC2
L PL

i + TC2
L

)
= 03×1 (25)

The error adjustment term for the multipath-closure constraint can be written as

eloop

∣∣∣PL
ijk = RC2

C1

(
RC1

L PL
ijk + TC1

L

)
+ TC2

C1
− (R C2

L PL
ijk + TC2

L ) (26a)

eloop =
N

∑
i=1

3

∑
j=1

1
Kij

Kij

∑
k=1

eloop

∣∣∣PL
ijk

2
(26b)

Figure 5. Accumulated error diagram.

Figure 6. Multipath-closure constraint diagram.
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2.3. Multipath-Closure Calibration Process

As shown in Figure 7, the camera–LiDAR–camera multipath-closure calibration pro-
cess consists of four steps. Firstly, the robust and accurate line and surface geometric
information of the calibration object can be derived through the iterative maximum a
posterior probability estimation. Secondly, coplanar constraints, collinear constraints,
and multipath-closure constraints can be constructed based on the calibration targets and
the multipath-closure interconnection between sensors. Subsequently, the initial values of
the extrinsic parameters are obtained according to the coplanar and collinear constraints.
Finally, using the L-M algorithm to optimize the initial values of the extrinsic parameters
iteratively, the results of the extrinsic calibration can be obtained.

Figure 7. The process of calibration.

2.3.1. Initial Calculation of Extrinsic Parameters

Utilizing the random sample consensus (RANSAC) algorithm, the three checkerboard
plane parameters

[
nL

i , dL
i
]

and the three plane intersection line segment parameters
[
lL
i , QL

]
in the LiDAR point cloud are derived, where QL is the intersection point of the three
line segments. Subsequently, following Zhang’s method [41], the checkerboard plane
parameters

[
nC

i , dC
i
]

and the plane intersection line segment parameters
[
lC
i , QC

]
can be

determined from the image data, along with the extrinsic parameters between the two
cameras. According to Equation (5), for a single pose of the calibration object, the initial
value of the translation vector can be written as

TC
L =

[(
nC

1

)T
,
(

nC
2

)T
,
(

nC
3

)T
]−1[

dL
1 − dC

1 , dL
2 − dC

2 , dL
3 − dC

3

]
(27)
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In the case of multiple poses, an error function can be formulated regarding the
translation vector TC

L :

TC
L = argmin

TC
L

N

∑
i=1

3

∑
j=1

((
nC

ij

)T
TC

L − dL
ij + dC

ij

)2
(28)

Let

NC =

[(
nC

11

)T
,
(

nC
12

)T
,
(

nC
13

)T
, · · ·

]
(29a)

DC − DL =
[
dL

11 − dC
11, dL

12 − dC
12, dL

13 − dC
13, · · ·

]
(29b)

Due to the least squares method, the optimal solution of Equation (28) can be expressed
as

TC
L =

(
NC NT

C

)−1
NC(DC − DL) (30)

Regarding the initial calculation of rotation indexes, the error function for the rotation
matrix RC

L concerning a single pose data from Equations (4) and (9) is

RC
L = argmin

RC
L

3

∑
i=1

(
RC

L nL
i − nC

i

)2
+
(

RC
L lL

i − lC
i

)2
(31)

Let

ML =
[
nL

1 , nL
2 , nL

3 , lL
1 , lL

2 , lL
3

]
(32a)

MC =
[
nC

1 , nC
2 , nC

3 , lC
1 , lC

2 , lC
3

]
(32b)

According to [42], applying the SVD decomposition to the matrix ML MT
C, the result

is ML MT
C = USV T , where the initial rotation matrix RC

L = VUT . The methodology to
calculate the initial data values for multiple poses is mainly consistent with that used for a
single pose.

2.3.2. Optimization of Extrinsic Parameters

Upon ensuring the initial values for the extrinsic parameters between the two cameras
through LiDAR measurements, it is necessary to further optimize the initial values. Due
to the coplanarity, covariance, and multipath-closure constraints, an error function for the
extrinsic parameters can be derived and iteratively optimized to obtain a more precise
result. Based on the error adjustment term of the coplanar constraints, collinear constraints,
and multipath-closure constraint, the total optimization function can be written as(

RC1
L , TC1

L , RC2
L , TC2

L

)
= argmin

RC
L ,TC

L

eplane_new + eline + eloop (33)

The Equation (33) solution presents a non-linear optimization problem that can be
addressed through the L-M algorithm, which performs a global optimization of the extrin-
sic parameters.

3. Experimental Results and Analysis

In order to verify the effectiveness of the calibration algorithm in practical applications,
this paper uses a sensor system composed of a stereo camera and a 3D LiDAR to collect
data in multiple poses of the trihedron calibration object for actual experiments. Due to the
lack of truth value for the extrinsic parameters in the actual experiment and the absence of
the universally accepted accuracy evaluation standard, this paper proposes two accuracy
indexes based on the correspondence of geometric features such as lines and planes in
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the image and point cloud data. One of the indexes is the overlap ratio, which calculates
the area overlap ratio between the area of the calibration object in the LiDAR point cloud
back-projected into the image and the actual area of the trihedron calibration object in the
image (as shown in Figure 8); the calculation method is as follows:

IoU =
SL ∩ SC
SL ∪ SC

(34)

where IoU represents the overlap ratio, SC is the area of the calibration object in the
image, and SL is the area of the region in the image that corresponds to the calibration
object’s back-projected LiDAR point cloud. Assuming the extrinsic parameter results are
accurate, the area of the LiDAR point cloud back-projected on the image is just covering the
calibration object area in the image, so the accuracy of the algorithm can be evaluated by
the overlap ratio, and the higher the overlap ratio, the higher the accuracy of the algorithm.

Figure 8. Overlap ratio calculation diagram.

Another evaluation index is the line distance, which refers to the sum of the distance
between the three planar intersection lines of the trihedron calibration object in the LiDAR
point cloud back-projected into the image and the corresponding three intersection lines
of the trihedron in the image (as illustrated in Figure 9); the calculation process can be
written as

L =
3

∑
i=1

ωiLi (35a)

Li =
∥∥∥Qi

C − Qi
L

∥∥∥, ωi =
(

1 −
∥∥∥li

C • li
L

∥∥∥) (35b)

In Equation (35),
[
li

C, Qi
C

]
, (i = 1, 2, 3) represents the parameter of the intersection

lines of the three trihedron calibration objects in the image obtained by the back projection
and

[
li

L, Qi
L

]
, (i = 1, 2, 3) denotes the parameters of the intersecting planes of the trihedron

calibration object in the LiDAR point cloud. L is the line distance. The more accurate the
calibration result is, the closer the values of !i and Li in Equation (35) approach 0, and the
resulting line distance calculation also approaches 0. Therefore, the line distance can also
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evaluate the algorithm’s accuracy; the smaller the line distance, the higher the accuracy of
the algorithm.

Figure 9. Calculation diagram of line distance.

Based on real experiments, this paper uses two evaluation indexes, overlap ratio
and line distance, to validate the accuracy of the algorithm in real scenarios and eval-
uate the impact of different constraints on the calibration results from both planar and
linear perspectives.

3.1. Real Experiments

In order to verify the effectiveness of the calibration algorithm proposed in this paper
in real-world scenarios, this paper uses real data collected by a sensor system composed of
a stereo camera module and a 3D LiDAR; the equipment diagram is shown in Figure 10.

Figure 10. Experimental installation diagram.

The equipment in the experiment consists of two cameras and a 3D LiDAR with the
following parameters: a focal length of 28 mm, a principal point coordinate of (972, 485),
the resolution of the image acquired by the camera is 1920 × 1080, and the aberration
parameters are [0.056,−0.9972,−0.001,0.00014,−17.107]. The 3D LiDAR parameters are
shown in Table 1.
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Table 1. 3D LiDAR parameters.

Vertical Field of View 90 degrees

Vertical Angle Resolution 1 degree

Horizontal Field of View 270 degrees

Horizontal Angle Resolution 0.5 degrees

Three checkerboard grids were used for the trihedron calibration object; each checker-
board grid was 8 × 8 grids with a size of 50 mm, and the size of each checkerboard grid was
40 cm × 40 cm. The internal camera parameters, such as the focal length, principal point
coordinate, and aberration parameters, were calibrated before the experiment. The images
taken by the cameras were corrected for aberration during the experiment. The baseline
of the stereo camera in the experimental equipment was adjustable, and the experimental
results under different baselines are basically consistent without loss of generality. This
paper sets the baseline length as approximately 10 cm in the experiment. The data collected
by the experimental equipment is illustrated in Figure 11.

(a) Point clouds collected by LiDAR

(b) Image captured by the No.1 camera (c) Image captured by the No.2 camera

Figure 11. Data collected by experimental equipment.

3.1.1. Accuracy Verification of Algorithms in Real Scenarios

In the experiment, the relative position of the LiDAR and stereo camera was fixed,
and the calibration object was moved to collect data under 20 different poses. This paper
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implements the verification algorithm to derive the extrinsic parameters of the LiDAR and
stereo camera, which can be written as

RC1
L =

 0.078 −0.992 −0.011
−0.043 −0.013 −0.993
0.996 0.083 −0.044

 (36a)

TC1
L = [12.175 mm, 142.101 mm, 170.953 mm] (36b)

RC2
L =

 0.081 −0.995 −0.005
−0.042 −0.0 −0.992
0.995 0.087 −0.042

 (36c)

TC2
L = [−83.650 mm, 136.259 mm, 172.603 mm] (36d)

Based on the obtained extrinsic calibration results, the calibration object regions of the
LiDAR point cloud were respectively back-projected onto the No.1 camera and the No.2
camera. The back-projection results are shown in Figure 12.

(a) Calibration object area of LiDAR point cloud

(b) Back-projection result of the No.1 camera (c) Back-projection result of the No.2 camera

Figure 12. Calibration object region of the point cloud back projection.

In Figure 12, the red dots indicate the LiDAR points, and the overlap ratio calculated
by Equation (34) is 0.93 for the No.1 camera and 0.91 for the No.2 camera. From the



Remote Sens. 2024, 16, 258 18 of 28

two back-projection images, it can be observed that the LiDAR points of the trihedron
calibration object acquired by the LiDAR are distributed in the calibration area of the image
after the back-projection transformation, and they basically cover the region. Moreover,
the LiDAR points on each checkerboard plane in the image are distributed almost uniformly.
In addition to the back projection of the entire calibration region, this paper back-projects
the intersection of the trihedron calibration object in the point cloud to the image based on
the extrinsic parameter calibration results, as shown in Figure 13.

(a) Trihedron calibration object plane intersection lines in LiDAR
point cloud

(b) Back-projection result of the No.1 camera (c) Back-projection result of the No.2 camera

Figure 13. Point cloud back projection of plane intersection lines of trihedron calibration cbject.

In Figure 13, the red dots represent LiDAR points, and the line distance calculated
by Equation (35) is 0.96 for the No.1 camera and 0.94 for the No.2 camera. From the two
back-projection images, it can be observed that the back-projection lines of the calibration
plane intersection in the LiDAR point cloud almost coincide with the intersection line of
the calibration plane in the image. Based on the results illustrated in Figures 12 and 13, it
can be concluded that the extrinsic calibration obtained by the proposed algorithm in this
paper matches the pose of the stereo camera and the 3D LiDAR during operation in the
real scene, indicating the accuracy of the proposed algorithm in this paper.
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3.1.2. Influence of Point Cloud Noise Estimation Methods on the Calibration Results

The primary objective of estimating point cloud noise is to obtain robust and accu-
rate coplanar constraint relationships. In order to verify the impact of point cloud noise
estimation methods on calibration results, we employed the same experimental data as in
Section 3 to calculate the extrinsic parameters under two cases of coplanar constraint with
estimation and coplanar constraint without noise estimation; the back-projection results
(the No.1 camera) are shown in Figure 14.

(a) Coplanar constraint

(b) Coplanar constraint with no noise estimation

Figure 14. Influence of noise estimation on calibration results.

From Figure 14, it can be seen that, without noise estimation, the back projection of the
checkerboard plane in the point cloud onto the image does not correspond well with the
checkerboard plane in the image, and the intersection lines of the checkerboard in the point
cloud and those in the image show significant deviations. Therefore, it can be deduced that
ensuring a robust and accurate coplanar constraint relationship through noise estimation
can yield more precise calibration results.

3.1.3. Influence of Different Constraints on Calibration Results

In order to investigate the influence of different constraints on the calibration results
and compare them with existing methods, we employed the same experimental data as
in Section 3 to calculate the extrinsic parameters under three cases: coplanar constraint,
coplanar constraint + collinear constraint, and coplanar constraint + multipath-closure
constraint + collinear constraint. The extrinsic parameters were compared with the results
obtained by the method proposed in the literature [14]. Calculating the accuracy indexes
according to the back-projection test and Equations (34) and (35), the results are presented
in Table 2.
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Table 2. Results of precision indexes calculation.

Constraints Condition Overlap Ratio Line Distance

Literature [14] 0.67 9.33
Coplanar 0.85 2.31

Coplanar + Collinear 0.88 1.04
Coplanar + Multipath-closure + Collinear 0.93 0.95

From the results of the back-projection and overlap ratio calculation, it can be summa-
rized that (1) the precision of the algorithm presented in this paper is significantly higher
than that of existing methods, primarily because existing methods only utilize a single
coplanar constraint, whereas our algorithm combines multiple constraint relationships
and improves their accuracy through noise estimation; (2) both the multipath-closure
and the collinear constraints can improve the algorithm’s precision, with the multipath-
closure constraint resulting in a more significant improvement in the overlap ratio index,
while the collinear constraint result in a greater improvement in the line distance index.
The experimental results demonstrate that more accurate calibration results can be ob-
tained under the combined effect of various constraints such as coplanarity, collinearity,
and multipath-closure constraints.

3.1.4. Data Fusion Results Using the Calibration Results

Calibration results are primarily used for data fusion between sensors, including data
fusion between images and data fusion between images and point clouds.

(1) Data Fusion between Images and Point Clouds
LiDAR point clouds are sparse, unordered, and lack texture information. By utilizing

the extrinsic parameters between the camera and the LiDAR, the color texture information
in the images can be mapped onto the point clouds, resulting in a more comprehensive and
rich scene information. In this paper, the color texture information from the image data
collected by the experimental equipment is mapped onto the point cloud data, and the
resulting data fusion result is shown in Figure 15a.

(a) The result of data fusion (b) Validation of data fusion results

Figure 15. Data fusion.

In order to validate the accuracy of the data fusion results, we measured the size of the
calibration object’s checkerboard grid in the point cloud using the CloudCompare software
(2.12.4 Kyiv [Windows 64-bit]). The result is shown in Figure 15b.

Figure 15b is an enlarged view of the calibration object region in Figure 15a. Through
the measurement tool in CloudCompare, the width of four checkerboard grid cells in the
point cloud is approximately 0.196 m, which means that the size of each checkerboard
grid cell is approximately 49 mm. The actual size of the checkerboard grid cell is 50 mm.
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The experimental result is very close to the true value, demonstrating the accuracy of the
fusion results.

(2) Data Fusion between Images
Based on the extrinsic parameters between stereo cameras, the three-dimensional

point cloud of the scene can be reconstructed from the images of the stereo cameras.
The reconstruction methods can be broadly categorized into disparity-based and feature
matching-based approaches. The feature matching-based approach is suitable for sim-
ple scenes composed of multiple planes and provides more accurate depth estimation.
The disparity-based approach has a wider range of applications but less accurate depth
estimation compared to the feature matching-based approach. However, the prerequisite
for the disparity-based approach is that the optical axes of the two cameras are parallel,
meaning that the images captured by the two cameras only have a certain pixel offset in
the horizontal direction. In this study, the intrinsic parameters of the stereo cameras in the
experimental equipment are not completely consistent, and the captured images have pixel
offsets in both the horizontal and vertical directions, which does not meet the conditions for
using the disparity-based approach. Therefore, the feature matching method is adopted for
three-dimensional reconstruction. Firstly, feature extraction and matching are performed
on the images from the left and right cameras to obtain corresponding feature points. Then,
the depth values of the corresponding feature points are estimated based on the extrinsic
parameters between the cameras, resulting in three-dimensional points corresponding to
the feature points in the spatial domain. Finally, dense reconstruction is performed to
obtain the reconstruction results, as shown in Figure 16.

As shown in Figure 16, this paper reconstructed the trihedron calibration object using
both the left camera coordinate system and the right camera coordinate system as references.
The size of the checkerboard grid in the reconstructed point cloud was measured, resulting
in dimensions of 51.7 mm and 50.8 mm, respectively. These values are close to the true size,
demonstrating the accuracy of the reconstruction results. Furthermore, this paper also fused
the point cloud reconstructed from images with the point cloud from a LiDAR. By using
the extrinsic parameters between the left and right cameras and the LiDAR, the point cloud
reconstructed from images was projected onto the LiDAR coordinate system. The LiDAR
point cloud was then densified. From the projection results in Figure 16, it can be observed
that the point clouds of the tetrahedron calibration object reconstructed using both the
left and right cameras align well with the corresponding region in the LiDAR point cloud,
indicating good fusion results.
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(a) Left image (b) Right image (c) LiDAR points

(d) (e)

Figure 16. 3D reconstruction result from stereo camera. (d) shows the Reconstruction results with
the left camera as the reference. (e) shows the Reconstruction results with the right camera as the
reference.In (d,textbfe), the green points represent the reconstructed point clouds, while the red points
represent the LiDAR point clouds.

3.2. Simulation Experiments

However, the actual experiments have the following limitations: (1) precisely measur-
ing the algorithm’s accuracy takes a significant amount of work. In actual experiments,
the truth values of the extrinsic parameters are unknown. The accuracy of the calibration
algorithm can only be roughly evaluated by the correspondence between the lines and
surfaces after the point cloud back projection and the lines and surfaces in the image; (2)
Noise and limited pose conditions make it difficult to measure the algorithm’s robustness.
The equipment used in actual experiments is fixed. Meanwhile, the noise conditions and
pose range in the collected data are limited, making it impossible to obtain the algorithm
performance under different noise conditions and some special pose data. Therefore, this
paper designs simulation experiments to quantitatively evaluate the performance of the
calibration algorithm by simulating data under various noise conditions and special poses
with known truth values of extrinsic parameters, and the performance evaluation indexes
are as follows: ER = 2cos

(
tr(R−1

cali Rtruth−I)
2

)
ET =∥ Ttruth − Tcali ∥

(37)
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In Equation (37), [Rcali, Tcali] is the output extrinsic parameter of the algorithm and
[Rtruth, T truth] is the extrinsic truth value. This evaluation index allows for a quantitative
assessment of the differences between the truth value and the algorithmic output, and the
smaller the calculated result, the better the performance of the algorithm.

To ensure that the results of the simulation experiments closely reflect real-world
scenarios, the parameter settings of the simulation experiment are set to match those of the
real-world scenarios as closely as possible.

Specifically, the parameters of the 3D LiDAR and the calibration object in the simula-
tion experiment are consistent with those of the real experiment, the aberration parameter of
the camera is set to 0, and the other parameters are also consistent with the real experiment.

3.2.1. Simulation Experiments under Different LiDAR Noise

To verify the adaptability of the algorithm to LiDAR noise, Gaussian noise with a
mean of 0 and a standard deviation of 2–30 mm was added to the LiDAR distance data
and Gaussian noise with a mean value of 0 and standard deviation of 0.5 pixels was added
to the image point data. Fifty experiments were conducted at each noise level, and in
each experiment the simulation generated data for a trihedron calibration object in one
pose. The calibration algorithm proposed in this paper was used to calculate the extrinsic
parameters, and the accuracy of the algorithm was calculated using Equation (37). The
accuracy comparison results with the current mainstream methods (Unnikrishnan [8],
Zhou [14], Toth [43]) are shown in Figure 17.

(a) Error of rotation matrix (b) Error of translation vector

Figure 17. Extrinsic calibration error from LiDAR to No. 1 camera at different LiDAR noise levels.

The results of the extrinsic calibration error between the LiDAR and Camera No.2
at different levels of LiDAR noise are similar to those shown in Figure 17. According to
Figure 17, it can be summarized that with the increase of the LiDAR noise, the calibration
errors of the rotation matrix and the translation vector would gradually increase. However,
even when the noise parameter is increased to 30 mm, the error of the rotation matrix
remains within 0.004 rad and the error of the translation vector remains within 4 mm. This
proves that this paper’s algorithm has good accuracy and robustness under the data of
the trihedron calibration object with a single pose. Moreover, compared to the current
mainstream methods, this paper combines multiple constraint relationships and enhances
their accuracy and robustness through noise estimation. As a result, more accurate extrinsic
calibration results are obtained.

3.2.2. Influence of Point Cloud Noise Estimation Methods on Algorithm Accuracy

The main purpose of point cloud noise estimation is to obtain robust and accurate
coplanar constraints. In order to verify the influence of the point cloud noise estimation
methods on algorithm accuracy, this paper introduces Gaussian noise with a mean of 0 and
standard deviation of 20 mm into the LiDAR data and conducts 50 experiments at this noise
level. In each experiment, the simulation generates data from the trihedron calibration
object with one pose. The extrinsic parameters were calculated for coplanar constraint and
coplanar constraint without noise estimation, the algorithmic accuracy was calculated from
Equation (34), and the result is presented in Figure 18.
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Figure 18. Validation of data fusion results.

As depicted in Figure 18, it is evident that, in the absence of noise estimation, the cali-
bration error is significantly larger. However, the robust and accurate coplanar constraint
obtained from noise estimation can improve the precision of calibration.

3.2.3. Influence of Coplanar Constraint and Multipath-Closure Constraint on
Algorithm’s Accuracy

In this paper, the algorithm adds collinear and multipath-closure constraints on the
basis of coplanar constraints, and in order to verify the influence of coplanar and loop
constraints on the algorithm’s accuracy this paper adds Gaussian noise with a mean value
of 0 and standard deviation of 20 mm to the LiDAR data. Fifty experiments were conducted
at this noise level, with each experiment generating data for the trihedron calibration object
under one pose. The extrinsic parameters were computed under three conditions: coplanar
constraint only, coplanar constraint + loop constraint, and coplanar + loop + collinear
constraints. The accuracy of the algorithm was calculated using Equation (37), and the
results are shown in Figures 19 and 20.

(a) (b)

Figure 19. Extrinsic calibration error from LiDAR to No. 1 camera under different constraints.
(a) shows error of rotation matrix under different constraints. (b) shows error of translation vector
under different constraints.

(a) (b)

Figure 20. Extrinsic Calibration Error from LiDAR to No. 2 Camera under Different Constraints.
(a) shows error of rotation matrix under different constraints. (b) shows error of translation vector
under different constraints.
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As shown in Figures 19 and 20, it is evident that the loop and collinear constraints
can enhance calibration algorithm’s accuracy. The combined effect of the loop constraint
and the collinear constraint improves the calibration accuracy of the translation vector by
nearly 50% compared with no loop or collinear.

3.2.4. Influence of The Trihedron Calibration Object Poses Number on the
Algorithm’s Accuracy

The calibration algorithm in this paper can work effectively for a single pose, but in
practice, data are usually collected for multiple poses to improve the calibration accuracy.
In order to verify the effect of the number of poses on the accuracy of the algorithm, this
paper adds Gaussian noise with the mean value 0 and the standard deviation 20 mm to the
LiDAR data. Fifty experiments were conducted at this noise level, with each experiment
simulating 2 to 40 poses of the trihedron calibration object. The extrinsic calibration was
performed using data from multiple poses, and the algorithm accuracy was calculated
through the Equation (37). The results are presented in Figures 21 and 22.

(a) (b)

Figure 21. Extrinsic calibration error of No. 1 camera with different number of poses. (a) shows error
of rotation matrix with different number of poses. (b) shows error of translation vector with different
number of poses.

(a) (b)

Figure 22. Extrinsic calibration error of No. 2 camera with different number of poses. (a) shows error
of rotation matrix with different number of poses. (b) shows error of translation vector with different
number of poses.

As depicted in Figures 21 and 22, it is clear that the increase of the pose data can
enhance the calibration accuracy of the algorithm. Once the number of poses reaches about
35, the accuracy gradually converges and no longer decreases. Ultimately, the converged
accuracy data is nearly 50% higher than that obtained from a single pose.

4. Discussion
4.1. Accuracy Comparison between the Proposed Method and the Current Mainstream Methods

This paper compares the proposed method with the current mainstream methods
in simulation experiments. The comparison results are presented in Figure 17. In the
same simulated environment, the proposed method exhibits superior calibration accuracy
compared to the current mainstream methods.
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4.2. Influence of Point Cloud Noise Estimation Methods on the Calibration Results

To validate the effectiveness of the point cloud noise estimation method, this paper
compares the calibration results under two scenarios: without noise estimation and with
noise estimation, in both simulation and real experiments. The results of the real experiment
are shown in Figure 14, where without noise estimation the back-projected chessboard
planes from the point cloud do not align well with the corresponding image chessboard
planes. Moreover, there is significant deviation between the chessboard intersections in
the point cloud and the image. However, with noise estimation the back-projection results
are improved. The results of the simulation experiment, shown in Figure 18, indicate
that calibration accuracy is better with noise estimation compared to without. Both the
simulation and real experiment results demonstrate that robust and accurate coplanar
constraints obtained through noise estimation can enhance the precision of calibration.

4.3. Influence of Different Constraints on Calibration Results

To validate the effectiveness of coplanar constraints and multipath-closure constraints,
this paper compares the calibration results under three scenarios: coplanar constraints,
coplanar constraints + collinear constraints, and coplanar constraints + collinear constraints
+ multipath-closure constraints, in both simulation and real experiments. The results
of the real experiment are presented in Table 2, indicating that both multipath-closure
constraints and collinear constraints improve the algorithm’s accuracy measures. multipath-
closure constraints exhibit greater improvement in the overlap metric, while collinear
constraints show greater improvement in the online distance metric. The results of the
simulation experiment, shown in Figure 19, demonstrate that both multipath-closure and
collinear constraints enhance the calibration algorithm’s accuracy. In fact, the combined
effect of multipath-closure and collinear constraints improves the translational vector
calibration accuracy by nearly half compared to the absence of multipath-closure and
collinear constraints. The experimental results indicate that more accurate calibration
results can be achieved through the combined effect of coplanar constraints, collinear
constraints, and multipath-closure constraints.

5. Conclusions

This paper proposes a calibration method for a stereo camera and 3D LiDAR, which
incorporates multiple constraints. The contributions can be summarized in three main
points. Firstly, based on the plane established by the trihedron calibration object, a more
precise extrinsic calibration is achieved by incorporating various geometric constraints such
as coplanarity and collinearity. The geometric constraints established by the calibration
object are crucial for the extrinsic calibration of the two sensors, and the more geomet-
ric constraints there are, the higher the accuracy of the extrinsic calibration. Secondly,
the multipath-closure constraint is established through the multipath-closure interconnec-
tion between the three sensors to reduce the calibration errors and further improve the
algorithm’s accuracy. Finally, two indexes, namely overlap ratio and line distance, are
proposed to evaluate the accuracy of the extrinsic calibration in the actual data. The results
of extrinsic calibration can be tested from the plane and line perspectives, respectively.

We have two main directions for our future research: (1) Advanced Calibration Meth-
ods. Here we will investigate and develop more advanced calibration methods that can
further improve the accuracy and robustness of the extrinsic calibration process. This could
involve exploring novel mathematical models, optimization algorithms, or incorporating
additional sensor modalities. (2) Multi-Sensor Fusion for Practical Applications. Here we
will explore the integration of a stereo camera and LiDAR data for multi-sensor fusion
applications. This could involve developing algorithms for specific real-world applications
such as autonomous driving and robotics.
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