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Abstract: Land cover (LC) products play a crucial role in various fields such as change detection,
resource management, and urban planning. The diversity in methods and principles used to create
different products poses a challenge for researchers in choosing the most suitable one for research
needs. Mainstream evaluation methods typically consider only a portion of the accuracy information
from the product and require a significant effort in creating validation datasets. Here, we propose
a relative accuracy assessment method for LC products based on optimal transport theory, which
provides a comprehensive evaluation by utilizing a broader range of accuracy information within
the product. The method can directly compute the similarity between the target product and the
reference truth at a global scale, addressing the issue of quantitatively assessing product accuracy in
the absence of a validation dataset. To validate the effectiveness of the method, we select Beijing as
the study area to assess the accuracy of four LC products. The results suggest that the method allows
for precise quantification of product accuracy, aligning closely with validation outcomes, which can
provide valuable guidance to researchers in both product creation and selection.

Keywords: accuracy assessment; land cover products; optimal transportation; relative accuracy

1. Introduction

Land cover (LC) products, as common remote sensing products, depict the interactions
between human activities and the natural environment, which are widely applied in
environmental change monitoring, ecosystem assessment, and sustainable development
planning [1–3]. With the rapid advancement of satellite remote sensing technology and
the continuous improvement in data accessibility, LC products continue to evolve and
be updated. However, due to differences in the classification algorithms and schemes of
products, researchers find it challenging to directly assess the quality of these products [4].
The accuracy assessment and rational selection of LC products have become key issues
in research [5,6]. It is a widely held view that the absolute ground truth does not exist,
making it impossible to directly compare remote sensing products with it [7].

Previous research has found that a validation dataset can be created for the study
area using a full-sampling method and make the dataset I reference truth to evaluate the
overall accuracy of LC products. But the high cost of creating the dataset has made the
full-sampling method rarely used directly [8]. To strike a balance between cost and accuracy,
a variety of studies have proposed two major categories of accuracy assessment methods:
direct assessment methods and indirect assessment methods. The direct assessment method
involves first obtaining samples through random sampling and then creating a validation
dataset through field surveys or visual interpretation based on high-resolution satellite
images such as Google Earth [9]. Finally, a confusion matrix is computed to determine the
overall accuracy of the product [10]. Although the method saves costs, the number and
methods of sampling can introduce errors and lead to unstable results. Furthermore, most
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validation datasets are not interoperable, making it difficult for researchers to select the
highest-quality one. Moreover, the rationale of relying solely on one validation dataset to
assess the accuracy of all LC products need to be questioned [11]. To avoid the creation
of validation datasets, indirect evaluation methods that compare the similarity between
products have been reported. Unlike direct assessment, the indirect assessment method
evaluates relative accuracy by analyzing differences between products, primarily through
regional consistency and spatial consistency analysis [12–14]. Specifically, regional consis-
tency involves statistically assessing the composition of different land cover types within
the study area [15]. Spatial consistency compares whether different products have the same
land cover type at the same location through pixel-by-pixel spatial overlay analysis [16].
The number of matching pixels indicates spatial consistency between products, implying
the degree of similarity [17]. However, it is important to note that the method primarily
provides qualitative assessments and may not offer a definitive ranking of product quality.
The methods for assessing the accuracy of LC products described above can be summarized
in Figure 1 based on their distinctive characteristics and developmental trajectories. As
can be seen from the figure, the full-sampling method is rarely used due to its high cost.
Although direct assessment methods and indirect assessment methods are cost-effective,
they result in the loss of a significant amount of information accuracy.
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Figure 1. The characteristics and development history of accuracy assessment methods for LC products.

This paper argues that the accuracy information determined by LC products can be
divided into two types: spatial position information and global feature information. Most
studies that assess LC product accuracy have only focused on spatial position information,
which means the classification correctness of each pixel, disregarding the distribution of
features formed by all pixels [18,19]. Every land cover type exhibits distinctive morphologic
characteristics, which are expressed through the arrangement of pixels. Therefore, even
with the absolute ground truth, the methods depicted in Figure 1 are still unable to fully
exploit the accuracy information of products and the ground truth for a comprehensive
assessment. This paper extends the research of Tan et al. [20], which primarily took account
of the global features of pixels to quantitatively compare the similarity of remote sensing
products. However, the similarity index proposed in Tan’s study also only considers a
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portion of the accuracy information in the products and may be challenging to explain in
some application scenarios. In this paper, we attempt to utilize more accuracy information
to assess LC products and ensure that the new similarity index maintains strict mathe-
matical logic and interpretability, revealing both commonalities and differences among
products. The new metric will assist researchers in making optimal selections quickly from
LC products.

The primary innovations and contributions of this paper include:

• Proposal of a relative accuracy assessment method for LC products based on optimal
transport theory. The method considers a broader range of accuracy information
to compute the Wasserstein similarity (WenSiM) between the target product and
the reference ground truth at a global level without the need for registration and
validation datasets.

• Evaluation of the classification accuracy of four LC products in Beijing. Through a com-
parative analysis of WenSiM and the results obtained from mainstream approaches,
the effectiveness of the relative accuracy assessment method is validated.

2. Data
2.1. Data Preprocessing

This study made use of Dynamic World [21], ESA WorldCover v100 [22], FROM_GLC10 [23],
and SinoLC_1 [24] in Beijing to conduct accuracy assessments. ESRI World Cover [25]
was chosen as the reference ground truth because of the highest overall official validation
accuracy. Table 1 shows the basic information for every LC product.

Table 1. Basic information of the five LC products.

ESRI_GLC10 DW_GLC10 ESA_GLC10 FROM_GLC10 SinoLC_1

Institution Esri WRI ESA THU WHU
Resolution (m) 10 10 10 10 1

Coverage Global Global Global Global National (China)
Classification scheme 10 classes 9 classes 11 classes 10 classes 11 classes
Version and timeline 2020 2020 2020 2017 2020

Overall accuracy (%) 85.96 77.80 74.40 72.76 73.61
55.55 (Beijing)

Notes: ESRI = Environmental Systems Research Institute; WRI = World Resources Institute; ESA = European
Space Agency; THU = Tsinghua University; WHU = Wuhan University.

In contrast to common data preprocessing procedures, this study only dealt with
resampling and reclassifying the products without requiring georeferencing. According
to Table 1, only the SinoLC_1 product had a resolution of 1 m. To facilitate a more com-
prehensive comparison of each product’s accuracy and ensure fairness in the process, we
standardized the resolutions of the five products to 10 m. It is also important to emphasize
that, although the FROM_GLC10 was produced in 2017, existing research has demonstrated
that, compared to classification errors in LC products, land cover changes in large regions
within a five-year timeframe can be negligible [26,27]. Additionally, for the DW_GLC10,
as a continuously updated image collection, the study utilized the confusion matrix re-
sults obtained during the testing process as its overall accuracy. Finally, the land cover
categories for products were reclassified into forestland, cropland, grassland, wetland,
settlements, and other land according to the classification rules of the Intergovernmental
Panel on Climate Change (IPCC), with specific classification criteria and details provided
in Tables A1 and A2.

2.2. Study Area

The study area was Beijing (Lat 39◦56′N, Long 116◦20′E), which covers an area of
1,641,054 hectares and is renowned as both an ancient capital and a modern international
city. The city is surrounded by mountains on its western, northern, and northeastern
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sides, whereas the southeastern part consists of a plain that slopes toward the Bohai Sea.
Detailed geographic information about Beijing, as well as the visual comparative effects of
LC products in Changping District, are depicted in Figure 2.
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3. Methods

The section begins by highlighting the theoretical underpinnings of the relative accu-
racy assessment method. Following that, the section elaborates on the characteristics and
computational process of the WenSiM index. Finally, the section introduces the creation of
a validation dataset for the study area by using stratified sampling theory.

3.1. Wasserstein-p Distance

The Wasserstein distance (earth mover’s distance, EMD) is a type of histogram simi-
larity measure [28,29]. Compared to other similarity measures, like the Kullback–Leibler
(KL) divergence and the Jensen–Shannon (JS) divergence, the Wasserstein distance has
the advantage of being able to assess the similarity between two probability distributions
that do not overlap at all. In addition, its value represents the minimum “cost” when two
distributions are transformed into each other.

Let ϕ be a metric space. For this study, we considered ϕ to be compact d-dimensional
Euclidean spaces, i.e., ϕ = [0, 1]d. Let ϕµ and ϕν denote the set of Borel probability measures
defined on ϕ. The Wasserstein-p distance for p ∈ [1, ∞) between two distributions Pµ ∈ ϕµ

and Pν ∈ ϕν can be defined as Equation (1) with the cost functions c(x, y) = dp(x, y).

Wp
(

Pµ, Pν

)
≜

{
inf

γ∈Γ(Pµ ,Pν)

∫
ϕµ×ϕν

dp(x, y)dγ(x, y)

} 1
p

(1)

Here, Γ
(

Pµ, Pν

)
is the set of all transportation plans γ(x, y) whose marginals are Pµ

and Pν, respectively, γ ∈ Γ
(

Pµ, Pν

)
. Additionally, dp(x, y) represents the “cost” associated

with transforming x in probability distribution Pµ into y in Pν, and p is the dimension size
of the probability distribution. Thus, the Wasserstein p-distance reflects the “cost” of the
optimal transportation plan.
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According to Brenier’s theorem [30], if Pµ and Pν (with respect to the Lebesgue mea-
sure) are absolutely continuous probability measures, the Wasserstein p-distance can be
equivalently calculated using Equation (2).

Wp
(

Pµ, Pν

)
=

{
inf

f∈MP(Pµ ,Pν)

∫
ϕµ

dp( f (x), x)dPµ(x)

} 1
p

(2)

where MP
(

Pµ, Pν

)
=
{

f : ϕµ → ϕν

∣∣∣ f#Pµ = Pν

}
and f#Pµ is used to indicate the pushfor-

ward of measure Pµ.
Since LC products consist of pixels, they belong to a special two-dimensional discrete

probability distribution and can be calculated numerically using a matrix. Thus, we focused
on how to calculate the Wasserstein distance of absolute discrete probability measures in
various dimensions.

The process of calculating higher-dimensional Wasserstein distance is difficult and
complicated. But the development of the sliced Wasserstein distance provides a closed-form
solution to the Wasserstein-p distance calculation problem [31]. By reducing the probability
distribution to one dimension through random projection, computing the Wasserstein
distance becomes fast and straightforward [32,33].

The idea behind the sliced Wasserstein distance is to obtain the marginal distribution
family (i.e., one-dimensional distribution) of high-dimensional probability distribution
through linear random projection and then calculate the Wasserstein distance of two
marginal distributions. The method transforms the challenging high-dimensional opti-
mal transport problem into several one-dimensional optimal transport problems with
closed-form solutions. Then, the sliced Wasserstein-p distance between two probability
distributions Pµ and Pν can be defined as in Equation (3).

∼
Wp
(

Pµ, Pν

)
=

[∫
θ∈Ω

Wp
p

(
Pθ

µ , Pθ
ν

)
dθ

] 1
p

(3)

where Pθ
µ and Pθ

ν denote all projections of marginal distributions Pµ and Pν on the direction
θ, respectively, and Ω is the set of all possible directions on the unit sphere. It has also

been proven that
∼
Wp satisfies sub-additivity and coincidence axioms, making it a genuine

metric [34].
Due to the various direction selections, calculating the corresponding projections

during the actual process is still very complicated. To address the challenge of projection
complexity while keeping the sample complexity constant, Deshpande et al. [35] proposed
a method to first find the most meaningful projection direction. The result obtained by
Equation (4) in the projection direction θ is known as the max sliced Wasserstein distance.

∼
W2−max

(
Pµ, Pν

)
=

[
max
θ∈Ω

W2
2

(
Pθ

µ , Pθ
ν

)] 1
2

(4)

∼
W2−max is an effective measure that overcomes the limitations of projection complexity.

It can directly compute the difference between two-dimensional distributions. Therefore,
in this study, it was employed to calculate the Wasserstein distance between LC products
and the reference ground truth within the study area.

3.2. Wasserstein Similarity Index

This study divided the accuracy information carried by the LC products into two types:
global feature information and spatial position information. Although the Wasserstein
distance is effective in quantifying the similarity between products and the reference truth
from a global feature perspective, its interpretability is affected because the total weight is
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evenly distributed among all pixels. Therefore, we normalized
∼
W2−max to ensure that the

global feature similarity F had a strict mathematical significance and was independent of
the size of the study area.

The existence of target product A and reference truth B was assumed, whose matrix
spaces are denoted as Aµ and Bν, respectively. In the study area, there was a total of k land
cover types, and the transformed numerical matrices satisfied Pµ ∈ Aµ and Pν ∈ Bν. Then,
F can be defined as Equation (5).

Fi = 1−
∼
W

(i)

2−max

D(i)
(5)

where Fi represents the global feature similarity for the type i(i = 1, 2, · · · , k) in the study
area, with 0 < Fi ≤ 1. D(i) denoting the maximum centroid distance for the pixels of the
land cover type i in A and B, which can be defined with Equation (6).

D(i) = max
{

d
(

n(i)
A , n(i)

B

)}
(6)

where n(i)
A and n(i)

B represent the pixels of the land cover type i in A and B, respectively.
d denotes the centroid distance for the pixels of land cover type i in A and B. When the
pixels in the two products are distributed in the diagonal corners of the area, the maximum
centroid distance can be computed.

After considering the global feature information of the products comprehensively,
there is also a need for an evaluation metric to assess spatial positional information. This
study used the correlation coefficient to quantify the spatial position similarity between
the target product and the reference truth. The correlation coefficient K can be defined
with Equation (7), primarily reflecting the commonalities and differences in category
composition between the product and the truth [36].

K =
∑k

i=1

(
P(i)

µ − Pµ

)(
P(i)

ν − Pν

)
√

∑k
i=1

(
P(i)

µ − Pµ

)2
∑k

i=1

(
P(i)

ν − Pν

)2
(7)

Here, P(i)
µ and P(i)

ν represent the areas of type i(i = 1, 2, · · · , k) for A and B, respectively.
Pµ and Pν are the average areas of each type in A and B, respectively within the study area.

With F and K serving as measures for different types of accuracy information, this
study further introduced the Wasserstein similarity (WenSiM) between the target product
A and reference truth B. The index comprehensively extracts accuracy information to reflect
the overall similarity, and it is defined as follows:

WenSiM =
1
k ∑k

i=1 KFi (8)

where the WenSiM satisfies the condition 0 < WenSiM ≤ 1 and WenSiM = 1 only when
K = Fi = 1, indicating that the target product and the reference truth are entirely identical
in both spatial position and global features within the study area.

The WenSiM index fully takes use of more accuracy information to evaluate LC
products. While maintaining properties such as symmetry, non-negativity, and identity,
the WenSiM also possesses strict mathematical significance and interpretability. It is an
excellent metric for accurately and rapidly assessing LC product accuracy. The detailed
calculation process is summarized in Algorithm 1.



Remote Sens. 2024, 16, 257 7 of 20

Algorithm 1. WenSiM(Pµ, Pν, k, θ, Ω)

1: Initialize θ, Ω
2: Data preprocessing for

(
Pµ , Pν)

3: Repeat

4:
(

A(i), B(i), P(i)
µ , P(i)

ν , n(i)
A , n(i)

B

)
←
(

Pµ , Pν)

5: D(i), K ← (A (i), B(i), n(i)
A , n(i)

B

)
6:

∼
W

(i)

2−max ←
(

P(i)
µ , P(i)

ν , θ, Ω
)

7: F (i) ←

 ∼W(i)

2−max, D
(i)


8: WenSiM(i) ←
(

K, F (i)
)

9: i← i + 1
10: Until i > k
11: WenSiM←

(
WenSiM(i), k

)
12: Output WenSiM

3.3. Production of Validation Dataset

The evaluation method proposed in this paper can directly assess the accuracy of
LC products without registration and validation datasets. In order to demonstrate the
effectiveness and rationality of the WenSiM index, it is necessary to create a validation
dataset to analyze the consistency between validation accuracy and assessment results.

Sampling is a crucial step in creating a validation dataset, as the sample size and
sample variance determine the accuracy of the dataset. Although increasing the sample
size is beneficial for improving accuracy, it also comes with the added cost of production.
The optimal sampling scheme aims to obtain the most reliable validation results with the
lowest cost [37]. Therefore, once the sample size is determined, the key to improving the
accuracy lies in reducing sample variance [38].

Stratified sampling (SS) is a great method to reduce variance and improve sampling
accuracy when the sample size is constant [39,40]. To implement SS, it is crucial to confirm
that every object in the sampling range shares similar properties. Subsequently, researchers
can use a particular characteristic or rule to divide the population into L non-repeating
sub-groups, each referred to as a layer. Finally, samples for each layer can be acquired
through random sampling.

LC products possess both geographical and administrative attributes, allowing them to
be divided into multiple levels using administrative boundaries. Therefore, researchers can
divide the study area into L layers based on the characteristic. After getting sampling points
through SS, an unbiased estimate of the variance V(yss) of all samples can be calculated by
using Equation (9).

(yss) =
L

∑
l=1

W2
l ·V(yl) =

L

∑
l=1

W2
l ·

1− fl
ml

S2
l =

L

∑
l=1

W2
l S2

l
ml

−
L

∑
l=1

WlS2
l

Mss
(9)

where yss represents all samples, and Mss is the total population size. Wl =
Ml
Mss

and fl =
ml
Ml

are the weight parameter and the sampling ratio of layer l (l = 1, 2, . . . , L), respectively. ml
and Ml denote the number of samples and pixels in layer l, respectively; yl is the sample
mean of layer l; and the population variance of layer l can be written as S2

l .
To minimize the objective function V(yss), it is essential to choose an appropriate

sample size and allocation method. This study adopted the Neyman optimal allocation
method, which maximizes sampling accuracy by achieving a proportional distribution



Remote Sens. 2024, 16, 257 8 of 20

between ml and WlSl . Vmin(yss) can be computed by Equation (10), where mss is used to
indicate the total number of samples.

Vmin(yss) =
1

mss

(
L

∑
l=1

WlSl

)2

− 1
Mss

L

∑
l=1

WlS2
l (10)

The production method is based on SS theory and considers factors such as economic
cost and sample quality, which involves scientifically selecting sample points to ensure that
the accuracy meets research requirements. However, it is important to emphasize that the
sample points selected through SS only reflect the spatial position information of the pixels
and do not effectively reveal the global features formed by the pixels’ interactions.

4. Results

This section is divided into two parts: the computation results of the Wasserstein
similarity and the validation results obtained through the validation dataset within the
study area. Ultimately, the section computes the confusion matrix to obtain the valida-
tion accuracy of each product and compares the results with the WenSiM and official
validation accuracy.

4.1. Wasserstein Similarity Results

On completing data preprocessing, the product’s classification scheme was modified
to the IPCC format, categorizing the types into forestland, cropland, grassland, wetlands,
settlements, and other land. Since the absolute ground truth did not exist, the paper
selected ESRI_GLC10, with the highest overall official validation accuracy from Table 1, as
the reference truth. Accuracy assessment of DW_GLC10, ESA_GLC10, FROM_GLC10, and
SinoLC_10 was performed by computing the WenSiM between the remaining products and
the reference truth. The results for global feature similarity and correlation coefficients are
shown in Tables 2 and 3, respectively.

Table 2. The global feature similarity between four LC products and ESRI_GLC10 in Beijing.

Types DW_GLC10 ESA_GLC10 FROM_GLC10 SinoLC_10

FL (%) 98.05 97.57 97.17 93.00
CL (%) 96.37 98.66 96.51 96.15
GL (%) 85.86 85.06 93.09 75.55
WL (%) 98.86 95.45 99.10 88.26
SL (%) 98.45 98.72 96.40 97.95
OL (%) 96.02 93.52 84.06 77.89

Note: FL = forestland; CL = cropland; GL = grassland; WL = wetlands; SL = settlements; OL = other land. The
bold results represent the maximum values of all products.

Table 3. The correlation coefficient between four LC products and ESRI_GLC10 in Beijing.

DW_GLC10 ESA_GLC10 FROM_GLC10 SinoLC_10

ESRI_GLC10 0.9985 0.9596 0.9611 0.9925
The bold results represent the maximum values.

What stands out in the tables is that DW_GLC10 exhibited the strongest correlation
with the reference truth, with the highest global feature similarity in forestland and other
land of 98.05% and 96.02%, respectively. It also can be seen from the data in Table 2 that
ESA_GLC10 had the most similar global features with the reference truth in cropland and
settlements, with a value of 98.66%, and in wetlands, at 98.72%. The max similarity results
for grassland of 93.09% and wetlands of 99.10% were from FROM_GLC10.

Table 4 displays the WenSiM results obtained from the preliminary analysis of global
feature similarity and correlation coefficients. Following the results, researchers can evalu-
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ate the product accuracy at different levels, such as for each land cover type or the overall
product, to meet the various requirements. From the data in Table 4, it is apparent that
FROM_GLC10 exhibited the highest WenSiM to the reference ground truth in grassland, with
a value of 89.47%. The single most striking observation to emerge from the results is that
DW_GLC10 was the most similar to ESA_GLC10 in all aspects except grassland. In summary,
for the overall WenSiM results in Table 4, the products can be ranked in order of the overall
WenSiM results as follows: DW_GLC10 > ESA_GLC10 > FROM_GLC10 > SinoLC_10.

Table 4. The WenSiM results between four LC products and ESRI_GLC10 in Beijing.

Types DW_GLC10 ESA_GLC10 FROM_GLC10 SinoLC_10

FL (%) 97.90 93.63 93.40 92.31
CL (%) 96.23 94.68 92.76 95.43
GL (%) 85.73 81.63 89.47 74.99
WL (%) 98.71 91.60 95.25 87.60
SL (%) 98.30 94.73 92.65 97.22
OL (%) 95.88 89.74 80.80 77.31

OS (%) 95.46 91.00 90.72 87.48
Note: FL = forestland; CL = cropland; GL = grassland; WL = wetlands; SL = settlements; OL = other land;
OS = overall WenSiM. The bold results represent the maximum values of all products.

4.2. Validation Results

Following the SS theory outlined in Section 3.3, the study initially divided Beijing
into 16 layers, corresponding to each administrative district. Subsequently, a total of
2001 samples were randomly selected within the study area. Table A3 shows the sampling
results and computational parameters for each district. Table A4 displays the sample
numbers for each land cover type in each layer. Figure 3 illustrates the visual distribution
of districts in Beijing, as well as the distribution of sample points in Changping and
Chaoyang districts.
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In the follow-up phase of the study, multiple experts were invited to determine the
land cover types of the sample points based on Google Earth and Sentinel-2 high-resolution
remote sensing images. For samples with disputed categorizations, experts engaged in
collective discussions and voting to assign the type with the highest number of votes,
ensuring that the accuracy of the validation dataset met the task requirements. Figure 4
below illustrates the number of samples for each land cover type in the validation dataset.
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After the validation dataset was created, the confusion matrices were computed and
the quantitative metrics for evaluating the product performance were provided, including
user accuracy (U.A.), producer accuracy (P.A.), overall accuracy (O.A.), and the kappa coef-
ficient. The results of the confusion matrices for each product can be found in Tables A5–A9.
For clarity, this paper refers to the accuracy computed from the validation dataset as the
validation accuracy (V.A.), whereas the accuracy reported by the production agencies is
referred to as the official validation accuracy (O.V.A.). Table 5 displays the V.A. and O.V.A.
for every product in the study area.

Table 5. The V.A. and O.V.A. of four LC products in Beijing.

Accuracy (%) DW_GLC10 ESA_GLC10 FROM_GLC10 SinoLC_10

V.A. (FL) 77.96 69.09 76.39 71.91
V.A. (CL) 27.78 43.33 34.44 28.89
V.A. (GL) 0.40 26.59 4.37 1.19
V.A. (WL) 77.97 61.01 54.23 15.25
V.A. (SL) 95.18 76.53 69.77 85.21
V.A. (OL) 6.10 14.63 1.22 0.85

V.A. (O.A.) 65.67 61.23 60.67 58.52

O.V.A. (O.A.) 77.80 75.00 72.76 55.55
Note: V.A. = validation accuracy; FL = forestland; CL = cropland; GL = grassland; WL = wetlands; SL = settlements;
OL = other land; O.A. = overall accuracy; V.O.A. = official validation accuracy. The bold results represent the
maximum values of all products.

The most surprising aspect of Table 5 is that DW_GLC10 and ESA_GLC10 achieved
the highest validation accuracy across all land cover types. As shown in the table, the peak
validation accuracy for forestland of 77.96%, wetlands of 77.97%, and settlements of 95.18%
came from DW_GLC10. ESA_GLC10 had the highest validation accuracy for cropland
of 43.33%, grassland of 26.59%, and other land of 14.63%. Additionally, DW_GLC10 had
the maximum overall V.A. of 65.67% and O.V.A. of 77.80%. To further demonstrate the



Remote Sens. 2024, 16, 257 11 of 20

superiority of the WenSiM metric, Figures 5 and 6 present a comparison of the WenSiM,
V.A., and O.V.A. results.
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Looking at the figures, it is apparent that the WenSiM consistently had higher values
compared to the V.A. and O.V.A. Figure 5 shows that the WenSiM exhibited similar trends
to the V.A. for forestland, wetlands, and settlements, whereas it differed significantly
for cropland, grassland, and other land categories. What is interesting about the trend
in Figure 6 is that the overall WenSiM, V.A. and O.V.A. displayed the same accuracy
assessment results: DW_GLC10 > ESA_GLC10 > FROM_GLC10 > SinoLC_10.

5. Discussion

This section initially delves into latent information within the results of the WenSiM
and validation. Through a comparison with mainstream methods, the section further
analyzes the strengths and weaknesses of the relative accuracy assessment method based
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on optimal transport theory. Finally, the section provides a reasonable accuracy assessment
and ranking of LC products within the study area.

5.1. Analysis and Comparison of Assessment Results

Due to the fact that both the relative accuracy assessment method and the direct
assessment method require the reference ground truth for accuracy evaluation, it is im-
perative to engage in a discussion about the scientific basis for the selection standards.
Firstly, a number of recent studies have already demonstrated the rationality of using a
validation dataset as the reference ground truth [41–43]. Although the V.A. and O.V.A. do
not fully exploit all accuracy information, they are still considered the primary indicators
for effectively assessing LC product accuracy [44]. Therefore, it is scientific to choose O.V.A.
as the standard for selecting the reference ground truth. Moreover, the results of the V.A.
and O.V.A. can also serve as important references for evaluating the WenSiM index.

As shown in Figure 5, nearly all quantitative results of the validation accuracy were
lower than those of the WenSiM, which is because the WenSiM results encompass more
accuracy information about the products. Figure 6 demonstrates that the overall WenSiM,
V.A., and O.V.A. results had consistent trends, further confirming the effectiveness of the
WenSiM index. The reason for the low V.A. of grassland and other land was attributed to
the limitations of direct evaluation method.

The 10 m resolution LC product had hundreds of millions of pixels in Beijing. Con-
sidering cost constraints, it was not feasible to validate the true land cover type for each
pixel. Despite the fact that the sample proportion chosen in this study surpassed that
of other validation datasets, it remained insufficient for a region of this magnitude. The
situation had the potential to create imbalanced sampling data ratios among different
classes, ultimately leading to an unreasonable accuracy assessment [45].

On the one hand, when there is an imbalance in land cover composition within a
study area, the direct evaluation method, with random sampling, will inevitably result in
insufficient or even zero samples for certain land cover categories. This phenomenon may
lead to unstable validation accuracy for those land cover types. On the other hand, the
direct evaluation method only considers the spatial position information of sample points
to quantify product accuracy, which can unavoidably yield lower results.

The indirect evaluation method achieves cost-effective utilization of spatial position
information for all pixels by comparing the consistency between products [46]. The study
categorized spatial consistency into five levels from high to low. Taking forestland as an
example, level 5 indicates that the classification results of all LC products at that pixel
were forest land, whereas level 1 means that only one LC product classified the pixel as
forestland. Figures 7 and 8 present the regional consistency analysis results and the spatial
consistency analysis results, respectively, for the five LC products.
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Looking at Figure 7, it is apparent that there was a significant difference for each
product in grassland and other land, whereas the differences are relatively small in the
forestland and wetlands. Interestingly, a noticeable grouping effect was observed in the
regional consistency in cropland and settlements. Except for FROM_GLC10, the prod-
ucts exhibited stronger consistency in cropland. The consistency results of settlements in
ESRI_GLC10, ESA_GLC10, and SinoLC_10 were similar, whereas DW_GLC10 was more
consistent with FROM_GLC10.

Figure 8 shows that the spatial consistency analysis not only revealed the distribution
of land cover types in the study area but also indirectly assessed the classification accuracy
of the products. For instance, the analysis results indicate that forestland was mainly
distributed in the northern and southwestern parts of Beijing. Through visual interpretation,
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SinoLC_10 exhibited the highest spatial consistency in forestland, which suggests that
SinoLC_10 had a higher classification accuracy in forestland.

The indirect evaluation method can effectively mitigate issues arising from low sam-
ples, preventing insufficient utilization of spatial location information in products. How-
ever, the method lacks on-site validation and the ability to quantify product accuracy,
providing only qualitative suggestions for product selection [47].

5.2. Advantages and Limitations of Wasserstein Similarity

Land cover types often exhibit anomalous morphologies, manifesting as anomalous
pixels. Anomalous pixels carry accuracy information that is markedly different from other
pixels of the same type, representing unique features. The causes of anomalous pixels can
be attributed to three main factors.

1. The random distribution of the actual class;
2. Errors introduced during development;
3. Misclassification resulting from insufficient accuracy in the classification algorithms.

Therefore, anomalous pixels primarily reflect the commonalities and differences be-
tween products. The direct evaluation method, due to the randomness of sampling, cannot
effectively utilize the accuracy information of anomalous pixels. Although the indirect
evaluation method considers the spatial position information of anomalous pixels, it falls
short in quantifying the accuracy information. This paper provides the first method to take
into account various types of accuracy information, with a specific emphasis on anomalous
pixels, to quantify product accuracy globally.

The advantages of Wasserstein similarity are primarily evident in two application
scenarios. Firstly, when the absolute ground truth is available, serving as a reference for
LC products, the method reasonably evaluates the products by thoroughly exploring their
accuracy information. This results in more comprehensive findings compared to other
approaches. Secondly, when the absolute ground truth is unattainable, WenSiM enables a
cost-effective evaluation of new LC products. Unlike direct evaluation methods, the method
selects the product with the highest overall accuracy as the reference truth for computing
WenSiM, eliminating the need for a validation dataset. In contrast to indirect evaluation
methods, it allows for a quantitative assessment of product accuracy and provides a clear
ranking of accuracy for each product at different levels.

However, the method also has some limitations. Firstly, the presence of anomalous
pixels can make the evaluation results overly stringent. Secondly, when performing as-
sessments on an extensive scale, such as at the global or super-regional level, the large
number of pixels can lead to slower computation speeds. Furthermore, in the absence of the
absolute ground truth, the evaluation results are influenced by the choice of reference truth.
If the criteria are chosen arbitrarily, the reliability of the results may significantly decrease.
Therefore, the criteria for selecting the reference truth should be flexibly determined in
applications. In the future, the method could be expanded for the accuracy assessment of a
broader range of remote sensing products, such as land surface temperature and digital
elevation models, thereby aiding researchers in rapidly selecting the most suitable products
based on task requirements [48,49].

After elucidating the characteristics of the accuracy evaluation method based on optimal
transportation theory, the final evaluation ranking was obtained by combining the WenSiM
with the validation results: DW_GLC10 > ESA_GLC10 > FROM_GLC10 > SinoLC_10.

6. Conclusions

The paper set out to find a relative accuracy assessment method based on optimal
transport theory for LC products and demonstrates its effectiveness through a research
case. Three key conclusions are drawn from the paper. First, the method enables a rapid
quantification of LC product accuracy without the need for registration and validation
datasets. Second, the WenSiM index derived from the method measures the similarity
between the target product and the reference truth at a global scale, utilizing a broader
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range of accuracy information and resulting in more accurate assessment. Third, this study
evaluated the accuracy of four LC products in Beijing, with results closely aligning with
validation outcomes. Although the method is limited by the small number of cases, it
possesses universality and can be extended to the accuracy assessment of various remote
sensing products in global regions. This would be a fruitful area for further work, with
the goal of providing researchers with a fast and reliable accuracy assessment tool for the
selection and production of remote sensing products.
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Appendix A 

Table A1. The detailed definitions of IPCC land categories. 

Land Categories Detailed Definitions 

  Forestland 
⚫ All land with woody vegetation consistent with thresholds; 

⚫ Systems with vegetation that are expected to exceed the threshold of the forestland. 

  Cropland 
⚫ Arable and tillage land; 

⚫ Agro-forestry systems where vegetation falls below the thresholds. 

  Grassland 

⚫ Rangelands and pastureland that is not considered cropland; 

⚫ Systems with vegetation that fall below the threshold and are not expected to exceed 

the threshold without human intervention; 

⚫ All grassland from wildlands to recreational areas, as well as agricultural and silvi-pas-

tural systems. 

  Wetlands 
⚫ Land that is covered by or saturated with water for all or part of the year; 
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Appendix A 

Table A1. The detailed definitions of IPCC land categories. 

Land Categories Detailed Definitions 

  Forestland 
⚫ All land with woody vegetation consistent with thresholds; 

⚫ Systems with vegetation that are expected to exceed the threshold of the forestland. 

  Cropland 
⚫ Arable and tillage land; 

⚫ Agro-forestry systems where vegetation falls below the thresholds. 

  Grassland 

⚫ Rangelands and pastureland that is not considered cropland; 

⚫ Systems with vegetation that fall below the threshold and are not expected to exceed 

the threshold without human intervention; 

⚫ All grassland from wildlands to recreational areas, as well as agricultural and silvi-pas-

tural systems. 

  Wetlands 
⚫ Land that is covered by or saturated with water for all or part of the year; 

⚫ Reservoirs, natural rivers and lakes. 

  Settlements ⚫ All developed land, including transportation infrastructure and human settlements. 

  Other land 
⚫ Bare soil, rock, ice, and all unmanaged land areas that do not fall into any of the other 

five categories. 

  

Cropland • Arable and tillage land;
• Agro-forestry systems where vegetation falls below the thresholds.
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Table A3. Stratified sampling calculation parameters. 

District 𝑴𝒍 �̅�𝒍 𝑺𝒍
𝟐 𝑾𝒍 𝑾𝒍𝑺𝒍 𝒎𝒍 

Changping 23,067,539 2.408 1.323 0.082 0.09430 197 

Chaoyang 7,925,627 4.401 0.363 0.028 0.01697 35 

Daxing 17,461,322 3.221 0.720 0.062 0.05264 110 

Dongcheng 713,476 4.879 0.092 0.003 0.00077 2 

Fangshan 33,808,138 2.095 1.284 0.120 0.13612 285 

Fengtai 5,195,318 4.264 0.478 0.018 0.01276 27 

Haidian 7,322,717 3.972 0.679 0.026 0.02145 45 

Huairou 36,841,342 1.417 0.896 0.131 0.12396 259 

Mentougou 24,734,083 1.269 0.764 0.088 0.07681 161 

Miyun 38,531,881 1.742 1.065 0.137 0.14133 295 

Pinggu 16,263,416 1.998 1.140 0.058 0.06171 129 

Shijingshan 1,436,001 3.957cc 0.763 0.005 0.00446 9 

Shunyi 17,292,399 3.288 0.758 0.061 0.05349 112 

Tongzhou 15,341,172 3.359 0.695 0.055 0.04544 95 

Xicheng 856,827 4.965 0.012 0.003 0.00034 1 

Yanqing 34,618,782 1.576 0.861 0.123 0.11415 239 

Notes: 𝑀𝑙 = the number of pixels in layer 𝑙; �̅�𝑙 = the sample mean of layer 𝑙; 𝑆𝑙
2 = the population 

variance of layer 𝑙; 𝑊𝑙 = the weight parameter of layer 𝑙; 𝑚𝑙 = the number of samples of layer 𝑙. 

Table A4. Sample numbers for each land cover type in each layer. 

District FL CL GL WL SL OL 

Changping 125 5 20 3 37 7 

Chaoyang 6 1 3 2 22 1 

Daxing 38 5 30 0 36 1 

Dongcheng 0 0 0 0 2 0 

Fangshan 185 4 33 3 54 6 

Fengtai 5 2 0 0 17 3 

Haidian 15 3 1 1 22 3 

Huairou 210 12 15 1 14 7 

Mentougou 139 10 4 0 2 6 

Miyun 186 17 27 24 20 21 

Grassland

• Rangelands and pastureland that is not considered cropland;
• Systems with vegetation that fall below the threshold and are not expected to exceed the threshold

without human intervention;
• All grassland from wildlands to recreational areas, as well as agricultural and silvi-pastural systems.

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 20 
 

 

Table A2. Conversion relations between five LC products and the IPCC land cover classification. 

IPCC ESRI_GLC10 DW_GLC10 ESA_GLC10 FROM_GLC10 SinoLC_1 

  Forestland 

Trees 

Trees 

Tree cover Forest Tree cover 

Scrub and shrub 
Shrubland 

Shrubland Shrubland 
Mangroves 

  Cropland Crops Crops Cropland Cropland Cropland 

  Grassland Grass Grass Grassland Grassland Grassland 

  Wetlands 

Water Water 
Permanent water 

bodies 
Waterbodies Water 

Flooded vegetation Flooded vegetation 
Herbaceous wet-

land 
Wetlands Wetlands 

  Settlements Built area Built Built up Impervious 
Roads 

Built up 

  Other land 

Bare ground Bare 
Bare and sparse 

vegetation 
Barren land 

Barren and spare 

vegetation 

Snow and ice 
Snow and ice 

Snow and ice Snow and ice Snow and ice 

Clouds Moss and Lichen Tundra Moss and lichen 

Table A3. Stratified sampling calculation parameters. 

District 𝑴𝒍 �̅�𝒍 𝑺𝒍
𝟐 𝑾𝒍 𝑾𝒍𝑺𝒍 𝒎𝒍 

Changping 23,067,539 2.408 1.323 0.082 0.09430 197 

Chaoyang 7,925,627 4.401 0.363 0.028 0.01697 35 

Daxing 17,461,322 3.221 0.720 0.062 0.05264 110 

Dongcheng 713,476 4.879 0.092 0.003 0.00077 2 

Fangshan 33,808,138 2.095 1.284 0.120 0.13612 285 

Fengtai 5,195,318 4.264 0.478 0.018 0.01276 27 

Haidian 7,322,717 3.972 0.679 0.026 0.02145 45 

Huairou 36,841,342 1.417 0.896 0.131 0.12396 259 

Mentougou 24,734,083 1.269 0.764 0.088 0.07681 161 

Miyun 38,531,881 1.742 1.065 0.137 0.14133 295 

Pinggu 16,263,416 1.998 1.140 0.058 0.06171 129 

Shijingshan 1,436,001 3.957cc 0.763 0.005 0.00446 9 

Shunyi 17,292,399 3.288 0.758 0.061 0.05349 112 

Tongzhou 15,341,172 3.359 0.695 0.055 0.04544 95 

Xicheng 856,827 4.965 0.012 0.003 0.00034 1 

Yanqing 34,618,782 1.576 0.861 0.123 0.11415 239 
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Wetlands • Land that is covered by or saturated with water for all or part of the year;
• Reservoirs, natural rivers and lakes.
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Settlements • All developed land, including transportation infrastructure and human settlements.
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Table A2. Conversion relations between five LC products and the IPCC land cover classification.
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⚫ All land with woody vegetation consistent with thresholds; 

⚫ Systems with vegetation that are expected to exceed the threshold of the forestland. 

  Cropland 
⚫ Arable and tillage land; 

⚫ Agro-forestry systems where vegetation falls below the thresholds. 

  Grassland 

⚫ Rangelands and pastureland that is not considered cropland; 

⚫ Systems with vegetation that fall below the threshold and are not expected to exceed 

the threshold without human intervention; 

⚫ All grassland from wildlands to recreational areas, as well as agricultural and silvi-pas-
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⚫ Land that is covered by or saturated with water for all or part of the year; 

⚫ Reservoirs, natural rivers and lakes. 

  Settlements ⚫ All developed land, including transportation infrastructure and human settlements. 

  Other land 
⚫ Bare soil, rock, ice, and all unmanaged land areas that do not fall into any of the other 
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Table A3. Stratified sampling calculation parameters.

District Ml yl S2
l Wl WlSl ml

Changping 23,067,539 2.408 1.323 0.082 0.09430 197
Chaoyang 7,925,627 4.401 0.363 0.028 0.01697 35

Daxing 17,461,322 3.221 0.720 0.062 0.05264 110
Dongcheng 713,476 4.879 0.092 0.003 0.00077 2
Fangshan 33,808,138 2.095 1.284 0.120 0.13612 285
Fengtai 5,195,318 4.264 0.478 0.018 0.01276 27
Haidian 7,322,717 3.972 0.679 0.026 0.02145 45
Huairou 36,841,342 1.417 0.896 0.131 0.12396 259

Mentougou 24,734,083 1.269 0.764 0.088 0.07681 161
Miyun 38,531,881 1.742 1.065 0.137 0.14133 295
Pinggu 16,263,416 1.998 1.140 0.058 0.06171 129

Shijingshan 1,436,001 3.957cc 0.763 0.005 0.00446 9
Shunyi 17,292,399 3.288 0.758 0.061 0.05349 112

Tongzhou 15,341,172 3.359 0.695 0.055 0.04544 95
Xicheng 856,827 4.965 0.012 0.003 0.00034 1
Yanqing 34,618,782 1.576 0.861 0.123 0.11415 239

Notes: Ml = the number of pixels in layer l; yl = the sample mean of layer l; S2
l = the population variance of layer

l; Wl = the weight parameter of layer l; ml = the number of samples of layer l.

Table A4. Sample numbers for each land cover type in each layer.

District FL CL GL WL SL OL

Changping 125 5 20 3 37 7
Chaoyang 6 1 3 2 22 1

Daxing 38 5 30 0 36 1
Dongcheng 0 0 0 0 2 0
Fangshan 185 4 33 3 54 6
Fengtai 5 2 0 0 17 3
Haidian 15 3 1 1 22 3
Huairou 210 12 15 1 14 7

Mentougou 139 10 4 0 2 6
Miyun 186 17 27 24 20 21
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Table A4. Cont.

District FL CL GL WL SL OL

Pinggu 73 1 33 9 11 2
Shijingshan 5 0 0 1 3 0

Shunyi 28 6 35 6 32 5
Tongzhou 28 7 24 5 27 4
Xicheng 0 0 0 0 1 0
Yanqing 164 17 27 4 11 16

Total 1207 90 252 59 311 82
Notes: FL = forestland; CL = cropland; GL = grassland; WL = wetlands; SL = settlements; OL = other land.

Table A5. Confusion matrix for ESRI_GLC10 according to the validation dataset.

Classification FL CL GL WL SL OL Total P.A. (%)

FL 983 127 0 2 94 1 1207 81.44
CL 51 25 0 1 13 0 90 27.78
GL 25 157 15 0 47 8 252 5.95
WL 7 4 1 42 5 0 59 71.19
SL 5 13 0 0 291 2 311 93.57
OL 35 14 0 4 27 2 82 2.44

Total 1106 340 16 49 477 13 2001
U.A. (%) 88.88 7.35 93.75 85.71 61.01 15.38

O.A. (%) 67.87
Kappa 0.4816

Note: FL = forestland; CL = cropland; GL = grassland; WL = wetlands; SL = settlements; OL = other land.

Table A6. Confusion matrix for DW_GLC10 according to the validation dataset.

Classification FL CL GL WL SL OL Total P.A. (%)

FL 941 131 42 2 89 2 1207 77.96
CL 40 25 5 1 16 3 90 27.78
GL 19 170 1 3 55 4 252 0.40
WL 3 3 0 46 6 1 59 77.97
SL 5 5 0 0 296 5 311 95.18
OL 29 11 0 4 33 5 82 6.10

Total 1037 345 48 56 495 20 2001
U.A. (%) 90.74 7.25 2.08 82.14 59.80 25.00

O.A. (%) 65.67
Kappa 0.4610

Note: FL = forestland; CL = cropland; GL = grassland; WL = wetlands; SL = settlements; OL = other land.

Table A7. Confusion matrix for ESA_GLC10 according to the validation dataset.

Classification FL CL GL WL SL OL Total P.A. (%)

FL 834 112 222 0 18 21 1207 69.10
CL 20 39 20 0 5 6 90 43.33
GL 52 107 67 1 9 16 252 26.59
WL 5 6 3 36 0 9 59 61.02
SL 30 20 1 0 238 22 311 76.53
OL 19 15 13 3 20 12 82 14.63

Total 960 299 326 40 290 86 2001
U.A. (%) 86.88 13.04 20.55 90.00 82.07 13.95

O.A. (%) 61.27
Kappa 0.4118

Note: FL = forestland; CL = cropland; GL = grassland; WL = wetlands; SL = settlements; OL = other land.
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Table A8. Confusion matrix for FROM_GLC10 according to the validation dataset.

Classification FL CL GL WL SL OL Total P.A. (%)

FL 922 176 77 1 25 6 1207 76.39
CL 41 31 9 0 9 0 90 34.44
GL 34 182 11 1 24 0 252 4.36
WL 3 15 5 32 4 0 59 54.24
SL 10 55 25 0 217 4 311 69.77
OL 27 25 8 2 19 1 82 1.22

Total 1037 484 135 36 298 11 2001
U.A. (%) 88.91 6.40 8.15 88.89 72.82 9.09

O.A. (%) 60.67
Kappa 0.3894

Note: FL = forestland; CL = cropland; GL = grassland; WL = wetlands; SL = settlements; OL = other land.

Table A9. Confusion matrix for SinoLC_10 according to the validation dataset.

Classification FL CL GL WL SL OL Total P.A. (%)

FL 868 130 123 3 83 0 1207 71.91
CL 47 26 6 0 11 0 90 28.89
GL 45 154 3 1 49 0 252 1.19
WL 30 13 0 9 7 0 59 15.25
SL 16 28 2 0 265 0 311 85.21
OL 32 19 3 0 28 0 82 0

Total 1038 370 137 13 443 0 2001
U.A. (%) 83.62 7.03 2.19 69.23 59.82 0

O.A. (%) 58.52
Kappa 0.3474

Note: FL = forestland; CL = cropland; GL = grassland; WL = wetlands; SL = settlements; OL = other land.
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