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Abstract: The integration of deep neural networks into sparse synthetic aperture radar (SAR) imaging
is explored to enhance SAR imaging performance and reduce the system’s sampling rate. However,
the scarcity of training samples and mismatches between the training data and the SAR system pose
significant challenges to the method’s further development. In this paper, we propose a novel SAR
imaging approach based on deep image prior powered by RED (DeepRED), enabling unsupervised
SAR imaging without the need for additional training data. Initially, DeepRED is introduced as the
regularization technique within the sparse SAR imaging model. Subsequently, variable splitting
and the alternating direction method of multipliers (ADMM) are employed to solve the imaging
model, alternately updating the magnitude and phase of the SAR image. Additionally, the SAR echo
simulation operator is utilized as an observation model to enhance computational efficiency. Through
simulations and real data experiments, we demonstrate that our method maintains imaging quality
and system downsampling rate on par with deep-neural-network-based sparse SAR imaging but
without the requirement for training data.

Keywords: sparse SAR imaging; DeepRED; variable splitting; ADMM

1. Introduction

Synthetic aperture radar (SAR), an active sensor renowned for its all-day and all-
weather capabilities, plays a pivotal role in the realm of remote sensing [1]. Its applica-
tions span various domains, including topographic mapping, geological surveys, marine
monitoring, agricultural and forestry assessments, disaster evaluation, and military recon-
naissance. Sparse SAR imaging is a new theory for SAR imaging, which introduces the
sparse signal processing into SAR imaging, effectively improving the image quality and
system performance [2–5]. Sparse SAR imaging is based on the sparse inverse problem to
break through the bottleneck of system complexity in traditional SAR imaging. The theory
has been effectively applied to various modes of SAR imaging, including stripmap SAR,
ScanSAR, spotlight SAR, and TOPS SAR [6–9].

Regularization plays a crucial role in the success of sparse SAR imaging by improving
the quality and stability of the reconstructed images, i.e., incorporating prior knowledge
or constraints into the SAR image reconstruction process. There are several types of
regularization techniques used in CS-SAR, as follows. Tikhonov regularization adds a
penalty term to the reconstruction problem that encourages a smooth solution, reducing the
impact of measurement noise and other distortions [10]. Total variation (TV) regularization
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promotes piecewise constant or piecewise smooth solutions, preserving edges and sharp
transitions in the reconstructed image [11]. Sparsity-promoting regularization encourages
solutions that are sparse in some domain, such as the wavelet or Fourier domain. Bayesian
regularization incorporates a Bayesian prior into the reconstruction problem, encoding
prior knowledge or constraints about the desired solution [12]. The choice of regularization
method depends on the specific requirements of the application and the characteristics of
the measurement data.

Deep neural networks, a current research hotspot, are also emerging as an effective
regularization choice for solving sparse inverse problems and are now emerging for applica-
tions in SAR imaging. Deep neural network (DNN) regularization uses a pre-trained DNN
as a regularization term, leveraging the deep learning framework to learn the mapping be-
tween the undersampled measurement data and the desired high-resolution image [13,14].
By incorporating DNNs as regularization terms, CS-SAR can achieve improved imaging
performance and robustness and can be applied to a wider range of imaging scenarios.
The DNNs commonly used in sparse SAR include [15]. However, the performance of
DNN-based SAR imaging is heavily dependent on the training data. A high-quality and
diverse set of training data is crucial for ensuring the accurate and robust performance
of the DNN in this imaging scenario. Poor quality training data can result in incorrect
mappings and reduced performance of the DNN. A lack of training data can result in
underfitting, where the DNN is unable to learn the complex relationships, or overfitting,
where the DNN memorizes the training data but does not generalize well to new data.

Deep image prior powered by RED (DeepRED) is a regularization model for solv-
ing sparse inverse problems that has attracted much attention in image processing [16].
DeepRED regularization merges the concepts of deep image prior (DIP) and regularization
by denoising (RED). In this framework, DIP leverages the inherent structure of a deep net-
work as a regularizer for inverse problems, while RED employs an explicit, image-adaptive,
Laplacian-based regularization function. This fusion results in an overall objective function
that is more transparent and well-defined. The key advantage of DeepRED is that it com-
bines the strengths of DIP and RED, providing a flexible and powerful approach for image
restoration and reconstruction. The deep neural network serves as a powerful prior, and
the denoising algorithm provides effective regularization, resulting in robust and accurate
image restoration results. DeepRED does not require explicit prior knowledge or training
data specific to the task or imaging scenario. Instead, the method leverages the generic
and rich prior knowledge learned from the large datasets of natural images to achieve
robust and accurate image restoration results. DeepRED is an effective method for image
restoration and reconstruction and has been applied to a wide range of tasks, including
image deblurring, denoising, and super-resolution.

In this article, we combine DeepRED with sparse SAR imaging, using DeepRED as a
regularization term to improve SAR imaging performance. This method does not require
any training data and maintains the imaging performance as a supervised deep learning
approach. We first present a sparse SAR imaging model based on DeepRED, then we
present a solution to this imaging model based on the ADMM algorithm, and finally, we
use simulation and real data experiments to illustrate the effectiveness of the algorithm.
The application of DeepRED in SAR is different from that in applications such as MRI,
where the phase of the SAR image is highly random. This leads to the direct application of
DeepRED not working, and DeepRED constraints can only be added to the amplitude of
the image.

We have innovatively applied the DeepRED algorithm to SAR imaging, breaking
through the traditional confines of processing only amplitude images [16]. The crux of our
innovation lies in the extension of the algorithm to concurrently handle both amplitude
and phase information in SAR imaging, both of which are critical for the accuracy and
completeness of SAR images. By iteratively updating the amplitude and phase of the image,
our method not only significantly enhances the overall quality of SAR images but also
achieves greater precision in capturing ground details and features. This research paves a
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new path in SAR imaging technology, propelling the field forward with fresh perspectives
and methodologies.

The remaining content of this article is organized as follows. Section 2 describes the
SAR echo signal model and the proposed DeepRED-based sparse SAR imaging method.
Section 3 gives the simulation experimental results and the real data processing results.
Section 4 gives the conclusions.

2. Materials and Methods
2.1. Signal Model

In SAR imaging, the complex-valued reflectivity matrix of the monitored area is given
by X ∈ CNP×NQ , and the collected 2-D echo data are symbolized by Y ∈ CMη×Mτ . We
introduce x = vec(X) ∈ CN×1, where N = NP × NQ, and y = vec(Y) ∈ CM×1, where
M = Mη × Mτ . The vectorization operation, vec(·), is used to stack the matrix columns in
sequence. Both two-dimensional variables X and Y and one-dimensional variables x and y
are introduced to account for the prior information associated with the two-dimensional
image variables. The complex reflectivity matrix x can be expressed as the product of
its magnitude component xm and its phase component xθ . In a single SAR image, the
magnitude and phase components exhibit distinct properties. The phase of each pixel is
typically randomized unless there is some coherence or consistent scattering mechanism at
play. This randomness is due to the mixture of scattered signals returning to the radar sensor
from various structures within each resolution cell. On the other hand, the magnitude
component of a SAR image is not only influenced by speckle noise but also showcases a
piecewise smooth nature. This allows for the incorporation of prior knowledge about the
magnitude component of the image.

In SAR imaging, represented as a linear system in matrix form, the correlation between
SAR echo data and the scene’s reflectivity is captured by the equation:

y = Φx + n, (1)

with n ∈ CM×1 signifying the additive noise and Φ ∈ CM×N as the system’s measure-
ment matrix.

The primary objective in SAR imaging is the recovery of x from y and Φ. Matched
filtering-based SAR imaging is formulated as x = Φ′y, where Φ′ represents the conjugate
transpose of Φ. Adherence to the Nyquist sampling theorem in both azimuth and range
directions ensures Φ′Φ ≈ I (the identity matrix), while deviation leads to pronounced
sidelobes in output. Inversions like x = Φ−1y are often ill-posed, particularly with poorly
conditioned system matrices Φ, making even minor errors in y potentially significant in the
estimated x. To mitigate this, regularization techniques are applied, introducing constraints
or prior knowledge into the solution process.

To achieve rapid imaging techniques, we utilize the echo simulation operator instead
of the compressive sensing-based SAR measurement matrix. In this paper, we adopt a
forward operator based on the range-Doppler algorithm (RDA), denoted as

x̂ = Prd(y), (2)

where x̂ denotes the reconstructed SAR image matrix, y represents the echo data matrix,
and Prd signifies the RDA operation:

Prd(·) = Pa(C(Pr(·))). (3)

Herein, Pr(·) symbolizes the range compression operator, C(·) designates the range
migration correction operator, and Pa(·) denotes the azimuth compression operator. The
linearity of these three operators was established in [17]. The inverse process of the forward
operator based on the RDA is referred to as the echo simulation operator S(·):

S(·) = PH
r (C−1(PH

a (·))). (4)
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The echo simulation operator serves as an approximation to the observation matrix.
In other words, the relationship

y = Φx (5)

can be approximately represented as

y = S(x). (6)

The regularization base SAR imaging can be denoted as

min
x

1
2
∥y − S(x)∥2

2 + λR(x). (7)

This formula consists of two parts: the first term is the data fidelity term that quantifies
the difference between the observed echo data y and the estimated model S(x), and
the second term is the regularization term R(x), influenced by the parameter λ, which
introduces a priori knowledge or constraints on the desired solution x.

In sparse SAR imaging, the L1 regularization technique is applied to promote sparsity
in the solution. TV regularization is also often used for preserving edges in the reconstructed
image. When addressing SAR imaging within the wavelet domain, it is common to
transform the image (or its data) into this domain, leveraging the inherent sparsity or
compressibility of SAR images. In this setting, the l1 regularization technique is specifically
tailored to the wavelet domain.

2.2. DeepRED Regularization

The DeepRED is known as the combination of the DIP with RED. The idea is to
synergistically blend the strengths of both techniques for improved image reconstruction.
The DeepRED is described as follows.

DIP leverages the architecture of deep neural networks as a form of implicit regular-
ization [18]. Unlike traditional deep learning techniques, DIP does not require training
on a large dataset. Instead, it trains a network on a single image, aiming to fit the image
as closely as possible. The idea is that the network’s structure inherently prevents it from
fitting the noise, acting as a form of regularization

Θ̂ = arg min
Θ

∥ fΘ(z)− w∥2 (8)

where fΘ(z) represents the denoised image by DIP, w is the given noisy image, and fΘ is a
deep neural network parameterized by Θ. The term ∥ fΘ(z)− w∥2 is the data term; its role
is to quantify the degree of agreement between the reconstructed image and the observed
data by measuring the discrepancy between the network’s output and the given image.

The network fΘ is initialized with random weights and is then trained to generate an
image that closely resembles w. Due to the high capacity of deep networks, it is possible
for fΘ to overfit to w. However, before overfitting to the noise or the corruptions in w,
the network converges to a “natural” image, leveraging the prior implicitly encoded in its
architecture. The main insight of DIP is that during the early stages of this training process,
before the network starts to fit the noise, it captures the main structures and features of the
image, essentially acting as a denoiser or reconstructor.

RED is an image reconstruction framework that integrates external denoising methods
into the reconstruction process [19]. The primary concept behind RED is to utilize the
capabilities of off-the-shelf denoising algorithms as a regularization term, aiding in solving
inverse problems in imaging. RED suggests the use of the following expression as the
regularization term:

RRED(c) =
1
2

cT(c −D(c)), (9)

where D(·) is a denoiser. Within the RED framework, various denoising algorithms such as
NLM [20] and BM3D [21] can be utilized, which are capable of achieving good denoising
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effects while ensuring computational speed. Specifically, in the experiments of this paper,
NLM is used as D(·). By utilizing external denoisers, RED can easily incorporate the latest
advancements in the field of denoising without significant alterations to the reconstruction
algorithm. With the right choice in denoiser, RED is capable of achieving high-quality
reconstructions that surpass the performance of traditional regularization methods.

DeepRED is applied to SAR image denoising and is given as follows:

min
c,Θ

1
2
∥ fΘ(z)− w∥2

2 +
λ

2
cT(c −D(c)) s.t. c = fΘ(z). (10)

where w is the magnitude of the complex SAR image, and z is the auxiliary variable.
The above problem can be solved by ADMM. To apply ADMM, we begin by forming

the augmented Lagrangian for the problem [22].
The augmented Lagrangian for this problem is

L(c, Θ) =
1
2
∥ fΘ(z)− w∥2

2 +
λ

2
cT(c −D(c))

+ µuT( fΘ(z)− c)

+
µ

2
∥c − fΘ(z)∥2

2.

(11)

In this formula, the vector u represents the Lagrange multipliers associated with the
equality constraints, while µ is a selectable free parameter.

The above solution process is denoted as DeepRED(·). The reference [16] provides an
implementation method for solving using the ADMM:

1. First, we generate a Θ close to c − u using the optimization method of DIP:

min
Θ

1
2
∥ fΘ(z)− w∥2

2 +
µ

2
∥c − fΘ(z)− u∥2

2. (12)

2. When Θ and u are fixed, in order to obtain c, the solution to the following equation
can be found using a fixed-point strategy:

min
c

λ

2
cT(c −D(c)) +

µ

2
∥c − fΘ(z)− u∥2

2. (13)

This means that for the iterative process described by the following equation, iterate
J times:

c(j+1) =
1

λ + µ
(λD(c(j)) + µ( fΘ(z) + µ)). (14)

3. Finally, update u using c and Θ:

u(k+1) = u(k) − c(k+1) + fΘ(z). (15)

Iterate following the above steps until the convergence criteria are met.

2.3. DeepRED Based the SAR Imaging Model

This section delineates the application of the DeepRED regularization technique
within the SAR imaging, emphasizing the imaging model and algorithmic implementation.
The imaging model under consideration integrates the DeepRED technique as a pivotal
component to mitigate this noise while preserving the intrinsic details of the SAR imagery.
We applied the optimization solution method from [23] to solve the model, subsequently
obtaining the SAR imaging results.
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Overall, for our SAR imaging problem, y represents the measured echo data, and x
represents the imaging result; both are complex matrices. We introduce a regularization
prior to the amplitude of the SAR image. Therefore, the objective function for imaging in
this work can be expressed as follows:

x̂m, x̂θ = arg min
xm ,xθ

∥y − S(xθ fΘ(z))∥2
2 +

λ

2
xT

m(xm −D(xm)) s.t. xm = fΘ(z). (16)

where xm and xθ denote the amplitude and phase of x, respectively.
ADMM is an iterative algorithm that gradually converges to the optimal solution by

alternately updating variables, auxiliary variables, and dual variables. The pseudo-code of
this algorithm is detailed in Algorithm 1, which includes both the initialization step and
the iterative updating process:

Algorithm 1: ADMM
Input: echo data y, parameter ρ, number of iterations T
Initialize auxiliary variables v(0) = u(0) = 0, x(0) = 0
for k = 1 to T do

x(k+1) = prox f ,ρ(v(k) − u(k))

v(k+1) = proxR,ρ(x(k)m + u(k))

u(k+1) = u(k) + x(k+1) − v(k+1)

end for
Output: SAR imaging result x̂ = x(k).

Here, we define the approximate operator as

prox f ,ρ(v
(k) − u(k)) = arg min

x
( f (x) +

ρ

2
∥x − (v(k) − u(k))∥2

2). (17)

To reconstruct the complex-valued x, we need to estimate both the magnitude xm and
the phase xθ of x. Initially, the value of xθ is computed based on xθ = vec(ej∠x), where
∠x denotes the phase of x. This means that x can be expressed as x = xθ ◦ xm, where ◦
denotes the Hadamard product. Thus, it should satisfy the constraint that |xθi | equals 1.
Thus, in the ADMM iterative process, the solution for xθ and xm is achieved through the
following steps:

x(k+1)
θ = arg min

xθ

∥y − S(x(k)m ◦ x(k)θ )∥2
2 + δ

N

∑
i=1

(|xθi | − 1)2 (18)

x(k+1)
m = arg min

xm
∥y − S(x(k)m ◦ x(k)θ )∥2

2 +
ρ

2
∥xm − (v(k) − u(k))∥2

2. (19)

For (18), we can solve it through the following iterative process:

Gx(n+1)
θ = (HXm)

Hy + λθej∠x(n)
θ , (20)

where
G = (HXm)

H HXm + λθ I, (21)

where Xm and Xθ are used to represent diag(xm) and diag(xθ), respectively, and H repre-
sents the echo simulation operator applied on the diagonal matrix. For (19), we can solve
the following equation using the conjugate gradient algorithm:(ρ

2
I + X H

θ HH HXθ

)
x̂m = X H

θ HHy +
ρ

2
(v(k) − u(k)). (22)

The solution method of ADMM has a modular characteristic, where each iterative step
has an independent meaning. Equation (17) can be viewed as an inversion of the forward
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model f (x), while (23) can be regarded as a denoising step based on prior information. We
consider x(k+1) + u(k) as a noisy image. This iterative step can be described as a denoising
process with a prior in the following form:

v(k+1) = arg min
v

λ

2
vT(v −D(v)) +

ρ

2
∥v − (x(k+1)

m + u(k))∥2
2, s.t. v = fΘ(z). (23)

In our work, we replace equation (23) with DeepRED, and this step becomes

v(k+1) = DeepRED(x(k)m + u(k)) (24)

After the aforementioned improvements, the sparse SAR imaging framework based
on DeepRED is illustrated in Figure 1, as follows:

Figure 1. Framework of ADMM Solution for SAR Imaging Leveraging DeepRED.

2.4. Evaluation Metrics

In this analysis, we evaluate the image quality of azimuth-range decouple-operators-
based sparse SAR imaging by examining radiometric accuracy, radiometric resolution, and
spatial resolution.

1. Radiometric Resolution: The reconstruction quality of the distributed targets is
assessed using the equivalent number of looks (ENL) and radiometric resolution
(RR). Higher ENL and lower RR values indicate better reconstruction quality. The
amplitude-averaging-based ENL is given by [24]

ENL = 0.52272 × µ(I)2

σ(I)2 . (25)

The RR is defined as [25]

γ(dB) = 10 log10

1 +
1

0.5227 × µ(I)
σ(I)

. (26)

2. Average Edge Strength (AES): In the process of suppressing speckle noise, there can
be a negative effect of edge blurring [26]. To assess the clarity of edges in our method,
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we utilized the average edge strength metric. Within the context of using the Sobel
operator for edge detection, the calculation formula for AES is expressed as follows:

AES =
1

Nedges
∑
i,j

E(Ii,j)
√

Gx(Ii,j)2 + Gy(Ii,j)2 (27)

Here, Ii,j represents the intensity (gray level) of the image at pixel position (i, j), E(Ii,j)
is the binary edge image obtained after processing with the Sobel operator, where
edge pixels are marked as 1 and non-edge pixels as 0. Gx(Ii,j) and Gy(Ii,j) are the
gradients calculated by the Sobel operator in the horizontal and vertical directions,
respectively [27], and Nedges is the total number of edge pixels. This formula calculates
AES by averaging the gradient strength across all edge pixels. The Sobel operator is
employed to detect edges in the image and to compute the gradient strength at these
edges, with AES measuring the average strength of these edges.

3. Spatial Resolution: In sparse SAR imaging, the width of the main lobe widths(MLW)
serves as a key metric for evaluating spatial resolution. A smaller MLW value typically
indicates enhanced spatial resolution. Given that the system’s impulse response to
an ideal point target approximates a sinc(·) function in this imaging technique, MLW
becomes an effective tool for gauging spatial resolution.

By evaluating the performance of sparse SAR imaging based on DeepRED in terms
of ENL, RR, AES, and spatial resolution, we can better understand the advantages of this
imaging technique in comparison to other methods.

3. Results

In this section, we evaluate the effectiveness of the proposed method using both
simulated and real data. Our approach is compared with several methods, including the
RDA method, L1 regularization method, L1&TV regularization method, and a pre-trained
CNN regularization method using the DnCNN model. The efficacy of the DnCNN model
as a prior has been previously validated [28], which we refer to as the CNN method for
convenience. Additionally, the method proposed in this paper is termed the DeepRED
method. Specifically, in our simulation experiments, we demonstrate imaging results for
distributed targets under various SNR settings to prove the superiority of our proposed
method. In real-world imaging experiments, we use RADARSAT data from regions with
distinct characteristics for validation. Initially, we assess the imaging performance for
sparse point targets in maritime ship areas, comparing the resolution advantages of our
method under different sampling rates. Subsequent tests in plain regions provide com-
parisons between the equivalent number of looks and radiometric resolution, verifying
enhancements in imaging quality and smoothness achieved by our approach. Finally, in
mountainous regions, we conduct imaging experiments, comparing the AES of the imaging
results of each method, validating the clarity of our approach in complex scenarios.

3.1. Simulation

Initially, a series of simulation experiments were devised to assess the reconstruction
efficacy of our proposed method across varying SNRs. The constructed scenario spans
1024 × 1024 pixels, featuring a distributed target covering an area of 101 × 101 pixels
at its core. In line with Oliver and Quegan’s research [29], an equivalent phase center
was assigned to every pixel within the target area. The amplitude of each pixel adheres
to a Rayleigh distribution that is independent and identically distributed (with a mean

µ =
√

πσ0
2 and a variance σ2 =

√
(1 − π

4 )σ0, where σ0 is the backscattering coefficient).
Simultaneously, the phase of each pixel is uniformly distributed within the range U(−π, π).
The ideal original images of the simulated data are rectangular surface targets, as shown in
Figure 2a, which, for convenience, we refer to as ground truth (GT). In SAR imaging, the
presence of distributed Rayleigh random variables fundamentally relates to the way SAR
systems capture and process radar signals from the Earth’s surface, particularly in scenes
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with high scatterer density. In our simulation experiments, we selected two sets of SNRs
for the raw echo data, specifically 30 dB and 0 dB.

In the first experiment, with an SNR of 30 dB, we reconstruct the target scene using the
RDA, L1 regularization, L1&TV regularization, CNN, and the proposed DeepRED methods.
The imaging results are shown in Figure 2. Then, we present the range and azimuth slices
in Figure 3. In the second experiment, with an SNR of 0 dB, we reconstruct the target scene
using the five methods and display the imaging results in Figure 4. The range and azimuth
slices are shown in Figure 5.
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Figure 2. Reconstruction results of simulated scenes at SNR = 30 dB. (a) GT; (b) RDA; (c) L1

regularization; (d) L1&TV regularization; (e) CNN; (f) DeepRED. All images were simulated under
the same conditions and plotted with the same color map to maintain consistency for comparison.

In Figures 2 and 4, the results of five imaging methods are presented, along with the
ground truth. From the results in Figure 2, it can be seen that the RDA algorithm causes
a significant amount of coherent speckle noise in the imaging results. Comparing with
the results in Figure 4, it is evident that when the SNR of the echo data decreases, more
coherent speckles are produced. However, looking at the results of L1, although there is
some coherent speckle in the results of Figure 2, when the SNR decreases, it can be seen from
Figure 4 that the coherent speckle does not worsen, indicating that it has some coherent
speckle suppression capability. From the results in Figure 2, the L1&TV regularization and
CNN imaging methods both more effectively suppress coherent speckle noise without
showing very dense spots. However, according to the imaging results in Figure 4, although
coherent speckles are still suppressed when SNR decreases, the amplitude is somewhat
different compared to the GT. The DeepRED imaging method proposed in this paper, from
Figure 2, shows good suppression of coherent speckles, and in the results of Figure 4, with
decreased SNR, no more severe coherent speckles are observed, and the image amplitude
is also closer to GT. Therefore, the method of this paper can produce good images under
different echo data noise conditions and also has better stability.
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Figure 3. The range and azimuth direction slices of the results obtained by the five methods in
processing the simulated data when SNR = 30 dB. (a) The slice along the range direction. (b) The
slice along the azimuth direction.

Compared to the experimental results shown in Figure 3, Figure 5 presents outcomes
under a different experimental setup, where the SNR of the echo data is reduced from 30 dB
to 0 dB. Analyzing the results, it is first noticeable that the RDA method generates a lot of
noise. The L1 regularization method shows a significant overall decrease in the amplitude
of the imaging results. With the decrease in SNR, the L1&TV regularization method also
shows a slight reduction in image amplitude. Although the CNN method does not exhibit
significant amplitude changes, the edges of the rectangular targets are visibly affected
by noise. In contrast, the method proposed in this paper, based on DeepRED, shows
no significant amplitude changes with the reduction in SNR, indicating better stability
compared to the other methods.
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Figure 4. Reconstruction results of simulated scenes at SNR = 0 dB. (a) GT; (b) RDA; (c) L1 regular-
ization; (d) L1&TV regularization; (e) CNN; (f) DeepRED. All images were simulated under the same
conditions and plotted with the same color map to maintain consistency for comparison.
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Figure 5. The range and azimuth direction slices of the results obtained by the five methods in
processing the simulated data when SNR = 0 dB. (a) The slice along the range direction. (b) The slice
along the azimuth direction.

From the experimental results, we can observe that, except for RDA and L1 regular-
ization, the other methods can maintain the uniformity and continuity of the reflectivity
of the distributed targets. Among the last two methods, they improve the reconstruction
accuracy compared to L1&TV regularization. The proposed method demonstrates better
clutter suppression capability.
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3.2. Real Data Experiments

The real data experiments in this paper utilized SAR data from RADARSAT-1 in the
Vancouver area, and the scene data we used can be directly downloaded from the site of [30]. In
our quantitative analysis, we first selected maritime ships as point targets and compared the
MLW and clutter intensity of imaging results from various methods. We then chose a plain area
as a distributed target and calculated the ENL and RR for imaging results from different methods.
Finally, we conducted imaging experiments in mountainous regions and compared the AES
of the imaging results. Through these three sets of real-scene experimental setups, we further
validated the performance advantages of our proposed DeepRED denoising regularization
imaging method. Overall, our method demonstrates substantial improvements in multiple
aspects. Specifically, a narrower MLW indicates better reconstruction accuracy in our proposed
method, higher ENL and RR signify that our algorithm significantly enhances the smoothness,
spatial resolution, and noise resistance capabilities, and a higher AES indicates clearer imaging
results from our method. Our algorithm maintains excellent performance even when faced with
various downsampling ratios and noise levels, underscoring its robustness. This implies that
our method can generate high-quality reconstruction results even under challenging conditions
of sparse data and high noise levels.

3.2.1. Experiment 1

In the first experiment, our focus is on evaluating the accuracy of point target reconstruc-
tion. For this purpose, two points with strong scattering characteristics were selected. Under
full sampling conditions, several methods were utilized for scene reconstruction, including
the RDA, L1 regularization, L1&TV regularization, CNN, and our proposed DeepRED tech-
nique. The reconstruction results are displayed in Figure 6, where we can observe that the
subsequent images in Figure 6 exhibit less noise and clutter compared to Figure 6a. Following
this, we perform a slice on the target indicated in Figure 6a along the range and azimuth
directions in the imaging results of the RDA, L1 regularization, L1&TV regularization, CNN,
and the DeepRED method proposed in this paper. As shown in Figure 7, compared to the
reconstruction result of the RDA, all other algorithms demonstrate an effect of clutter and
noise suppression. Among them, the DeepRED method reconstructs the target’s reflectivity
most accurately, exhibiting the least noise and the smallest MLW.

(a) (b) (c)

(d) (e)

Figure 6. Reconstruction Results of Real Scene Point Target from Full Sampling. (a) RDA; (b) L1

regularization; (c) L1&TV regularization; (d) CNN; (e) DeepRED.
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Figure 7. Slices of the reconstructed point target results along the range and azimuth directions under
full sampling conditions. (a) The slice along the azimuth direction. (b) The slice along the range direction.

In the final phase, point target experiments were conducted with a 60% undersampling
ratio to assess the impact of data undersampling. To simulate the undersampling, we
randomly selected subsets from the fully sampled dataset, as no directly undersampled data
was available. For reconstructing the scene, the same five techniques as used previously
were applied. The results, depicted in Figure 8a, indicate that the RDA’s reconstruction
under undersampling conditions leads to significant sidelobes, particularly in the azimuth
direction. However, the other methods, including our proposed one, demonstrated varying
degrees of success in reducing sidelobes, with ours showing the most notable enhancement.
Additional slice analysis on the left target, as shown in Figure 9, reinforced the effectiveness
of our approach.

By comparing Figure 8 with Figure 6, it can be observed that in imaging the ship
targets in the scene, the RDA algorithm produced significant sidelobes for both targets, and
the sidelobes became more pronounced after reducing the sampling rate. In Figure 6, it is
evident that the L1, L1&TV regularization methods, and the CNN method all effectively
reduced the sidelobes. However, in Figure 8, it is found that when the sampling rate is
reduced, the sidelobe suppression effect of the L1 regularization method is not as good as
that of the L1&TV regularization method and the CNN method. The DeepRED method
proposed in this paper almost showed no significant sidelobes in the imaging results of
Figure 6, and even with reduced sampling rates, observing the results in Figure 8, no
significant sidelobes were evident, confirming that our method can effectively suppress
sidelobes and maintain stability even at lower sampling rates.

3.2.2. Experiment 2

In the subsequent section, our focus shifts to evaluating the distributed target’s re-
construction accuracy and uniformity. For this purpose, a relatively flat terrain within the
entire scene was chosen as the subject of study. Each target zone within this area is marked
with a red rectangular outline.
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(a) (b) (c)

(d) (e)

Figure 8. Reconstruction Results of Real Scene Point Target from Random Sampling at 60% Rate.
(a) RDA; (b) L1 regularization; (c) L1&TV regularization; (d) CNN; (e) DeepRED.
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Figure 9. Slices of the reconstructed point target results along the range and azimuth directions under
60% downsampling conditions. (a) The slice along the azimuth direction. (b) The slice along the
range direction.

Initially, the RDA was employed to reconstruct the target scene. As depicted in
Figure 10a, numerous speckles are evident in the image, disrupting the continuity and
uniformity of the ground surface. The L1 regularization method, introducing sparsity via
soft threshold, resulted in an image where speckle noise was only mildly suppressed. Sub-
sequently, we adopted an iterative approach incorporating both L1 and TV regularization
to further reconstruct the scene, as illustrated in Figure 10b. Comparing Figure 10a,b, it
is evident that the outcome in Figure 10c exhibits enhanced uniformity and continuity.
Following this, experiments were conducted using the CNN method, which, as shown in
Figure 10e, achieved superior speckle noise reduction and rendered the image smoother.
Finally, imaging was executed using the DeepRED technique, with results suggesting that
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it offers the best denoising and smoothing effects, as displayed in Figure 10e. Quantitative
analyses were subsequently carried out to further substantiate these findings. To conduct a
more detailed quantitative assessment of bias and uniformity, three ground areas encircled
by red rectangles were chosen. For each of these areas, calculations of the ENL and RR were
performed, utilizing the imaging results obtained previously. The corresponding numerical
findings are summarized in Table 1.

A1

A2A2A2A2

A3A3A3A3

(a)

A1

A2A2A2A2

A3A3A3A3

(b)

A1

A2A2A2A2

A3A3A3A3

(c)

A1

A2A2A2A2

A3A3A3A3

(d)

A1

A2A2A2A2

A3A3A3A3

(e)

Figure 10. Reconstruction results of Experiment 2. (a) RDA; (b) L1 regularization; (c) L1&TV
regularization; (d) CNN; (e) DeepRED.

Analyzing the imaging outcomes depicted in Figure 10 and the statistical data in
Table 1, it becomes evident that the DeepRED regularization method, as proposed in our
study, not only mitigates noise and clutter but also lowers the variance of the reconstruction
results, thereby enhancing the uniformity and continuity of the distributed target compared
to the traditional RDA.

For a precise evaluation of reconstruction accuracy, we identified three specific areas,
labeled A1/A2/A3, as experimental distributed targets in Figure 10a–e, each demarcated
by a red rectangle. The mean and variance were calculated for these areas, and the ENL
and RR were determined using Equation (26). A lower γ value correlates with improved
radiometric resolution.

While both L1 regularization and L1&TV regularization methods enhance radiometric
resolution over the RDA method, the latter shows a more pronounced improvement.
However, the bias induced by L1 regularization somewhat negatively affects radiometric
resolution. The CNN imaging method shows improvements in ENL and radiometric
resolution. Notably, the DeepRED method, as proposed in this paper, attains the optimal
ENL and radiometric resolution.
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Table 1. Comparison of ENL and γ Values for Imaging Results of Different Target Scenes Using
5 Methods in Experiment 2.

Target Method ENL γ(dB)

A1

RDA 0.8587 3.1789
L1 0.6865 3.4379

L1&TV 0.9268 3.0936
CNN 1.0712 2.9363

DeepRED 1.7595 2.4400

A2

RDA 0.9191 3.1029
L1 0.3412 4.3327

L1&TV 0.7006 3.4138
CNN 1.0026 3.0075

DeepRED 4.5941 1.6630

A3

RDA 0.5239 3.7687
L1 0.4126 4.0768

L1&TV 0.4549 3.9492
CNN 0.6161 3.5679

DeepRED 0.6379 3.5258

3.2.3. Experiment 3

In Experiment 3, we conducted imaging experiments on the mountainous part of
RADASAT data. Here, we selected a mountainous area as our subject within the complete
scene. Different regularization terms lead to varying degrees of sparsity, influencing the
continuity and integrity of the mountain imaging. The experimental results are shown in
Figure 11.

Initially, we employed the RDA to reconstruct the target scene. As illustrated in the
figure, the image contains numerous speckles, causing discontinuities in the mountains. Fol-
lowing this, we reconstructed the target scene using the L1 regularization method. Although
it reduced speckle noise, the image remained discontinuous. Due to the soft-thresholding
effect, some target features were lost. We then utilized the L1&TV regularization method for
imaging. This somewhat improved the image’s continuity but at the expense of making the
texture blurred and less detailed. Subsequently, we applied CNN for imaging. While this
approach significantly suppressed speckle noise and provided clear and detailed imaging,
it still exhibited discontinuities and missed certain target details. Finally, we employed the
DeepRED for imaging, which resulted in clear images, notable speckle noise suppression,
and the most complete preservation of the target.

In addition, we conducted a quantitative analysis of the AES for mountainous regions,
with the results presented in Table 2. It is evident that the method proposed in this
paper yields the highest AES, indicating that our imaging results have clear edges. While
effectively suppressing speckle noise, our method does not excessively cause edge blurring.
In contrast, the RDA leads to image blurring due to speckle noise, and both the L1 and
L1&TV regularization algorithms result in varying degrees of image unclarity, influenced
by the selection of threshold values and the effects of regularization.

Table 2. AES of the Target Scene in Experiment 3 as Imaged by Different Methods.

Method AES

RDA 0.0789
L1 0.0621

L1&TV 0.0757
CNN 0.1129

DeepRED 0.2144
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(a) (b) (c)

(d) (e)

Figure 11. Reconstruction results of Experiment 3. (a) RDA; (b) L1 regularization; (c) L1&TV
regularization; (d) CNN; (e) DeepRED.

4. Discussion

In this study, we have introduced an innovative unsupervised approach to SAR
imaging, leveraging the DeepRED regularization method. This approach diverges from
traditional methods by employing a RDA-based echo simulation operator instead of the
conventional observation matrix, alongside the ADMM framework for decoupling. Our
method’s efficacy was rigorously tested through a series of simulation experiments and
applied to RADARSAT data, benchmarked against methods like RDA, L1 regularization,
L1&TV regularization, and CNN-based imaging.

The results of our experiments were revealing. For distributed targets, our technique
showed a remarkable proficiency in suppressing speckle noise, leading to smoother imaging
areas. This was particularly evident in point target imaging within RADARSAT data’s ship
regions, where our method excelled in delineating clear edges and internal structures, even
amid the lowest noise levels. Furthermore, our approach outperformed others in imaging of
plain areas and mountainous terrains, displaying a superior number of looks, radiometric
resolution, and maintaining clarity without sacrificing target details. This demonstrates
not just the method’s effectiveness in noise suppression and edge preservation but also its
versatility across different imaging scenarios.
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5. Conclusions

The development and validation of the DeepRED-based sparse SAR imaging method
represent a significant step forward in SAR imaging technology. This method has shown a
unique capability to handle various imaging challenges, from speckle noise reduction to
edge clarity and target integrity preservation. Its adaptability to different environments
and noise levels underscores its potential as a robust tool for advanced SAR imaging appli-
cations. As SAR imaging continues to evolve, methodologies like ours will play a pivotal
role in enhancing the clarity and accuracy of the images captured, thereby contributing
significantly to fields like remote sensing and earth observation.
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