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Abstract: This paper deals with adaptive moving target detection for a forward scatter radar in
complex Gaussian noise. The echoes received by the forward scatter radar include not only the noise
and the possible target signals but also the direct signals. To suppress the direct signals and detect
the target signals, Rao and Wald tests are derived in two cases: the secondary data which contain
no target signal are available or not available. Different from monostatic radar, it is proved that
the derived Rao and Wald detectors for the forward scatter radar have the same test statistics as
the generalized likelihood ratio test-based detector in the complex Gaussian noise both when the
secondary data are available or not available. The numerical evaluation further demonstrates the
equivalence and the effectiveness of the proposed detectors.
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1. Introduction

A radar system in which the receiver is located separately from the transmitter is
known as a bistatic radar [1-4]. When the bistatic angle, which represents an angle between
the line of sight of the receiver antenna and the target and the line of sight of the transmitter
antenna and the target, exceeds 135°, the receiver works in the forward scatter region
of the target. In the forward scatter region of the target, the radar cross-section of the
target increases with the bistatic angle and reaches its maximum when the bistatic angle
becomes 180°. The forward scatter radar (FSR) is a bistatic radar with a bistatic angle
close to 180° [5-8]. The forward scattering makes the FSR system have an enhanced radar
cross-section compared with monostatic radar system. Moreover, the forward scattering
cross-section is independent of the material of the target. Therefore, FSR geometry has
received extensive attention in the fields of target motion parameter estimation, passive
FSR, target localization, target classification, and target detection in recent years [9-11].

For target motion parameter estimation, the method to estimate the target velocity,
target position, and crossing time is discussed in [12,13] in a global navigation satellite
system-based FSR network. Based on single-baseline and dual-baseline FSR configurations,
closed-form expressions of Cramer-Rao bounds of the target motion parameters are given
in [11]. For passive FSR, the matched filter and linear canonical transformation are used to
realize aerial target passive sensing with satellite-based FSR in [14]. The ability of a digital
video broadcasting terrestrial-based passive FSR to detect targets is discussed in [15,16].
For target localization, the maximum likelihood estimation (MLE) method for locating
a moving target in FSR is discussed in [17]. For target classification, a neural network
classifier was designed to classify ground targets using FSR in [18].
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Target detection is one of the most important applications of FSR [11]. In Ref. [19], a
stationary and slow-moving target detection scheme is proposed for a novel FSR system in
which the transmitter is rotated. By using this novel FSR system and the proposed target
detection scheme, stationary and crawling human intruders can be detected. In Ref. [20],
matched filtering theory is utilized to maximize signal-to-noise ratio for ground target
detection through forward scatter micro radars. In Ref. [21], the theoretical performance of
a crystal video detector (CVD) scheme which consists of the squared modulus operation, a
narrow high-pass filter, and a matched filter is derived. The comparison of the CVD with
the ideal detector shows that the CVD undergoes detection performance losses under the
condition that the target approaches the near field. To improve the detection performance,
adaptive detectors for FSR were designed by utilizing the generalized likelihood ratio test
(GLRT) when the parameters of direct signal, target signal, and noise are partly known
and completely unknown in [22]. The new detectors can achieve more than 3 dB detection
performance improvement than the CVD.

The GLRT is one of the most widely used design criteria for the adaptive detector,
which is designed by jointly utilizing the primary data and the secondary data and is
compared with a detection threshold set according to a pre-assigned probability of false
alarm to decide whether the target exists [23-26]. However, the GLRT does not generally
have optimality properties in the finite-sample case. Apart from GLRT, the Rao test and
Wald test are alternative design criteria that are asymptotically equal to the GLRT. The
adaptive detectors designed according to the Rao test and Wald test may achieve better
detection performance than the GLRT in the finite-sample case [27-31]. Therefore, it is of
interest to investigate the behavior of the adaptive detectors derived according to the Rao
and Wald tests. Both the Rao and Wald tests have been applied in different signal detection
scenarios [32-34]. In Ref. [35], the subspace Wald and GLRT detectors are proposed to
deal with the signal mismatch problem in MIMO radar. The resulting Wald test is more
robust than the GLRT. Considering that some training data may contain jamming, adaptive
GLRT, Rao, and Wald tests are designed in noise, clutter, and noise cover pulse jamming
in [36]. Persymmetric Wald and GLRT detectors were designed to detect spread spectrum
signals in noise in [37]. The proposed Wald test was found to share the same decision rule
with the proposed GLRT. To detect point-like targets in a complex Gaussian environment,
modified Durbin, Wald, and Rao detectors were designed in [38] by replacing the exact
Fisher information matrix (FIM) with its estimator. To detect radar targets in non-Gaussian
and nonhomogeneous sea clutter, persymmetric Wald, Rao, and GLRT detectors are derived
in [39]. However, as far as the authors know, no work has discussed the design of adaptive
Rao and Wald detectors for FSR.

In this paper, adaptive moving target detection for FSR in complex Gaussian noise is
discussed. The contributions of the paper are three-fold. (1) Adaptive detectors which can
realize the direct signal suppression and target detection simultaneously are designed for
the FSR by resorting to the Rao and Wald design criteria. Rather than using the imaginary
and real parts of the complex parameter to derive the real parameter test statistics, four
adaptive target detectors are proposed by regarding the complex parameter as a whole.
(2) The equivalence of GLRT, Rao, and Wald detectors based on FSR for a finite amount of
data is demonstrated through both theoretical analysis and Monte Carlo simulations when
the secondary data are available and not available. (3) Our simulation results show that
the proposed Rao and Wald detectors outperform their counterpart and that the detection
performance of the proposed Rao and Wald detectors increases when the observation time
and the number of the secondary data increase are provided.

We have arranged the rest of this paper as follows. Adaptive Rao and Wald detectors
for the FSR were designed for when the secondary data are available and not available in
Sections 2 and 3. The equivalence of the Wald test and Rao test to the GLRT is proved in
Section 4. The detection performance analysis of the derived adaptive detectors is shown
in Section 5. Some conclusions are given in Section 6.
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2. Design of Adaptive Detectors with Secondary Data

Adaptive moving rectangular-shaped target detection in complex Gaussian noise
using the FSR is considered. As shown in Figure 1, the length of the baseline between
the receiver and the transmitter of the FSR is R. The transmitter transmits a continuous
wave signal with carrier frequency f.. A target with vertical dimension L, and horizontal
dimension L, moves in a straight line with velocity v and crosses the baseline at a distance
Ry from the receiver when t = 0 s.

L

Receiver

Transmitter

Figure 1. The geometry of the forward scatter radar.

When the secondary data are available, we formulate the above detection problem as
the binary hypothesis test

z=arg+n
Hp : ) /
zZ =ary;+n

Z=uary+ pri+n
RO
= &1y

(1)

where Hy denotes the null hypothesis indicating the absence of the target signal, H; denotes
the alternative hypothesis indicating the presence of the target signal, z € Cy« denotes the
data under test, namely, the primary data, Cxx1 stands for the set of N -dimensional com-
plex vectors, z’ € Cg1 denotes the secondary data which are target-free and are collected
from the temporal frames adjacent to the primary data, r; € Cyx1 and ":i € Ckx1 denote
complex vectors containing samples collected from the direct signals, r; € Cy 1 denotes
the N -dimensional complex vector containing samples collected from the target signal,
and « are unknown complex amplitudes of the target signal and direct signal, n € Cy 4
and ' € Cky1 denote the noise which satisfies n ~ CN(0,0°Iy),n' ~ CN(0,0%Ix), o
denotes the noise variance, Iy and Ix denote the identity matrices, and CN (-) denotes
complex circular symmetric Gaussian distribution. According to the statistical distributions
of the target signal, direct signal, and noise, the joint probability density function (JPDF) of
zand z’ is

1 1 .
f(zZ|H;) = — WO P [—Uz(nz—zxrd —iBr|* +||2’ —zxrﬁiHZ)} 2)

wherei =0, 1, |||| is the Euclidean norm.

Compared with the GLRT, which is obtained by estimating unknown parameters
under both hypothesis Hy and hypothesis H;, only the unknown parameters under hy-
pothesis Hy or the unknown parameters under hypothesis H; are required to estimate for
the Rao test or the Wald test. Meanwhile, considering that the complex-parameter Rao
and Wald tests coincide with the real-parameter ones [28], and that the real-parameter Rao
and Wald tests may be difficult to handle and have heavy computational complexity, we
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regard the complex parameter as a whole to design the Rao and Wald detectors for FSR in
this section.

2.1. Adaptive Complex Parameter Rao Detector with Secondary Data

The complex parameter Rao test with secondary data for the detection problem (1) is

H

oln f(z,z'|H T 1A dln f(z,Z'|H 1
f( | 1) A |:] 1(®O>:| f( *| 1) . 2,.}/ (3)

a®r @:@0 ®r®r a®r @:@0 HO

where In(-) denotes the logarithm, ()" and (-)* are the transpose operator and the complex
conjugate operator, d(-) denotes the partial derivative, v denotes the detection threshold,

T
e = {@);[ ,0r } , 0, = [pT, pH] T is the vector of the relevant parameter which is related

to the complex amplitude of the target signal, ©; = [aT, o, 02} T is the vector of nuisance

parameters, which include the complex amplitude of direct signal and the noise variance,
()H is the complex conjugate transpose operator, @y denotes the MLE of ® under Hy, and
J(©) is the FIM:

](@) —E {alnfgzé; |Hyp) alnfé()ng|H1)}

_ P@@, Jo,0, @)
Jo.o, Je,o,
where Jg o,, Jo,0., Jo.0,, and Jo e, are four blocks of J(©):

dlnf(z,z'|Hy) 81nf(z,z’|H1)}
=E 5
I@,‘G,‘ a@;k a®z“ ( )

dlnf(z,z'|Hy) 81nf(z,z’|H1)}
=E 6
I@,‘®s [ a@;k a®g“ ( )
Jo.0, = J6,0. @)

dln f(z,2'|Hy) 81nf(z,z’|H1)}
=E 8
]G)SG)S |: a®;k a®ST ( )

771(®)] 0,0, is the (O, ©;) part of the inverse of the matrix J(®). According to the
inverse formula of partitioned matrices, we have

o)

To obtain the Rao test, we express the partial derivative of the logarithm of the JPDF
Inf(z,z'|Hy) to ©, as

-1
0,0, [I@,@, (©) ~Jo,0.(0)]60,(©)e.0, (9)} )

dln f(z,2'|H H
dInf(z,2|Hy) _ [alnf(z,2|Hy)]" _ |5 (10)
00, 20; 2ln (1)

Substituting (2) into (10), we have:

oln f(z, 2z |H 1 H

f(aﬁ*m -2 (rflz —arf'ry — P rt) h
ol L7 | H 1
nf(gﬁﬂl) — ﬁ(ZHn oy, ﬁHr{th) (12)
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The FIM J(©) is calculated according to the JPDF f(z,z'|H;) (2) and the theory of
complex-valued matrix differentiation [40]. After some calculation, we obtain:

S~ @
g;ggj; =l (14
iﬁgzo (15)
:;13[{; -0 (16)

where f; = f(z,z'|Hy). Since the equation E[%%] = —E[%Zigﬂ: —E[%(aal;f)}

holds, we can obtain the first block Jg ¢

J —F dlnf(z,z'|H ) dInf(z,2'|Hy)
6,0, 00; T

00!
[ all’lf] 81nf1 81nf1 all’lf] ]
=E

ap* opT OB opH

all’lfl Blnfl Blnfl all’lfl (17)
9B op" 9B opH
_ %r{{rt 0
0 %r{{rt
In a similar way, we can obtain
9?In f; 1 g
opraaT — o2t (18)
PIn fy 1)°
8,8*81];2 =— (0_2> (r{iz —arflry — ,Brg{rt) (19)
82 In f1
= 20
9p*oatt 29)
9poat ~ 2" @D
0%In f; 1\?2
(et
82 In f1
= 2
apoaT 0 @3)
Then, the second block Jg @, can be calculated as follows:
_ r[9lnf(zz|Hy) dlnf(z2'|Hy)
]®r®s =E a@: 20!
dlnfidlnf, dlnfdlnf;  dlnf dlnfy
_ [ * ol 0p* H 9B+ o2 ‘|
= dlnf; dlnf; dlnfdlnf; dlnf dlnf; (24)
9B oal 9 oaH 9B do?

E
l %r{{rd 0 0
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According to the definition of the block Jg g , we have the following results:

221730]} = —% (rtfrg +rif's}) (25)

S =0 @)

gigﬁ =— (012)2 (rffz —ariry —Brilr +¥Hz — arﬁlHrl’i) (27)

it =0 @

811;{1’1 _ 01 (rd rq+ 1y Td) (29)

% = - (012) z rq —ariiry —Brlry + 2/'H7, — ocHrfiHrt’j) (30)

= - () ( >2 ey — alifrg —ptrtlra + 21 — oMo' G1)

3;1;0{; = ( > zerrd — [Srd e+ rd P ucr,’jHr;> (32)

1 1
aazggz N +K) (a) 2( ) (lz = arg = ipn > + |2/ —ary|?) ~ (33)

E)lnf(z z’\Hl) Blnf(z Z'|Hy)
or

Jo.o, —E{ :
alnflalnfl alnflahqfl Al f; 9In fy

- 302
_r a]nflalnfl alnfla]nfl dln f; 91n £,

I A (34)
E)ai[ onT o oc?2  oaH o0 902
(rilrg +7117) 0 0
= % 0 (rirg +7f7)) 0
0 0 (N4K)

771(0)] o,0, Can be obtained by substituting (17), (24), and (34) into (9):

[]71(®)]®,®, -
= {]@,@r () —Jo,0,(0)]5l0,(©)]6,0, (@))}

1 (35)
2 2 rtHrdrffrt
ol — —5"4t—| DI
l” || (lrd|2+|r:i||2)‘|
The MLEs of the unknown parameters under Hj is: 30 = 0,
R 2 2\ — N iz Hz 2
b0 = (Il + 177 ™ o'z +012), 08 = gy e+ 12 - LEEEOL .
lrall*+{]74 |

The complex parameter Rao test with secondary data based on the FSR (referred to
as Rao-SD-FSR) can be obtained by substituting (10)—(35) and the MLEs of the unknown
parameters under Hy into (3):

H [Z 74 (rglz-l—r:in’)} ’ (” ” rHrgrtn ) H

EE T T2 1 Ll — 1
Irall®+117, IrallP+

TRaostfFSR — d || d|| - ; : || dH 2 ,)// (36)
ol + 1P - Lzt )L Ho

lral >+ )17
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where 7’ denotes the modified detection threshold.

2.2. Adaptive Complex Parameter Wald Detector with Secondary Data
The complex parameter Wald test with secondary data is given by

©1-00)" ([ O], .} (©n-00) 21 @)

where ©; and ©,; are the MLEs of © and ©, under H;, 7 denotes the detection threshold,
and O, is the value of ©®, under Hy.

-1
From (35), { 771(©)] ®r®r} is calculated as:

-1

{ [171(9)]@)76),}

R L ety , (38)
- (Iral+771)
The value of ®, under H is
0,0 = [0,0]" (39)

The MLE of ® under H;j is:

Br = itz — etz + 012 (ira o+ 1)

) (40)
2 -1
o<l = e ot + f1e) |
-1 N
i = (lrg+ i) (llz+ o1 — porkin) (41)
H H /112
o7 = 1{|z|2 + HZ/||2 _ |(riz+rf'2)| B ' lrall®+ |74 (42)
N+K rall® + 7] (g - )
g+ |

The complex-parameter Wald test with secondary data based on the FSR (referred to
as Wald-SD-FSR) can be derived by substituting (38)—(42) into (37):

2
rHr erJrr/Hz/
Twald—SD—FSR = |12 — %ﬁz)
Il +7ill
x (IrtII2 - '5|22> (1212 + 112'11* [tz
IralP+ el IralP+ 7] @)
o= 17
I+l o
(HnHZ*M> Ho
lrall>+|74]I

where 7’ denotes the modified detection threshold.

3. Design of Adaptive Detectors without Secondary Data

When the secondary data are not available, we formulate the detection problem as the
following binary hypothesis test:

(44)
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where 7; € Cnx1 and 7,1 € Cpnx1 denote N -dimensional complex vectors containing

samples collected from the target signal and direct signal, E and « are unknown complex
amplitudes of the target signal and direct signal, z € Cy; denotes the primary data, n

- ) 2
denotes the noise which satisfies n ~ CN (0, ol N) ,and o denotes the noise variance.

I

The PDF of the primary data is

f(zIH:) = N@pl%(

VI

Z—arg—ipr;

wherei =0, 1.

3.1. Adaptive Complex Parameter Rao Detector without Secondary Data

The complex parameter Rao test without secondary data for the detection problem
(44) is

- T -
8lnf<z|H1> (2 alnf<z|H1) Hy
—_— J | ©o)|_ _ == 2¢ (46)
0, o6, 00 90, |55 Ho

- -T —H1T _ \_/TVHVZT\A’ -
where @, = {ﬁ , B , 0 = |:£X 0,0 } , O is the MLE of ® under Hj, and ¢ denotes
the detection threshold.
According to the PDF of the primary data and the theory of complex-valued matrix
differentiation [40], we can obtain the following results:

alnf(Z|H1> 1 (CcH_. <__H_ < _H_

—— =S| rrz-ar, rg—pryry (47)
2B o

alnf(?|H1) 1 (_H_. <H_H_ ~—H_H_

————F—=—F|z ri—a rgri—p r; 1y (48)
2B o

The FIM | <6) when the secondary data are not available is calculated in a similar
way as the FIM J(©) when the secondary data are available. After some calculation, the

four blocks of J ((5) are

_H_
1 ry r¢ 0
Jss =" t CH_ (49)
e o 0 ry 1y
1 [7/7. 0 0
ry ry
]66 == _H_ (50)
s o 0 rgr: O
_H_
ryrg 0 0
- Y 51
Jo6.==2z| © rygry O (51)
S S 0. 0 0 ﬂz
2
_H_ |?
- 12 g 1t
P
g r
(RGN At (S B
®r®r [0 - 112 L
o7 -

7o
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22 - Tz
The MLEs of the unknown parameters under Hj are: H H H H /N,
T4
< 2 _H_ \ Y/_H_
Bo=0,and ag=( 1  ryg ryz

Substituting (47)—(52) and the MLEs of the unknown parameters under Hy into (46),
we have the complex parameter Rao test without secondary data based on the forward
scatter radar (referred to as Rao-FSR):

-1

5 | — _H_ _H_ _H_ H,
“H|[- ryryz - Ty rarg v
TRao-FsR = —5 |1+ | 2 — 4= H H 44 d e (53)
% 7l e
3.2. Adaptive Complex Parameter Wald Detector without Secondary Data
The complex parameter Wald test without secondary data is given by
2 \H 2 . \H
(®r1 - ®r0> { |:]_1 <®1> [ } (G)rl - ®70> 2 Y (54)
0,0, Hy

Where p denotes the detectlon threshold @1 and @,1 are the MLEs of @ and @r under Hi,

and @,o is the value of G)r under Hy, ®r0 =10, O]
The second term of the Wald test is obtained according to the four blocks of

J (6), namely, (49)-(51) and the MLEs of unknown parameters under Hj:

xS CH_ \ Y'/oH 2 _H_oN\ S 22 e
a1 =|ryry rgz—PByrgre), By =72/|[%|",and oy = ftZH /N:
VHV 2
. -1
1 = —
[I (@1> - [l —— 2 (55)
oof ey H 26
1 Tty 1 1 Hy\ “SH pl
L - - AT
where P,; = Iy f G, 7t =P,ry,z2=DP,;z,P; = rt(rt rt) ), Py = 1IN — P,
L]

Plugging (55) and the MLEs of the unknown parameters under H; into (54), we have
the complex parameter Wald test without secondary data based on the FSR (referred to as
Wald-FSR):

Twaid—rsr = 2N|| P,z

H
= 519 (56)
0
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4. The Equivalence of the Wald Test, Rao Test, and GLRT
4.1. The Equivalence of the Wald Test, Rao Test, and GLRT with Secondary Data

In this part, the equivalence of the Wald test, Rao test, and GLRT is validated when
the secondary data are available. We rewrite the test statistics of the Rao-SD-FSR (36) and

the Wald-SD-FSR (43) as
2 -1
r{-[ |:Z rd( d z+rd z ):| ' (HrtHZ_ Tglzrtrg—!rd 2)
AT ™+ ||l

2
Tl id
el ]

2
{| RN/

Irall+ 1]l

- +1
THZ r 4 2
EET Kfid)‘
a2+ 17| (57)

Ho/Ho ) 2
= 1= { 1=t P - L [n 1)
L]

TRao—SD—FSR =

H|: rq rdz+fH/:|'

t,

(22 /)| _ t [l +|| d”

I (o
WH Al

=1 [Zepgogostse 9]

Twald—SD—FSR

2 2 -1
Hy(fHayy/Hy! : Hy
r{iz tra(rh dz)’ (H”t” |2d a 2)

[N lrall+ ] ]
o
| ra(f=erfis )H 58
TR i i 0

IralP {17 (ufn S )
Iral+ 1

-1
where Tgrrr—sp-rsg = (N+K— 2)03_1 (F — QE_1> is the GLRT with secondary

2 2
1zI17 + 11211 =

X

_ Tgrrr—sp—rsr
(NTK—2)

|riin|®
a7

. Equations (57) and (58)

data based on the FSR (referred to as GLRT-SD-FSR) [22], & = |* —

2 2
O = |pHy _ ra(riz+rf'2) 2 _ | (=)
- |t 2 /12 2 /112
I+ |7 Ial*+ 173
show that the Wald test and Rao test are proportional to the GLRT, namely, the three de-
tectors coincide for adaptive moving rectangular-shaped target detection in FSR when the
secondary data are available.

,andT = ||z[* + |12/

4.2. The Equivalence of the Wald Test, Rao Test, and GLRT without Secondary Data

The equivalence of the Wald test, Rao test and GLRT when the secondary data are not
available is validated in this part. The test statistics of the Rao-FSR (53) and Wald-FSR (56)
can be rewritten as:
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2

TRao—Fsr = 2N

_H_|?

A7 1)

—~H_ _H_
Ty tgrg tt ~
NE N
H

2
- - ~H - - -
—2N|7, PLz /[(r pirt)<z PrLdz)] (59)

— 2N ~H~‘ / [(rt rt) (sz)]

— oNEHp, z/( piz 2P, )

o 2N|| 7z

_ 2NTgrrr—rsr/(N-2)
" 1+Tgrrr-Fsr/ (N=2)

2
Twaia-rsk = 2N|| P52/ ||PLZ|" = 2NTorrr por/ (N —2) (60)

where Tgrrr—rsr = (N —2)||Py, z|| / HPL H is the GLRT without secondary data based

on the FSR (referred to as GLRT-FSR) [22]. Equations (59) and (60) indicate that the
GLRT and the complex parameter Rao and Wald detectors are identical for adaptive target
detection in complex white Gaussian noise using the FSR when the secondary data are
not available.

For the problem of adaptive detection of a signal using the monostatic radar in a
homogeneous environment wherein the primary data and the secondary data share the
same noise covariance matrix, the GLRT, Wald and Rao detectors are demonstrated to be
three different detectors [41-43]. For cases involving partially homogeneous environment
wherein the primary data and the secondary data have different noise variance, the GLRT,
Wald, and Rao tests coincide [44]. Different from monostatic radar, Equations (57)—(60)
indicate that the three tests for FSR coincide with each other in the complex white Gaussian
noise wherein the primary data and the secondary data have equal variance. A possible
reason for the difference is that the noise follows the complex white Gaussian distribution
for the problem of adaptive moving target detection using the FSR.

5. Numerical Evaluation

Monte Carlo simulations were conducted to assess the detection performance of the
proposed Rao-SD-FSR, Wald-SD-FSR, Rao-FSR, and Wald-FSR detectors in this section. For
comparison, the simulation results of the GLRT-SD-FSR, the GLRT-FSR, the CVD [21], and
the ideal optimum detector [22] derived by assuming that both the direct signal and the
noise parameters are known are also given. All the simulations are carried out using the
Matlab (R2020b).

When the far-field parameter f = 2(max{Ly, Ly})?/A(min{Rg, R — Ro}) is smaller
than 1, the target is in the far field of both the transmitter and receiver, and vice versa,
the target is in the near field. Two cases are considered: the target is in the far field of the
receiver and the transmitter (R = 4000), and the target approaches the near field but is still
in the far field (R = 600). The direct signal-to-noise spectral density power ratio (DNSR)

2
is [21]: DNSR = %, where Ny = BT,F denotes a one-sided noise spectral density, F
denotes the noise figure, T, denotes the standard temperature, and B denotes Boltzmann's
constant. The target parameters and radar system parameters of the two cases are given in
Table 1.
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Table 1. The target parameters and radar system parameters.

Parameters Symbol Value
Carrier Frequency fe 2.4 GHz
Horizontal Dimension Ly, 4m
Vertical Dimension Ly Im
Target Velocity 14 25m/s
Base Line R 4000 m, 600 m
Distance Ry R/2

5.1. Performance Analysis of the Proposed Detectors with Secondary Data

In this part, the detection performance of the proposed Rao-SD-FSR and Wald-SD-
FSR was analyzed when the secondary data are available. In Figure 2, the probability of
detection P; is plotted as a function of the DNSR. The probabilities of detection of the
proposed Rao-SD-FSR and Wald-SD-FSR are obtained from the test statistics (36) and (43).
For comparison, the simulated and theoretical probabilities of detection of the GLRT-SD-
FSR and the ideal optimum detector are also given.
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Figure 2. Probability of detection versus DNSR (a) R = 4000, K = N (b) R = 600,K = N.

We can see that the proposed Rao-SD-FSR and Wald-SD-FSR detectors and the GLRT-
SD-FSR coincide with each other. Moreover, simulation results of the three detectors are all
in agreement with the theoretical result of the GLRT-SD-FSR. Thus, both simulation results
and the theoretical analysis demonstrate the equivalence of the complex parameter Wald
detector, complex Rao detector, and the GLRT detector for the detection problem (1).

From Figure 2, we can also see that the probabilities of detection of all the detectors
improve as the DNSR increases. Meanwhile, the proposed Rao-SD-FSR and Wald-SD-FSR
outperform the CVD. The detection performance gains of the Rao-SD-FSR and Wald-
SD-FSR with respect to the CVD are about 3 dB and 10 dB for P; = 0.9,R = 4000 and
P; = 09,R = 600. Moreover, the proposed Rao-SD-FSR and Wald-SD-FSR detectors
achieve similar detection performance to the ideal optimum detector. The performance
losses of the Rao-SD-FSR and Wald-SD-FSR detectors compared with the ideal optimum
GLRT are about 0.5 dB and 1 dB for P; = 0.9, R = 4000 and P; = 0.9, R = 600. When com-
paring Figure 2a with Figure 2b, it can be seen that the detection performance degradation
of the proposed Rao-SD-FSR and Wald-SD-FSR with respect to the ideal optimum detector
when the target approaches the near field is higher than those when the target is in the
far field.

The receiver operating characteristic (ROC) curve, which is plotted with the probability
of false alarm Py, as the horizontal coordinate and the probability of detection P; as the
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vertical coordinate, is a widely used evaluation tool for signal detection. To see the impact
of the observation time T on the performance of the Rao-SD-FSR and Wald-SD-FSR, the
receiver operating characteristic (ROC) of the Rao-SD-FSR and Wald-SD-FSR is plotted for
different observation times when R = 4000, DNSR = 35 dB and R = 600, DNSR = 30 dB
in Figure 3a,b. Figure 3 indicates that the detection performance of the proposed detectors
improves with an increase in the observation time and approaches that of the ideal optimum
detector when the long observation time is used. Thus, the increase in the observation time
can achieve a detection performance gain.

£

0.8 @
/
r
/ "
@
061 A
- i
a I
0.4 i
0.2

—e-- g LT
T :

0.4

0.6 0.8 1

Pfa

(a)

1

= = = Optimal Detector(T=10.1) - — — = Optimal Detector(T=1.5)
© Rao-FSR(T=10.1) o © Rao-FSR(T=1.5)
Wald-FSR(T=10.1) 0-4<.: Wald-FSR(T=1.5)
--------- Optimal Detector(T=1) ] [} e Qptimal Detector(T=0.1)
A Rao-FSR(T=1) A Rao-FSR(T=0.1)
*  Wald-FSR(T=1) 02 *  Wald-FSR(T=0.1) I
Optimal Detector(T=0.5) ’ Optimal Detector(T=0.05)
0 Rao-FSR(T=0.5) x| O Rao-FSR(T=0.05)
Wald-FSR(T=0.5) Wlald-FSR(T:O.US)

0.2

04

0.6 0.8 1

Pfa

(b)

Figure 3. ROC of the detectors (a) R = 4000, DSNR = 35 dB; (b) R = 600, DSNR = 30 dB.

In Figure 4, probabilities of detection of the Rao-SD-FSR and Wald-SD-FSR are plotted
as a function of the number of the secondary data K. We can see that the probabilities
of detection of the Rao-SD-FSR and Wald-SD-FSR become higher when the number of
the secondary data increases. This is due to the fact that the estimations of the unknown
parameters become more accurate as the secondary data increase.

1 . .
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Figure 4. Probability of detection versus K (a) R = 4000, DSNR = 42 dB; (b) R = 600, DSNR = 35dB.

5.2. Performance Analysis of the Proposed Detectors without Secondary Data

In this part, the detection performance of the Rao-FSR and Wald-FSR detectors when
the secondary data are not available is analyzed.
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Figure 5 shows P; versus DNSR for R = 4000 and R = 600. The probabilities of
detection of the Rao-FSR and Wald-FSR are obtained by the test statistics (53) and (56). For
comparison, probabilities of detection of the GLRT-FSR and the proposed Rao-SD-FSR and
Wald-SD-FSR detectors are also given. From Figure 5, we can see that the Rao-FSR, GLRT-
FSR, and Wald-FSR detectors coincide, which is consistent with the theoretical analysis.
Meanwhile, the Rao-FSR and Wald-FSR detectors achieve about 3 dB and 8 dB detection
performance improvement with respect to the CVD. Compared with the proposed Rao-SD-
FSR and Wald-SD-FSR, the Rao-FSR and Wald-FSR detectors suffer detection performance
degradation if the secondary data are not available. The detection performance losses are
about 0.5 dB and 1.5 dB for P; = 0.9, R = 4000 and P; = 0.9, R = 600.
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Figure 5. Probability of detection versus DNSR: (a) R = 4000; (b) R = 600.

In Figure 6, the impact of the observation time on the performance of the Rao-FSR and
Wald-FSR detectors is analyzed. Figure 6 shows that the probabilities of detection of the
Rao-FSR and Wald-FSR detectors approach the ideal optimum detector as the observation
time increases. The impact of the observation time on the detection performance of the
Rao-FSR and Wald-FSR is in agreement with the proposed Rao-SD-FSR and Wald-SD-FSR.
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6. Conclusions

In this paper, adaptive moving rectangular-shaped target detection in complex Gaus-
sian noise using FSR has been discussed. Adaptive complex parameter Rao detectors
and adaptive complex parameter Wald detectors, which regard the complex parameter
as a whole, were designed when the secondary data were available and not available.
The equivalence of the proposed complex parameter Rao and Wald tests to the GLRT has
been verified by both the theoretical analysis and the simulation results. Meanwhile, the
performance assessment shows that the proposed Rao-FSR, Rao-SD-FSR, Wald-FSR, and
Wald-SD-FSR outperform the CVD and can achieve detection performance gains with the
increase in the observation time and the number of the secondary data.
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