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Abstract: With the advancement of remote sensing technology, the demand for the accurate monitor-
ing and tracking of various targets utilizing unmanned aerial vehicles (UAVs) is increasing. However,
challenges such as object deformation, motion blur, and object occlusion during the tracking process
could significantly affect tracking performance and ultimately lead to tracking drift. To address this
issue, this paper introduces a high-precision target-tracking method with anomaly tracking status
detection and recovery. An adaptive feature fusion strategy is proposed to improve the adaptability
of the traditional sum of template and pixel-wise learners (Staple) algorithm to changes in target
appearance and environmental conditions. Additionally, the Moth Flame Optimization (MFO) al-
gorithm, known for its strong global search capability, is introduced as a re-detection algorithm
in case of tracking failure. Furthermore, a trajectory-guided Gaussian initialization technique and
an iteration speed update strategy are proposed based on sexual pheromone density to enhance
the tracking performance of the introduced re-detection algorithm. Comparative experiments con-
ducted on UAV123 and UAVDT datasets demonstrate the excellent stability and robustness of the
proposed algorithm.

Keywords: moth-flame optimization; re-detection; remote sensing; staple; target tracking

1. Introduction

Recent advancements in the field of computer vision, specifically unmanned aerial
vehicle (UAV) target-tracking technology, have promoted developments in tracking ac-
curacy and speed. These developments have far-reaching implications, encompassing
applications such as disaster detection, remote sensing inspection, traffic management,
and agricultural protection [1–7]. However, effectively maintaining tracking performance
remains a significant challenge in highly challenging task scenarios involving scale varia-
tions, low resolutions, and partial occlusions. Moreover, the changes in UAV flight attitude
and camera shaking can result in target deformation, impacting tracking quality. Therefore,
researching efficient and robust target tracking algorithms holds widespread significance
for UAV applications.

Consequently, deep-learning-based methods have garnered significant attention in
the field of image processing owing to their exceptional performance [8]. Neural network
technology has also led to notable progress in target tracking [9,10]. However, these
methods require high computational power, creating obstacles in fulfilling the real-time
target tracking requirements on UAV platforms. In contrast, the correlation filter-based
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tracking methods can achieve efficient computation. In recent years, many researchers
have made significant achievements in the field of object tracking by adopting correlation
filter methods [11–15]. The basic principle of correlation filter tracking is to use the Fourier
transform to calculate the correlation between the state space model and the target candidate
region in the frequency domain, select the location of the maximum response value in
the candidate region as the location of the tracked object at the current moment, and
continuously track the target by repeating this process.

Bolme et al. [16] proposed the MOSSE algorithm, which, for the first time, introduced
the target appearance-adaptive correlation filter method to the field of target tracking. Hen-
riques et al. [17] proposed a tracking algorithm based on a circular tracking structure using
fast Fourier transform and kernel methods, designing the CSK tracker based on detection
tracking with kernel functions. Subsequently, they combined the multi-channel histogram
of oriented gradients with the MOSSE algorithm to establish the kernel correlation filter
KCF [18], significantly improving tracking performance. Martin et al. [19] introduced a
discriminative scale space representation and proposed the DSST algorithm, which enables
precise scale estimation in visual tracking by adapting to changes in target scale. However,
when confronted with tracking drift issues arising from interferences like target occlusion
or scale variations during long-term UAV tracking, there remains large room for enhancing
the failure re-detection capabilities of various correlation filter trackers.

In view of such problems, this paper proposes a long-term UAV target tracking algo-
rithm that is more suitable for challenges such as target deformation and partial occlusion.
Firstly, an adaptive feature fusion strategy is proposed to address the limitations of the
sum of template with pixel-wise learners (Staple) algorithm [20] in achieving the optimal
fusion of the advantages of two tracking models due to fixed weights in position filtering.
In addition, this paper has introduced a re-detection indicator to indicate the confidence
level of tracking. Moreover, an improved multi-strategy moth flame optimization (MFO)
algorithm is integrated into the tracking framework as a re-detection algorithm. In cases
where the tracking result is deemed unreliable, the re-detection algorithm is employed to
adjust the tracking target, ensuring long-term stability and resistance against tracking drift.
In conclusion, the main contributions of this work can be summarized as follows.

1. Based on the improved Staple algorithm, a novel re-detection target-tracking frame-
work is proposed to achieve the long-term tracking of UAVs. In particular, the
algorithm adjusts the feature weights adaptively by detecting the response differ-
ences between the filter model and the histogram model. Additionally, the improved
MFO algorithm is introduced as a re-detection mechanism to enhance the stability of
the tracker.

2. A refined swarm intelligence algorithm (MFO) employing diverse strategies is pro-
posed to mitigate tracking failures in target tracking. To swiftly correct inaccuracies in
unreliable tracking scenarios, a trajectory-driven population initialization method is
advocated. Furthermore, the iteration process of the population’s position is enhanced
by integrating the influence of sex pheromone concentration on individual moths,
thereby optimizing the tracking algorithm’s performance.

3. We conducted experiments on well-acknowledged tracking datasets, which demon-
strate the outstanding performance of the proposed tracking algorithm. Compared
to traditional tracking algorithms, the proposed method exhibits significant im-
provements in accuracy and robustness, making it effective for tracking aerial
photography scenes.

The structure of the subsequent sections in this paper is as follows. Previous research
relevant to this study is briefly reviewed in Section 2. Section 3 introduces the staple tracker
framework and its related algorithms. The analyses of experiments and results based on the
benchmark datasets UAV123 and UAVDT are presented in Section 4. The final conclusions
of the algorithm and future task directions are given in Section 5.
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2. Related Works

In this section, we briefly review the recent progress of relevant filtering algorithms
and meta-heuristic algorithms for target-tracking-related applications.

2.1. Correlation Filtering Tracking Method

Since the introduction of the MOSSE filter algorithm by Bolme et al. [16], discriminative
correlation filter-based target tracking algorithms have undergone extensive development.
Li et al. [21] proposed multi-feature fusion to enhance the performance of the tracker
and utilized a diverse sample scale pool to achieve adaptive target tracking, effectively
addressing the fixed sample size issue in traditional trackers. Galoogahi et al. [22] addressed
the inefficiency of using background information in correlation filters by incorporating
high-confidence positive and negative samples into the learning and detection process,
further enhancing the filter’s ability to discriminate between background and target. To
address tracking drift caused by environmental changes, Zhang et al. [14] proposed an
improved discriminative correlation filter (DCF) method, proposing a learning model
with a regularization term that adjusts the position of the target object by computing the
difference in the feature representations of the target object in adjacent frames. Deng
et al. [23] improved DCF by utilizing dynamic spatial regularization weights and the
alternative direction method of multipliers to suppress interfering factors. Kumar et al. [24]
established a tracking model based on discriminative correlation filters and a motion
estimation model employing Kalman filtering while concurrently integrating CH matrices
for motion position compensation of the tracked targets.

2.2. Meta-Heuristic Algorithm Solution

From the point of view of numerical optimization, the purpose of target tracking is to
leverage the shape and appearance information calculated by the mathematical model in
the previous frame to pinpoint the location of the tracked object when the cost function
converges to the optimal value within the high-dimensional search space in the current
frame. By applying swarm intelligence algorithms, one may consider each individual
within the population as a potential tracking solution. Through iterative processes and
movement strategies, these individuals gradually converge toward the optimal solution,
thereby achieving accurate tracking results.

In recent years, there has been a growing trend among researchers to adopt swarm in-
telligence methods to enhance the accuracy and robustness of target tracking. Gao et al. [25]
proposed a firefly algorithm for target tracking, establishing a generic optimization-based
tracking framework. Ong et al. [26] introduced an improved flower pollination algorithm
for motion target tracking, with experimental results on benchmark test videos indicating
excellent performance. Castro et al. [27] proposed a stochastic frog leaping algorithm
for dynamic optimization problems, which delimited the solution space by the double
exponential smoothing to achieve target tracking.

Additionally, researchers have explored combining the advantages of different swarm
intelligence algorithms to improve the performance of trackers. For example, Sardari
et al. [28] integrated particle filtering with an enhanced galactic-based search algorithm to
propose an occlusion-free object tracking method, which is capable of handling variations
in object appearance and occlusion detection based on appearance models. Kang et al. [29]
combine the advantages of particle swarm optimization and gravitational search algorithms
to propose a novel hybrid gravitational search algorithm with integrated convolutional
neural network features to achieve superior performance in online target tracking. Moghad-
dasi et al. [30] introduced a reduced particle filter based on a genetic algorithm to address
the issues of sample impoverishment and target occlusion.

3. Proposed Approach

The overall execution flow of the algorithm proposed in this paper is illustrated in
Figure 1. After obtaining the target information and image feature at the t − 1 frame, the
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Staple algorithm [20] uses both the correlation filter and color histogram filter to obtain
the target response values. These responses are then fused using adaptive feature fusion
coefficients that vary with the environment. The target position is predicted based on the
maximum fused response. Determining the tracking status by assessing the confidence of
detection results, and if it is below a threshold defined by the algorithm, the re-detection
algorithm is employed to search for the target solution with the highest fitness based on
the image features of the previous frame in the given solution space.
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3.1. Tracking Algorithm and Its Improvement

Section 3.1.1 gives the implementation details of the Staple algorithm for target tracking.
However, due to the boundary effects caused by the circular shift operation during the tracking
process, this algorithm may degrade the long-term tracking performance of the UAV and
still has limitations. The proposed improvements on adaptive feature weight and tracking
confidence detection mechanism will be discussed in Sections 3.1.2 and 3.1.3, respectively.

3.1.1. Staple Filtering Algorithm

In the Staple algorithm, target position prediction is achieved through the joint training
of two tracking models: the correlation filter and the color histogram.

response = (1 − α) · response_c f + α · response_pwp (1)

where α is the interpolation parameter, and response_c f and response_pwp are the filter
response score and color histogram response score, respectively.

1. Correlation filter model based on HOG feature

To generate training samples, image patches containing the target and surrounding infor-
mation are collected, followed by performing circular shifting operations. The d-dimensional
multi-channel HOG features of the target and its surrounding area are extracted, and the
correlation filter h is obtained by solving the target model with a ridge regression equation.
The optimal filter h is obtained by minimizing the following loss function:

ε =

∥∥∥∥∥ d

∑
l=1

hl ∗ f l − g

∥∥∥∥∥
2

+ λ
d

∑
l=1

∥∥∥hl
∥∥∥2

(2)
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where hl represents the filter in each dimension, f l represents the l-th dimensional HOG
feature vector, g is the expected output associated with f l , and λ is the weight of the
regularization coefficient. The optimal solution can be obtained by converting the above
formula to the frequency domain by Fourier transform as follows:

Hl =
G ⊙ Fl

d
∑

l=1
Fl ⊙ Fl + λ

(3)

where the uppercase form of the letter represents the discrete Fourier transform value of
the corresponding parameter, the symbol ⊙ signifies element-wise multiplication, and G
represents the complex conjugation of the corresponding parameter.

The filter model adopts the linear difference mode to update the filter of each frame,
and the calculation method is as follows:{

At+1 = (1 − η)At−1 + ηAt

Bt+1 = (1 − η)Bt−1 + ηBt (4)

where η is the learning rate, and the response score of the new frame y is calculated by
Formula (5).

y = F−1


d
∑

l=1
AlZl

B + λ

. (5)

2. Bayesian classifier model based on color histogram feature

To enhance the description of an RGB image, in this paper, we divide the pixel values
into M intervals, treating each interval as a feature dimension. By extracting color features
from the three channels, one can use linear regression to independently establish a loss
function for all feature pixels through the following:

hhist(ψ, p, β) = argminh{
M
∑

j=1
(N j(O)

|O| (hj − 1)2
+

N j(B)
|B| (hj)

2
) + 1

2 λhist∥h∥2}
(6)

where ψ represents the extracted color histogram features from the target and background
images, p represents the ideal response where the target region has a value of 1 and the
background region has a value of 0, and |O| and |B| represent the total number of pixels
in the foreground slice and background slice, respectively. Solving the above formula, a
Bayesian classifier for the j feature can be obtained as follows:

β
j
hist =

ρj(O)

ρj(O) + ρj(B) + λhist
(7)

where ρj(A) represents the ratio of the sum of pixels in the j-th square column in region
A to the total number of pixels in sampling region A. Therefore, the following formula is
obtained to update the color histogram model with a fixed learning rate η as{

ρt+1(O) = (1 − η)ρt−1(O) + ηρt(O)
ρt+1(B) = (1 − η)ρt−1(B) + ηρt(B)

(8)

3.1.2. Anomaly Tracking Status Detection

When tracking targets against a complex and changing background in low-altitude
airspace, factors like background clutter, target occlusion, and low resolution can cause
disturbances in the target’s position and motion, leading to tracking drift and affecting
the updating of the feature model, thus resulting in tracking failures. Therefore, this
paper adopts two types of re-detection metrics, namely, the maximum response peak
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and the average peak-to-correlation energy (APCE), proposed by Wang [31], to reflect
the confidence evaluation of the response of the correlation filter model in tracking. The
criterion for determining whether the tracking state is anomaly is reflected by the magnitude
of the re-detection indicator.

The maximum response peak value can be expressed as

Fmax = maxF(x′, y′) (9)

where F(x′, y′) is the response of horizontal displacement x′ and vertical displacement y′

in the detection range of the target.
The expression of the APCE value is

APCE =
|Fmax − Fmin|2

mean(∑
x,y
(F(x′, y′)− Fmin)

2)
(10)

where Fmin is the minimum response value within the detection range of the target.
By comparing Figure 2a,b, it can be observed that after the tracked target undergoes

deformation, the response changes from a single peak that smoothly rises from the center
to the appearance of side lobes, and the contrast between the main peak and the side
lobes decreases. As shown in Figure 2c, it is observed that the APCE value progressively
increases during the initial phase of the tracking process, indicating the high confidence
and stable performance of the Staple algorithm in detecting objects amidst background
interference. However, a notable decrease and fluctuation in the APCE is evident during
the latter phase of the tracking process. This suggests that the Staple algorithm, employing
a frame-by-frame update strategy, is susceptible to drifting in scenarios involving occlusion
or motion blur, necessitating further refinement.
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The response confidence degree Rα of the improved filtering algorithm is
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Rα =

1, APCEt > λAPCE
t−1

t−1
∑

i=1
APCEi ∩ Ft

max > λF
t−1

t−1
∑

i=1
(Fmax)i

0, else
(11)

where λAPCE and λF represent the respective adjustment coefficients of the two types of
confidence judgments, respectively. If Rα = 1, it signifies that the results calculated by the
correlation filter model are reliable.

3.1.3. Adaptive Feature Fusion Strategy

In the Staple algorithm, the fixed-weight tracking method shown in Formula (1) can
easily cause the tracking algorithm to ignore the correct prediction results of low-weight
features. To address this challenge, an adaptive feature fusion strategy is suggested in this
study. This approach entails dynamically adjusting the weights assigned to primary and
secondary features in response to variations in the target’s appearance or environmental
conditions. Consequently, the algorithm demonstrates improved performance in tracking
challenges such as appearance distortions and fluctuations in lighting conditions during
UAV target tracking tasks.

During the tracking process, based on the tracking quality evaluation index APCE,
the reliability evaluation of the tracking feature response results derived from the filter
model and the histogram model can be realized. To maximize the advantages of each type
of feature in the following frame, the weights can be used to adaptively adjust the role of
features in the fusion template as

ωpwp =
Fpwp

max · APCEpwp

Fpwp
max · APCEpwp + Fc f

max · APCEc f
(12)

where Fpwp
max and Fc f

max represent the maximum value of the response of the filter model and
the histogram model, respectively. Finally, the weight of the model is updated based on the
learning rate via

ωt
pwp = (1 − δ) · ωt−1

pwp + δ · ωpwp (13)

and
ωt

c f = 1 − ωt
pwp. (14)

The parameter δ, which represents the weight learning rate during the tracking process,
is predefined as 0.045. Therefore, the improved response is

response = ωt
c f · response_c f + ωt

pwp · response_pwp. (15)

3.2. Object Re-Detection Algorithm and Improvement
3.2.1. Moth Flame Optimization

As a population-based intelligent algorithm, the Moth Flame Optimization (MFO)
algorithm leverages the collective intelligence of individuals within the population to
effectively explore solution spaces. By incorporating a spiral search paradigm and adaptive
adjustment capabilities, MFO demonstrates remarkable robustness in tackling intricate
optimization challenges. This unique combination of features has led to its widespread
adoption across various domains, making it a valuable tool for addressing complex real-
world problems [32,33]. In this paper, the MFO algorithm is selected as the basis of the
tracking framework. When the tracking result is considered unreliable at some time, this
algorithm is used as the re-detection algorithm.

The moth M in the algorithm symbolizes the candidate solutions for the optimization
problem, while the flame F denotes the fitness of these candidates. During the positional
iteration of the MFO algorithm, the logarithmic spiral function is employed to simulate the
motion of moths.

Mi = Dk−1
i · ebτ · cos(2 πτ)+Fk−1

j (16)
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where Dk−1
i represents the Euclidean distance between the i-th moth and the i-th flame at

the k − 1 iteration, b is the constant for simulating the spiral motion of the moth logarithm,
and τ is the random number between [r, 1] with r defined as

r(k) = −1 − k
K

(17)

where K represents the maximum iteration count, and k denotes the current iteration count
with k = (1,2,. . .,K). The iterative process of the moth individual approaching the center
of the flame is depicted in Figure 3 as a spiral curve, with each blue dot representing the
position of the moth at each iteration.
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Meanwhile, to prevent the algorithm from being constrained by locally optimal solutions
during the generation process and ensure the efficiency of searching for the optimal solution,
the number of flames can be dynamically reduced by the number of iterations through

n f (k) = round(n − k
K
(n − 1)) (18)

where nf(k) is the maximum number of flames in the k-th iteration, and round(.) denotes
the integer operation.

3.2.2. Feature Template Extraction and Update

After obtaining the position information of the tracked object by fusing the response
results based on two-class filters in the Staple algorithm, this paper introduces an approach
that incorporates color name (CN) features, gray features, and the fast histogram of oriented
gradients (FHOG) features to extract feature information of tracked objects under diverse
tracking backgrounds. Additionally, during the tracking process, the algorithm may
contaminate the feature information of the currently tracked object due to factors such as
target occlusion. Therefore, this paper combines sparser updating and anomaly tracking
status detection schemes to ensure the acquisition of effective feature information under
different tracking statuses while maintaining the tracking speed, and the corresponding
formula is given as

ϕt =


αstaϕt + (1 − αsta)ϕt−1, mod(t, 4) = 0 ∩ Ra = 1
αanoϕt + (1 − αano)ϕt−1, mod(t, 4) = 0 ∩ Ra = 0

ϕt−1, else
(19)

and
αano =

γ1

1 + γ2 exp(γ3(
1
N

N
∑

i=1
Fit[Mi]− γ4))

(20)

where ϕt represents the feature information template updated at time t of the current frame,
αsta and αano represent the feature learning rate of the template when Staple algorithm and
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re-detection algorithm are respectively enabled, Fit[Mi] represents the fitness of the i-th
moth, N is the number of moth population, αsta is set to 0.03, and adjustment parameters γ1,
γ2, γ3, and γ4 are set to 0.04, 0.1, −45, and 0.75, respectively. In addition, the dimensions of
selected features and the fusion process are shown in Figure 4 below.
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3.2.3. Establish Fitness Function

During the tracking process in the MFO algorithm, the feature information of the
moth individuals’ positions during the iterative process is compared with the fused feature
template of previous tracking results to calculate the fitness value. This paper adopts
the cosine similarity method as the fitness calculation formula, measuring the difference
between two individuals by computing the cosine value of the angle between two vectors.

3.2.4. Trajectory-Guided Gaussian Initialization

In order to address the slow convergence and long-term trapping in local optima issues
that could arise from traditional random initialization methods in target tracking, this paper
proposes a trajectory-guided Gaussian initialization method that leverages the tracked
object’s positions in consecutive frames of a video sequence to predict the potential motion
trajectory of the target. This method utilizes a Gaussian distribution initialization approach
to guide the population to be located as close as possible to the predicted area of the target
during the initial stage, thereby shortening the time required for global optimization. The
moth Mt

i meets the multivariate Gaussian distribution, and the initialization formulas are
given as follows:

vt = Pt−1 − Pt−2v (21)

µt = Pt−1 + vt (22)

and

p(Mt
i ) =

exp
(
− (Mt

i−µt)
T
(Mt

i−µt)
2 ∑t

)
√

(2π)t
∣∣∣∑t

∣∣∣ . (23)

At time t, vt represents the model’s motion speed, Pt denotes the center point of the
tracking region obtained by the algorithm at time t, and ∑t and µt represent the covariance
matrix and mean of the initialized population, respectively. Additionally, the initial weight
values provided by the Gaussian distribution enable a few moths to spread across a larger
search space, which allows for the continued tracking of the target when encountering
unexpected changes such as occlusion or fast movement of the target.
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3.2.5. Population Iteration Velocity Dominated by Sex Pheromone Density

The parameter τ in Formula (16) determines the distance of the moth to the flame
after iteration, and the step size is determined solely by the iteration count k. Although
this method can guarantee a certain degree of global optimization performance in the early
stages and local optimization performance in the later stages, it can affect the optimization
efficiency of the algorithm. In real-life scenarios, female moths of reproductive age produce
and emit sex pheromones to attract male moths for mating. Varying concentrations of these
pheromones in the population result in distinct flight speeds and behavioral tendencies
among individual moths. Based on this phenomenon, this paper improves the process of
population location iteration in MFO algorithm. The new step size is influenced by the
fitness of the moth Fit[Mi] and can be calculated by

a1 = −2 +
1
N

N

∑
i=1

1
1 + e(−10·(1−Fit[Mi ])+5)

(24)

where γ is the random number between [a1, 1], Mi = Dk−1
i · ebγ · cos(2 πγ)+Fk−1

i , and N
is the number of moth population.

Algorithm 1 summarizes the main process of the proposed improving Staple frame-
work with re-detection algorithm.

Algorithm 1: The proposed improving re-detection Staple algorithm

Input: The initial frame t0 with the corresponding object ground truth bounding box B0 (x0, y0,
w0, h0);
Output: The predicted bounding box Bt (xt, yt, wt, ht) of the tth frame;

1 Initialize the correlation filter model and histogram model for the Staple algorithm;
2 for i = 1, 2, . . ., n do
3 Extract features of the current frame image to obtain responses from the relevant filter and

histogram classifier;
4 Determine the target position by blending response maps, calculate APCEt and Ft

max at the
current frame moment;

5 if APCEt > λAPCE
t−1

t−1
∑

i=1
APCEi ∩ Ft

max > λF
t−1

t−1
∑

i=1
(Fmax)i then

6 Extract CN, Fhog, and Gray features from the current frame image and merge them into a
42-dimensional feature vector;

7 Build the corresponding feature template at the current frame and establish the fitness
function using Equations (19) and (20);

8 Initialize the population in the MFO algorithm using Equation (23);
9 Iterate through the population to obtain the individual with the best fitness as the detected

target box;
10 Bt = BtMFO;
11 else
12 Select the position corresponding to the maximum value in the blended response map as the

detected target box;
13 Bt = BtStaple;
14 Update the correlation filter model and histogram model.

4. Experimental Results

To validate the proposed methodology, a comprehensive experiment was con-ducted,
including an assessment of overall performance, evaluation of video sequence attributes
performance, and visual evaluation of tracking results. The evaluation was carried out on
the widely recognized UAV vision datasets, UAV123 [34] and UAVDT [35], known for their
diverse scenarios and target categories. These datasets cover a wide range of scenarios and
tracking objects, enabling the evaluation of tracking algorithms across various sizes, appear-
ance changes, and motion patterns of low-altitude UAVs. As representative benchmarks in
the field, these datasets ensure a rigorous assessment of the proposed approach.
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4.1. Experiment Setup

From a perspective of comprehensively assessing the robustness and performance of
the proposed algorithm in UAV target tracking tasks, comparative experiments were con-
ducted between the proposed algorithm, the proposed re-detection Staple algorithm with-
out improvement strategy (Staple-MF) and mainstream tracking algorithms (EMCF [14],
IBRI [15], Staple [20], SAMF [21], MSCF [36], ARCF [37], SRDCF [38], AutoTrack [39],
CSR-DCF [40], CACF [41], ReCF [42], and DRCF [43]) in testing experiments on open
datasets. We used a testing platform with the following hardware specifications: 11th Gen
Intel(R) Core(TM) i7-11800H 2.30 GHz processor, RTX3050 GPU, and 16 GB of RAM. The
software platform was Matlab R2019a. For the purpose of balancing operational speed and
tracking precision in the target re-detection algorithm, the number of individual moths in
the population is set to 25 with a maximum iteration count of 25.

In this study, the evaluation criteria for the tracking effectiveness of various algorithms
on test datasets are based on two important indicators: success rate and accuracy.
1⃝ Precision: Center location error (CLE) represents the ratio of the distance between the

algorithm-calibrated coordinates of the target’s center point and the real target center
point coordinates in the frame, as calculated by the tracker, and is below a certain
threshold. In this paper, the threshold is set to 20. The CLE is defined as

CLE =

√
(xtrack − xtruth)

2 + (ytrack − ytruth)
2 (25)

where (xtrack, ytrack) represents the central point coordinates of the target calculated
by the tracker, and (xtruth, ytruth) represents the central point coordinates of the real
target area.

2⃝ Success rate: Defining the success rate of the target tracking task as the proportion
of frames in which the intersection over union (IoU) value between the predicted
bounding box, calculated by the tracker, and the ground truth bounding box exceeds
a specified threshold. The IoU per frame is given by

IoU =

∣∣∣∣ Itruth ∩ Itrack
Itruth ∪ Itrack

∣∣∣∣ (26)

where Itruth is the actual target region, and Itrack is the target region calculated by
the algorithm.

4.2. Quantitative Experimental Results
4.2.1. UAV123 Benchmark

The UAV123 dataset consists of 123 low-altitude UAV video sequences taken from
different angles and heights, covering a variety of tracking scenes and objects. In addition,
the video sequence in the dataset contains a total of 12 attributes, such as illumination
change, partial occlusion, etc., which provides valuable information for analyzing and
understanding the experimental results in the dataset.

(1) Overall evaluation

As illustrated in Figure 5, the outcomes of the proposed algorithm (OURS) compared
to other trackers in the OPE evaluation on the UAV123 dataset. The figure illustrates
that the precision and success rate of the algorithm proposed in this paper are 0.709 and
0.472, respectively, which has the best accuracy among all the comparisons. The algorithm
proposed in this paper is 2.0% better than the previous most advanced tracker AutoTrack
in terms of precision. Compared to the Staple tracker, OURS achieves performance im-
provements of 4.3% in precision and 2.7% in success rate, respectively. These results can
be attributed to the inclusion of the adaptive feature fusion strategy, which enhances the
utilization of dominant weights in the algorithm. Additionally, through the re-detection
mechanism for abnormal states, one can enable the improved MFO algorithm with Gaus-
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sian initialization based on target motion speed and dynamic adjustment of population
iteration rate, ensuring effective tracking in challenging scenarios.
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(2) Attribute evaluation

In order to measure the performance improvement of the proposed algorithm in differ-
ent scenarios and analyze the generalization ability of the trackers, we have also utilized the
UAV123 dataset to perform an attribute-based comparison between the proposed algorithm
and other trackers. The precision and success rate values for each attribute category, as well
as the corresponding tracker data, are presented in Figures 6 and 7. The figure demonstrates
that the improved algorithm we proposed exhibits a performance enhancement of more
than 10% across all 12 attributes when compared to the Staple tracker. The adaptive weight
fusion of features has enhanced the description capability of the target appearance to a
certain extent, enabling OURS to better maintain tracking stability when facing challenges
such as aspect ratio changes and viewpoint changes that cause deformation. Additionally,
in the presence of occlusions, the anomaly tracking status detection and recovery strategy
can maximize the avoidance of tracking drift.

4.2.2. UAVDT Benchmark

The UAVDT dataset consists of more than 100 video sequences composed of
80,000 images taken by the drone platform, including a variety of scenes, such as toll
booths, intersections, and main roads, with a focus on vehicle tracking in drone movement
scenarios. Compared with the UAV123 dataset, this dataset can realize the performance
comparison of eight attributes in different scenarios in single target tracking.

(1) Overall evaluation

Figure 8 presents the results of our proposed algorithm compared to other trackers
in the OPE evaluation on the UAVDT dataset. The precision and success rates were 0.
735 and 0.480, marking a 5.7% and 7.8% increase, respectively, compared to the Staple
baseline tracker. In terms of precision, OURS performance ranks among the top in com-
parison to various advanced trackers. As to success rate, OURS has an 8.0% performance
improvement compared with the Staple-CA algorithm. The incorporation of a re-detection
mechanism in the Staple algorithm enables the proposed algorithm to effectively address
environmental interference and target deformation. This is substantiated by the notable
improvements in target position prediction accuracy and scale estimation performance
observed in the dataset calculations.



Remote Sens. 2024, 16, 1768 13 of 18Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 6. Precision comparison of 12 a ributes for the UAV123 dataset. Figure 6. Precision comparison of 12 attributes for the UAV123 dataset.

(2) Overall evaluation

Figure 9 visually depicts a performance comparison of different trackers across the
eight attributes of UAVDT. As depicted in the figure, the calculations presented in this
article exhibit superior performance compared to the Staple baseline tracker across all
attributes. Furthermore, OURS achieves the highest precision and success rate rankings in
the SV, OM, IV, and OB attributes.

4.3. Qualitative Experimental Results

To empirically evaluate the efficacy of the proposed algorithm for UAV tracking in
diverse and complex scenarios, this study conducted qualitative analysis on four repre-
sentative video sequences from UAV123 and UAVDT datasets, encompassing maritime
vessels, nocturnal vehicular movement, fast-moving characters, and long-term vehicular
tracking. The categories of challenge attributes in various video sequences are provided in
Table 1, and the visualization results of the five trackers in the video sequence are shown in
Figure 10.
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Table 1. Specific attributes of selected datasets video sequence.

Video Sequence Attributes

boat9 SV, ARC, LR, POC, VC
wakeboard5 SV, ARC, LR, FM, POC, IV, VC, CM

S0801 BC, CM, OM, SV, LO
S1201 BC, CM, OM, SV, LO, IV
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In Seq1, the primary challenge arises from the tracking difficulties induced by the
drones’ long-distance shooting. As the target kept moving away, the MSCF algorithm
experienced scale drift at 650 frames. Furthermore, at 1220 frames, Staple-CA failed to
adapt to the scale change over a long time, leading to tracking drift. OURS, AtuoTrack, and
EMCF could realize the long-term tracking of tracking targets with ever-changing scales,
but only the proposed algorithm could maintain high tracking performance continuously.
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In Seq2, the main challenges are fast-moving targets and light interference. At
425 frames, the MSCF and EMCF algorithms failed to distinguish between waves and
people. At 660 frames, in addition to OURS, only Staple-CA could continuously track the
target, but the Staple-CA algorithm could not calculate the scale transformation of the
target more accurately.

In Seq3, the main challenges are background clutter and complete occlusion. As can
be seen from frames 28 and 60, background interference made the tracking boxes of the
Staple-CA, AutoTrack, and EMCF algorithms barely move, making it impossible to track
the vehicle. In frame 222, in addition to our proposed algorithm, the rest of the trackers
were unable to recover tracking when the tracking object reappeared.

Seq4 shows a low altitude perspective for the UAV to track the video of car movement
and turning. The primary challenges encountered included tracking occlusion and scale
changes. As depicted in the figure, all trackers demonstrated stable tracking in the presence
of partial occlusion 100 frames prior and with similar targets at 1454 frames. However,
at 1518 frames, AutoTrack, MSCF, and EMCF could only track less of the target due to
camera rotation. Notably, only the algorithm proposed in this study closely approximated
the actual target tracking framework when the tail reappeared at 1615 frames.

5. Conclusions

In this work, a novel and high-precision method is introduced for UAV target tracking.
This approach enhances the existing Staple algorithm by implementing an adaptive feature
fusion strategy to ensure accurate tracking in complex environments. Additionally, two
strategies are proposed, namely trajectory-guided Gaussian initialization and population
iteration velocity dominated by sex pheromone density, which improve the overall perfor-
mance of the enhanced MFO tracking framework. To address abnormal tracking scenarios,
the enhanced MFO is incorporated as a re-detection algorithm for stable tracking. Through
extensive experimental studies, the effectiveness of our proposed algorithm is confirmed
with high tracking accuracy and reliable discrimination of target scales in complex scenes.
Furthermore, strong adaptability is demonstrated in major remote tracking challenges,
such as motion blur and complex backgrounds. In the future research, the impact of remote
tracking will be investigated with more comprehensive adverse weather conditions, such
as rain and fog, as well as their impacts on the quality of tracking images.
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