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Abstract: The conventional back projection (BP) algorithm is an accurate time-domain algorithm
widely used for multiple-input multiple-output (MIMO) radar imaging, owing to its independence
of antenna array configuration. The time-delay curve correction back projection (TCC-BP) algorithm
greatly reduces the computational complexity of BP but suffers from spatial-variant correction, side-
lobe interference and background noise due to the use of coherent superposition of echo time-delay
curves. In this article, a residual attention U-Net-based (RAU-Net) MIMO radar imaging method that
adapts complex noisy scenarios with spatial variation and sidelobe interference is proposed. On the
basis of the U-Net underlying structure, we develop the RAU-Net with two modules: a residual unit
with identity mapping and a dual attention module to obtain resolution spatial-variant correction
and denoising on real-world MIMO radar images. The network realizes MIMO radar imaging based
on the TCC-BP algorithm and substantially reduces the total computational time of the BP algorithm
on the basis of improving the imaging resolution and denoising capability. Extensive experiments
on the simulated and measured data demonstrate that the proposed method outperforms both the
traditional methods and learning-imaging methods in terms of spatial-variant correction, denoising
and computational complexity.

Keywords: MIMO radar imaging; TCC-BP; RAU-Net; spatial-variant correction; denoising

1. Introduction

Multiple-input multiple-output (MIMO) radar has the advantages of real-time and
high-resolution imaging owing to its multi-channel configuration [1,2]. MIMO radar can
form far more observation channels than the number of actual physical arrays through the
waveform diversity [3] and virtual aperture technology [4], and the multiple observation
channels are used to collect echo data in the way of spatial parallel transceiver combi-
nations, so that it has the ability of real-time imaging of snapshot without target motion
compensation, ensuring MIMO radar imaging a wide range of potential applications in the
fields of security inspection, nondestructive testing, urban combat, and airborne high-speed
target detection [5].

MIMO radar imaging technology can be broadly categorized into two kinds, namely,
synthetic-aperture imaging technology and real-aperture imaging technology. Typical
representatives of the former one are synthetic-aperture radar (SAR) and inverse synthetic-
aperture radar (ISAR) imaging, such as two-dimensional snapshot imaging of airborne
targets combined with MIMO radar and ISAR technology [6] and airborne radar for three-
dimensional imaging and nadir observation (ARTINO) [7] imaging combined with MIMO
radar and SAR technology. These combinations can obtain three-dimensional spatial
distribution information of the target through the movement of the platform. However,
the conventional frequency-domain SAR and ISAR imaging algorithms have difficulty
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in achieving azimuth focusing on both the transmitting and receiving apertures simulta-
neously, and fast Fourier transform (FFT)-based methods cannot perform MIMO radar
imaging in near-field situations that do not meet the assumption of plane waves. Com-
paratively, due to its convenience and robust imaging capability regardless of the MIMO
array configuration, real-aperture imaging technology has become the preferred processing
method for MIMO radar imaging.

The back projection (BP) algorithm is a widely used real-aperture imaging method
which is not limited by the array configuration and imaging scenarios of MIMO radar. The
early application in the field of real-aperture imaging is the rectangular format algorithm
(RFA) combined with the fast Fourier transform to improve the computational efficiency in
radar imaging. With the development of synthetic-aperture technology, the polar format
algorithm (PFA) [8] and range-migration algorithm (RMA, or ω-K) [9] appeared one after
another. However, these frequency-domain algorithms all apply the fast Fourier trans-
form, Abel transform and Stolt interpolation, which makes them unable to obtain better
performance in the scenarios of nonlinear target motion and nonlinear configuration of
MIMO radar arrays [10]. Meanwhile, these frequency-domain algorithms have some other
drawbacks: (1) they require a large amount of computer memory to store and compute 2D
frequency-domain transforms, and (2) they require a large number of time-domain comple-
mentary zeros before Stolt interpolation of data with finite aperture [11]. The BP algorithm,
on the other hand, as a time-domain imaging algorithm, has been widely adopted due to
its simplicity of approach and its applicability to various imaging scenarios and radar array
configurations. The BP algorithm was introduced to MIMO radar imaging in 2010 [12],
in which a two-dimensional imaging model of MIMO radar is established and its spatial
sampling capability is analyzed from the concept of spatial convolution. Ref. [13] proposed
an improved time-delay curve correction back projection algorithm (TCC-BP) in 2013,
which significantly reduces the computational burden of the BP algorithm in comparative
experiments. However, these algorithms suffer from the spatial variation, sidelobe interfer-
ence and background noise due to the coherent superposition of signals for imaging, which
leads to its failing to satisfy the increasing demand for MIMO radar imaging resolution.
Scholars mainly explore two aspects to improve the imaging quality of MIMO radar. One is
through the waveform design technology, the design of the penalty function and the beam
shaping technology to reduce the MIMO radar beam width in range and azimuth, but this
way of reducing the sidelobes at the same time reduces the detection ability of the MIMO
radar and often needs to adjust the array antenna arrangement [14,15]; the other is through
the signal processing way to improve the imaging method, with phase compensation to
suppress the grating and the sidelobes or with the transmitter–receiver array’s beam zero
drift to offset the grating lobes, and this method can significantly attenuate the sidelobes’
energy, but there will still be part of the energy leakage, resulting in the deformation of the
point spread function, and the operation is more cumbersome [16,17].

In recent years, the emergence of semantic segmentation techniques [18,19] in deep
learning provides new ideas for image processing in the field of computer vision. The
crucial difficulty lies in the need to accurately classify every pixel point in an image. To
realize the end-to-end, pixel-to-pixel training and learning capability of the traditional
convolutional neural networks (CNNs), the fully convolutional neural network (FCN)
was born [20]. The encoder module of the FCN model converts the fully connected layer
in traditional CNN into the combined form of convolutional layer and nonlinear up-
sampling module, ensuring its advantage of supporting any size of image inputs and
outputs. SegNet [21] is a typical FCN model with encoder–decoder architecture, and its
biggest improvement is the proposed structure of unpooling, which applies the indexing of
max-pooling used in the encoder, avoiding the rough eight-fold upsampling in the FCN
and helping to maintain the integrity of the high-frequency information of the images. The
U-Net model [22] has similar architecture and usage as the FCN model and the SegNet
model, but creatively introduces a splicing module that splices the feature maps of each
stage encoder onto the upsampled feature maps of each corresponding decoder to form
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a U-shaped structure. The design allows the decoder at each stage to learn the detailed
information lost in the encoder by max-pooling. These advantages help to reduce the
data volume requirement for training the U-Net network and improve the segmentation
accuracy requirement, which makes U-net have a wide range of applications for image
semantic segmentation problems in some fields with small-sample characteristics and high
accuracy requirements.

The U-Net-shaped networks are widely improved and applied in the field of remote
sensing. With the widespread use of deep residual networks [23], a segmentation neu-
ral network for road region extraction is proposed in [24] by combining a bit of residual
learning and the U-Net model. The network is constructed using residual units, which
simplifies deep network training while facilitating information propagation by enriching
skip connections, and fewer training parameters can be applied to improve network perfor-
mance. Based on the U-Net framework structure, the channel attention mechanism and
spatial attention mechanism [25] are introduced to improve the utilization of spectral and
spatial information, and the residual dense connectivity block is applied to enhance the
feature reuse and information flow transfer in [26], the extracted roads in experiments
are closer to the ground reality. On the basis of dual-attention mechanism U-Net, a re-
mote sensing image improvement network is proposed to provide a generic neural for
remote sensing image super-resolution, colorization, simultaneous SR colorization, and
pan-sharpening network [27]. Refs. [28,29] combined dual attention mechanism U-Net
with generative adversarial network to achieve ISAR super-resolution [30] and end-to-end
resolution enhancement. Refs. [31,32] also applied the attention mechanism and image se-
mantic segmentation algorithms to airborne target recognition and maritime SAR imaging
recognition, both of which achieved good results on measured data. The U-Net framework
also has a wide range of applications in other scenarios of radar, such as multistation
cooperative radar target recognition [33], marine target detection [34], satellite-borne SAR
images ship detection [35], urban building imaging [36], and so on [37,38].

The successful applications of semantic segmentation technology based on the U-Net
framework in the fields of road extraction, super-resolution and enhanced imaging of
remote sensing images provide ideas for solving the imaging problems in MIMO radar. In
this paper, based on the U-Net network architecture, we combine the residual unit and dual-
attention mechanism module with the U-Net framework and propose a RAU-Net-based
MIMO radar imaging method for spatial-variant correction and denoising. The specific
contributions of this paper are as follows:

(1) To the best of our knowledge, this is the first RAU-Net-based spatial-variant correc-
tion and denoising method in the community of MIMO radar imaging. The method
improves the convolution layer of U-Net with residual units and improves the con-
catenation of U-Net with dual-attention modules and further explores and extends the
capabilities and application scenarios of the U-Net framework and solves the problem
of spatial-variant correction and denoising for MIMO radar imaging;

(2) Combined with the MIMO radar imaging scenario, an improved loss function based
on the nuclear norm is proposed, which enhances the network’s ability of focusing for
MIMO radar point-spread function and denoising in MIMO radar images;

(3) Through the construction of the training datasets, after training on the simulation
datasets, the network can achieve a good generalization ability to the real measure-
ment data of outdoor complex targets under even very low SNR conditions, and the
network’s ability is verified by several rounds of real-world measured experiments;

(4) The network realizes MIMO radar imaging based on the TCC-BP algorithm, which
reduces the operational time greatly compared to the traditional BP algorithm on the
basis of improving the imaging resolution and denoising capability, ensuring it a wide
range of application prospects in the field of real-aperture MIMO radar imaging.

The rest of this article is organized as follows. In Section 2, the fundamentals of
MIMO radar are introduced. Section 3 presents the proposed RAU-Net-based MIMO
radar imaging method in detail and gives the network loss function. Section 4 describes
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the details of the data acquisition and testing strategy. In Section 5, various comparative
experiments are carried out to evaluate the performance of the proposed method, and
the ablation experiments are deployed to verify the proposed blocks. Section 6 draws
a conclusion.

2. Fundamentals of MIMO Radar Imaging
2.1. MIMO Radar Imaging Model

As showed in Figure 1, an eight-transmitter, eight-receiver MIMO radar is adopted in
this work to for multi-target imaging. The m-th transmitting array element is Xt,m(xt,m, 0),
in which xt,m is the x-axis coordinate, and the n-th receiving array element is Xr,n(xr,n, 0),
in which xr,n is the x-axis coordinate. The q-th target in the region of interest is expressed as
Pq(xq, yq). The echo data expression of the MIMO radar is a function of the position variable
xt,m and xr,n. For two-dimensional imaging, the function form of the array element n and
time t need to be compressed through matched filtering in range and azimuth direction.
Both the signal envelope and carrier frequency phase terms are related to the variable xt,m
and xr,n.

Figure 1. Imaging geometry of MIMO array.

In order to facilitate the two-dimensional imaging of MIMO radar, the transmitting
and receiving arrays of MIMO radar are arranged on the x-axis according to the schematic
diagram in Figure 1. The n-th receiving element is denoted as Xr,n(xr,n, 0), which is
illustrated in the figure by a blue circular icon, and xr,nis the coordinate position of the
receiving element in the x-axis. Similarly, the m-th transmitting element is denoted as
Xt,m(xt,m, 0), which is illustrated in the figure by a green triangular icon, and xt,m is the
coordinate position of the transmitting element in the x-axis. The q-th target is denoted
as Pq(xq, yq) and is illustrated in the figure with a triangular pyramid icon, (xq, yq) is
the position of the target in the 2D plane. A signal transmitting and receiving path is
shown with a red arrow line in the figure. Similarly, the green triangular icon in the figure
represents the receiving array element, denoted as xrn.The position coordinates of the
transmitting and receiving elements can be represented as{

Xr,n(xr,n, 0)
Xt,m(xt,m, 0)

(1)

The distance between the transmitting and receiving array elements and the target
scattering point can be expressed as
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R(q)
t,m =

√(
xq − xt,m

)2
+ y2

q

R(q)
r,n =

√(
xq − xr,n

)2
+ y2

q

(2)

The propagation delay of the transmitted signal from the transmitting array element
m through the scattering center q to the receiving array element n can be expressed as

τ
(q)
m,n =

R(q)
t,m + R(q)

r,n

c
=

R(q)
m,n

c
(3)

In Equation (1), R(q)
t,m(t) is the distance from the m-th transmitting element to the q-th

scattering center, R(q)
r,n (t) is the distance from the q-th scattering center to the n-th receiving

array element, R(q)
m,n represents the two-way propagation distance and c is the velocity of

light. Based on Equation (3), it can be concluded that the echoed signal corresponding to the
MIMO radar linear array model is Equation (4), where σq means the scattering coefficient
of the q-th target, and g(·) is an impulse function in the case of ideal orthogonality of the
echoes of each channel and is generally regarded as an auto-correlation function with low
sidelobes in practical applications.

e(xt,m, xr,n, t) =
Q

∑
q=1

σqg
(

t − τ
(q)
m,n

)
× exp

(
j2π fcτ

(q)
m,n

)
(4)

Figure 2 shows the schematic diagram of the designed MIMO array distribution. The
transmitting array element spacing is designed to be dt = 0.1133 m, while the receiving
array elements spacing is dr = 0.0283 m. The composed MIMO radar aperture is L = 1 m.
According to previous research work [5], this array-design method can bring about great
reduction in the total number of antenna elements and improve aperture efficiency while
maintaining the aperture size. MIMO radars utilizing such arrays have the advantages of
high gain, low sidelobes and good imaging and focusing performance [5].

-0.6 -0.4 -0.2 0 0.2 0.4

Azimuth (m)

-0.05

0

0.05

R
an

g
e 

(m
)

Transmitting Antenna

Receiving Antenna

Figure 2. Schematic diagram of MIMO array distribution.

2.2. Standard BP Algorithm

The BP algorithm achieves high-resolution imaging through coherent superposition of
echo data in the time domain [12]. Assuming the imaging area is divided into K × L pixels,
yk(k = 1, 2, . . . , K) and xl(l = 1, 2, . . . , L) represent the coordinate values of pixels in the
distance and azimuth directions, respectively. d(k,l)

t,m and d(k,l)
r,n represent the distance from

the pixel point (xl , yk) to the m-th transmitting element and the n-th receiving element, and
the two-way delay between the pixel point (xl , yk) and the combination of the transmitting
and receiving antenna positions (xt,m, xr,n) is

τ
(k,l)
m,n =

d(k,l)
t,m + d(k,l)

r,n

c
=

√
(xl − xt,m)

2 + y2
k +

√
(xl − xr,n)

2 + y2
k

c
(5)

Equation (4) is the MIMO radar echoed signal after range compression, and the
standard BP algorithm needs to focus it in the azimuth direction. The focusing results of
pixel points (xl , yk) in the imaging area can be expressed as
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IBP(xl , yk) =
M

∑
m=1

N

∑
n=1

Q

∑
q=1

σqg
(

τ
(k,l)
m,n − τ

(q)
m,n

)
× exp

[
j2π fc

(
τ
(k,l)
m,n − τ

(q)
m,n

)]
(6)

By traversing the above focusing process at each point in the imaging area, the standard
BP imaging results of the MIMO radar array can be obtained.

2.3. TCC-BP Algorithm

Compared with the standard BP algorithm, the TCC-BP algorithm avoids the distance-
wise interpolation operation and effectively reduces the computational effort of imaging
processing [13]. The method corrects the target time-delay curve to a linear form by distance
migration correction, which is performed by making an FFT of Equation (4) with respect to
time t, multiplying it by the phase correction term, and then performing an inverse fast
Fourier transform (IFFT). The phase correction term can be expressed as

Ψ(xt,m, xr,n) = exp(j2π f τ
(q)
m,n) (7)

After correction of the time-delay curve, the echo signal form of Equation (4) becomes

e′(xt,m, xr,n, t) =
Q

∑
q=1

σqg(t −
2Rq

c
)× exp(−j2π fcτ

(q)
m,n) (8)

The target time-delay correction in Equation (8) is changed as 2Rq/c instead of τ
(q)
m,n,

which is only related to the coordinate position of the target and has no variation with
respect to the distribution of the transceiver array elements in a linear form.

After time-delay curve correction, the imaging area only needs to be divided in the
azimuthal direction. Assuming that the sampling point of Equation (8) in the distance
direction is expressed as tj(j = 1, 2, . . . , J) , then the imaging area can be divided into J × L
pixel points, and the coordinate values in the distance direction and azimuthal direction
of the pixel points are expressed as rj(j = 1, 2, . . . , J) and xl(l = 1, 2, . . . , L), respectively,
where rj satisfies tj = 2rj/c. The two-way time delay between the pixel (xj, rj) and any
combination of transmitting and receiving array positions (xt,m, xr,n) can be calculated as

τ
(j,l)
m,n =

√
r2

j + x2
t,m − 2xt,mxl +

√
r2

j + x2
r,n − 2xr,nxl

c
(9)

Combining the above three equations, the final coherent superposition imaging result
of the TCC-BP algorithm can be expressed as

ITCC−BP(xl , rj) =
M

∑
m=1

N

∑
n=1

e′(xt,m, xr,n, tj)× exp(j2π fcτ
(j,l)
m,n ) (10)

Since the distance coordinates of the pixel points in the imaging area corresponding
to the time sampling points of the distance direction of the target data, no interpolation is
required for the distance upward after the time curve correction, and the corresponding
distance sampling values are selected for phase correction, and the focus imaging can be
completed by direct coherent superposition along the transceiver array aperture.

2.4. Comparative Analysis of the Algorithms

The computational cost of coherent superposition between the standard BP algorithm
and TCC-BP algorithm is about the same in azimuth. But in range processing, the TCC-BP
algorithm avoids the interpolation operation in the standard BP algorithm by correcting
the delay curve, which results in the main reduction in computational cost.

The range processing of the standard BP algorithm starts with interpolation accord-
ing to Equation (10), and the number of operations for the interpolation operation is
M × N × K × L. The delay curve correction in the TCC-BP algorithm is accomplished by
FFT, phase multiplication and IFFT, and the ratio of the operations of the standard BP
algorithm to that of the TCC-BP algorithm can be approximated as [13]
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η ≈ ξL
log2 J

(11)

In Equation (11), ξ is the interpolation factor, which is related to the interpolation
method. Since J exists in logarithmic form, compared to the changing speed of η with
respect to L, the change of e with respect to J is slower and it usually satisfies J ≪ 2L, i.e.,
η ≫ 1, so the TCC-BP algorithm significantly reduces the amount of operations compared
to the standard BP algorithm.

The TCC-BP algorithm uses two approximations taken in Equation (8), one is ignoring
the higher order derivatives of the distance expansion, and the other is replacing the targets
with an approximation of the targets’ center point in the process of calculating the distance,
so there will be a range correction error after performing the time-delay curve correction.

3. Proposed RAU-Net-Based MIMO Radar Imaging Method

The MIMO radar TCC-BP imaging algorithm can reduce the computation greatly
compared to the traditional BP algorithm, but it also results in a distance correction error
that affects the imaging quality. In this section, the proposed RAU-Net-based MIMO
radar imaging method will be introduced to eliminate the spatial variation and sidelobe
interference and remove the background noise.

This chapter is organized into four parts, the U-Net model architecture, residual
connection block, dual attention module and the proposed RAU-Net-based MIMO radar
imaging method.

3.1. U-Net Model Architecture

In this work, the U-Net model is chosen as the basic architecture in our approach. A
typical U-Net model consists of a compression path and an expansion path, corresponding
to the encoder and decoder in SegNet, respectively. The compression path consists of four
blocks, each of which uses two effective convolutions and one max-pooling downsampling,
and the input image will be downsampled by 24 times after passing through the com-
pression path to obtain the feature map. The expansion path also consists of four blocks,
and the feature map of the previous layer is up-sampled by the inverse convolution at the
beginning of each block, and then up-sampled by the up-sampling of the previous layer,
and then up-sampled by the up-sampling of the previous layer, and then up-sampled by
the inverse convolution. Each block starts by up-sampling the previous feature map by
inverse convolution, and then performs splicing operation with the corresponding module
of the compression path, and finally obtains the output results with the same size as the
input images.

U-Net networks have excellent performance in the field of image segmentation due
to their unique design. In order to apply the U-Net model to the MIMO radar imaging
task, we translate the objectives of feature extraction and image segmentation in the U-Net
network into radar imaging results. By extracting and mapping the target features through
the compression and expansion paths of the U-Net model, the real target information is
extracted and segmented from the original imaging results that contain a lot of noise and
clutter, thus forming high-quality radar imaging results.

In order to further adapt to the MIMO radar imaging characteristics, and enhance the
imaging quality of BP series algorithms, we introduce residual connection block and dual
attention module to improve the U-Net model.

3.2. Residual Connection Block

The residual unit and identity mapping used in this work are shown in Figure 3. As
the general form of residual units expressed in Equation (12), Xl and Xl+1 are input and
output of the l-th unit, and F is a residual function and f is a ReLU function.

Yl = h(Xl) + F(Xl , Wl), Xl+1 = f (Yl), (12)
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Particularly, the residual unit designed in this work chooses an identity mapping
h(Xl) = Xl as suggested in [39]. The identity mapping constructs a direct path for propa-
gating information through the network, which makes the training of our U-Net model in
general become easier. So the residual unit can be expressed by Equation (13).

Xl+1 = F(Xl) + Xl (13)

Figure 3. Residual unit and identity mapping used in the proposed RAU-Net.

To better suit the U-Net model architecture, each residual unit contains two 3 × 3
convolutions applied repeatedly, each followed by a rectified linear unit (ReLU) and a 2 × 2
max-pooling operation. In addition to this, we also add a batch normalization (BN) [40]
unit in front of each round of convolution, which is used to avoid internal covariate shift.
This allows the model to apply a higher learning rate as well as avoid the use of dropout to
some extent through regularization.

3.3. Dual Attention Module

The ground-based MIMO radars and ISAR generally have large imaging scenarios in
which there are often several regions of interest and aggregated targets. In this case, it is
important to add an attention mechanism to the learning-imaging network that allows the
network to focus its limited learning resources on the region where the target is located,
rather than the vast background, clutter, or other uninteresting targets. As for the processing
of radar imaging data, it is also necessary to add a multi-channel attention mechanism,
which will help our model synthesizing the multi-channel information to increase and
improve the fault tolerance of the attention mechanism. So, as shown in Figure 4, we
explore the addition of a dual-attention mechanism, i.e., the spatial attention module (SA) in
Figure 4a and channel attention module (CA) in Figure 4b, to the U-Net model architecture
to enhance the convergence speed of the model and the focusing of the imaging results.

As shown in Figure 4, for better integration into the U-Net model architecture, both
the CA module and SA module have two inputs, Xl and Xl+1. Xl is the output of l-
th compression level through concatenation, and Xl+1 is the gating signal from the last
extension level. With this design, the dual-attention module inherits the advantages
of the concatenation operation in U-Net, which enhances the model’s ability to focus
on fine features while applying coarse features to correct them to avoid losing feature
information. It can be noticed that the sigmoid activation function was chosen over softmax
for both models, the reason being that the sigmoid activation function has better training
convergence, whereas the continuous use of the softmax activation function to normalize
the attention coefficients produces too sparse activation at the output.
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Figure 4. Schematic of the additive dual attention gate used in the proposed RAU-Net. (a) Spatial
attention module. (b) Channel attention module.

3.4. The Proposed RAU-Net-Based MIMO Radar Imaging Method

Figure 5 illustrates the overall structure of proposed RAU-Net-based MIMO radar
imaging method. The model as a whole draws on the structure of the U-Net model to
compress and expand the paths, and on this basis, for the MIMO radar imaging scenario, the
residual unit and dual attention module are introduced to improve the model. Specifically,
(1) the two rounds of convolution in each layer are replaced by a residual unit, which
applies the idea of regularization to avoid the dropout and improve the learning efficiency
of the model; (2) the dual attention module is added to the concatenation between the
two paths, which uses the SA and CA modules to improve the convergence speed and
learning efficiency of the model; (3) adding the dual attention module in the concatenation
between two paths and cascading the SA and CA modules comprehensively improve the
convergence speed of the model learning and enhance the network’s focus on the region
of interest.

As can be seen through the model structure diagram in Figure 5, the original image
generated by the TCC-BP algorithm is firstly input into the network, and the fine features of
the image are gradually learned through the compression path consisting of residual units,
while the image information is gradually recovered through the expansion path. In the
process of the image passing through the expansion path, each layer is connected with the
original information of the image retained by the compression path through concatenation
and dual attention module, avoiding the loss of the original information while further
enhancing the information of the region of interest. Finally, the network-enhanced imaging
results are output after convolution and sigmoid activation function. It is clear to see
that the output imaging results have significant improvement effects in target separation,
removal of background noise and spatial resolution correction.

The input and output of the model used in this paper are in the form of data matrices,
but in order to more intuitively demonstrate the MIMO radar imaging resolution null effect,
the imaging results in the paper are temporarily used to show the sector, and the operation
process is to plot the model output results in the sector area according to the distance from
the radar array and the corresponding compression or expansion. The model input and
output size is a 512 × 512 image down each layer of the contraction, and the expansion
path image size is halved in the order of 2562, 1282, 642, 322 due to the model of each layer
in two convolutions, so the image is input to the edge of the expansion of 22 to ensure that
each layer of the output image size is the same.
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Figure 5. The architecture of the proposed RAU-Net.

4. Processing Details

In this section, we will specify the operational details of the model, such as data
generation methods, model training and model testing strategies.

4.1. Data Acquisition

Table 1 demonstrates the specific parameters for model training. It is widely known
that one of the advantages of the U-Net model is the use of less data to achieve model
training and convergence. In our model, 500 pairs of training data are selected; the raw data
are poor quality imaging results generated by MIMO radar through the TCC-BP algorithm,
while the labeled data are generated by selecting the BP algorithm in which the scattering
function of the better imaging quality locations is convolved with the imaging locations
one by one. In order to improve the noise-resistant performance of the model, 250 sets
of data in the datasets were generated under noise-free conditions, and the other 250 sets
of data were generated under the condition of −20 dB SNR, and the data were randomly
selected in the training datasets to form a batch during the training process. Each data pair
is imaged by the MIMO radar on 10-point targets with randomly distributed positions.

Table 1. Training parameters of proposed RAU-Net.

Parameters Value

Noise-free data volume 250
−20 dB SNR data volume 250

Image size 512 × 512
Number of simulation targets 10

Batch size 50
Learning rate 0.0001

CPU Intel Core i7-12700
GPU NVIDIA v100 32 GB

Number of iterations for convergence 9500
Training time for convergence 118 min 56 s
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During the training process, the training volume of each batch is set to 50 and the
learning rate is set to 0.0001 by comparing a large number of training results.The batch
size should match the size of the training set, and the learning rate should be determined
according to the actual convergence effect of the model. A learning rate that is too small
will result in a model that converges too slowly and is prone to generating an overfitted
model. A learning rate that is too large will cause the model to converge too quickly, but
the model’s ability will not meet expectations.

4.2. Loss Function

Since the proposed model is trained in a supervised manner, the loss function is
evaluated using the full reference image evaluation method. The body of the loss function
is the mean square error (MSE), which can be calculated by Equation (14), where Ii,j is the
pixel value of the image at position (i, j).

LMSE =
1

MN

M

∑
i=1

N

∑
j=1

(Imask
i,j − Iprediction

i,j )2 (14)

In addition to the MSE loss, we select the absolute loss L1 to further reduce the error
between the masks and prediction images to obtain a better performance. The L1 loss can
be given as Equation (15).

L1 =
1

MN

M

∑
m=1

N

∑
n=1

||Imask
i,j − Iprediction

i,j ||1 (15)

In ground-based MIMO radar and ISAR imaging scenarios, targets in the region of
interest are generally sparse with respect to the entire imaging scene, and also the error
matrix should have low rank after removing background noise. So, adding nuclear norm L∗
as the low-rank constraint can enhance the ability of the network to remove the background
noise, and L∗ can be calculated with Equation (16) [41].

L∗ = ||Iprediction||∗ (16)

In the paper [41] , the nuclear norm is defined. If a matrix has rank r, then it has
exactly r nonzero singular values so that the rank function in the equation below is simply
the number of non-vanishing singular values. The sum of the singular values is called the
nuclear norm,

||Iprediction||∗ =
n

∑
k=1

σk(Iprediction) (17)

where the σk(Iprediction) denotes the k-th largest singular value of Iprediction.
In summary, the loss function of the model can be synthesized and expressed in the

form of Equation (18). In this work, the scaling factor λ of the L1 is set as λ = 5−3 [28], and
the scaling factor η of the LNuclear is set as η = 1−2.

LG = LMSE + λL1 + ηLNuclear (18)

4.3. Evaluation Parameter Indicators

In order to quantitatively assess the performance level of the proposed method, three
evaluation metrics recognized in the field of image processing are chosen in this chapter to
evaluate and score the imaging results: Image Entropy (IE), Image Average Gradient (IAG),
and Image Contrast (IC). Since there is no ground truth result for the radar imaging process
of the target, this article chooses three non-reference evaluation indexes and combines the
scores of the three evaluation indexes to make a comprehensive judgment on the effect of
the imaging algorithm.

IE is the statistical form of image features that reflects the amount of average infor-
mation in an image. In this paper, the two-dimensional entropy of an image is chosen to
characterize the spatial features of the image grayscale distribution. Generally speaking,
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the larger the image entropy is in the absence of noise, the larger the amount of information
contained in the image is, i.e., the better the quality of imaging is. The two-dimensional
entropy of an image can be calculated with Equation (19), where Pij is the probability of
occurrence of a pixel point of a particular value:

IE = −
M

∑
i=0

N

∑
j=0

Pij log2 Pij (19)

IAG is the rate of change of the grayscale on both sides of the boundary or shadow
line of an image, which reflects the rate of change of the contrast of the tiny details of the
image, i.e., the rate of change of the density of the image in the multidimensional direction,
and it can be used to characterize the relative sharpness of the image. The average image
gradient can be calculated with Equation (20), where I(i, j) is the pixel value of the image
at position (i, j). In order to better correlate and reflect the enhancement and optimization
of the proposed method on the target imaging results, small gradient variations due to
background noise or imaging errors are eliminated during the calculation of the IAG. The
gradient threshold is set to 0.85 through a large number of experimental statistics, and
the real IAG calculation results are enlarged by 104 times to facilitate the comparison in
the tables:

IAG = 1
(M−1)(N−1) ∑M−1

i=1 ∑N−1
j=1

√
(I(i,j)−I(i+1,j))2+(I(i,j)−I(i,j+1))2

2 × 104 (20)

IC is the measure of the difference between the different brightness levels between the
light and dark areas in an image. Generally speaking, the higher the contrast is, the more
vivid and rich colors the displayed image has. IC can be calculated by the Equation (21),
where H is the histogram of input image data. There are various ways of calculating
IC in the research of a large number of scholars in the field of computer vision, and we
chose the one that is most applicable to the MIMO radar imaging scenario in this paper.
Meanwhile, the real calculation results of IC are enlarged by 103 times in order to facilitate
the comparison display in the tables:

IC =

√√√√ 1
N − 1

N

∑
i=1

|Hi −
1
N

N

∑
i=1

Hi|2 × 103, H = imhist(Image) (21)

Time(s) means the computational time of the comparative algorithms carried on
our computer with a CPU of Intel Core i7-12700. As the learning-imaging methods are
manipulated on the TCC-BP algorithm, the computational time is a combination format of
the TCC-BP algorithm and the relevant learning-imaging method with a ‘+’ between.

5. Experimental Results and Analysis

In this section, we compare the proposed method with three traditional methods and
two learning-imaging methods through simulation data experiments and measured data
experiments in outdoor scenes, respectively. The results of the comparison experiments
prove that the proposed method has obvious advantages in space-variant correction and
image denoising. In addition, to illustrate the effectiveness and contribution of the im-
proved parts of the proposed method to improve the imaging performance, we added an
ablation experiment at the end.

5.1. Experiments on Simulated Data

To ensure the reference and validity, the simulation experiments adopt the same MIMO
radar parameters with the measured experiments as shown in Table 2. Assuming that
the radar line-of-sight direction is 0◦, three point scattering targets are set at (45◦, 50 m),
(0◦, 75 m) and (45◦, 100 m) for imaging. Six methods are chosen for the simulation, which
are the traditional BP method [12], the TCC-BP method [13], the SVA method [16], the
U-Net-based imaging method [22], the GAN-based imaging method [28], and the method
proposed in this paper. Additionally, to reduce the sidelobes in the images generated by the
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BP method and the TCC-BP method, their Hanning-windowed versions are also compared.

Table 2. MIMO radar system parameters.

Parameters Value

Start frequency 4.925 GHz
Stop frequency 5.075 GHz

Number of frequencies 481
Number of transmitters/receivers 8/8

Range resolution 1 m
Azimuth resolution 0.03 rad
Length of aperture 1 m

5.1.1. Experiment 1: Simulated Targets without Noise

Figure 6 shows the simulated target imaging results under noise-free conditions and
Table 3 shows the corresponding performance evaluation indexes. From the imaging results
and evaluation indexes, we can find that:

(1) The traditional BP algorithm in Figure 6a has a high energy aggregation capacity and
is conducive to imaging point-scattered targets but has high-level sidelobes;

(2) By using the Hanning windows, the image sidelobes of the BP algorithm in Figure 6c
can be reduced, while the imaging resolution degrades;

(3) The TCC-BP algorithm in Figure 6b,d has a similar imaging performance to the BP
algorithm, but it generates some noisy spots in the image;

(4) The SVA algorithm in Figure 6e can obtain a sidelobe-reduced image without degrad-
ing the imaging resolution, while it causes the deformation and energy spreading in
the point spread function edges;

(5) Although the GAN-based method in Figure 6f can accurately extract the target po-
sition information, it cannot remove the sidelobes well, and its imaging quality is
relatively poor;

(6) In the noise-free case, the U-Net-based method in Figure 6g can obtain a close perfor-
mance to the proposed RAU-Net-based method in Figure 6h, but it has lower IAG and
IC performance.

The results shown here demonstrate the imaging quality improvement of the proposed
method in the noise-free condition.

(a) (b)

Figure 6. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 6. Experiment 1: Imaging results of simulated targets without noise. (a) BP algorithm without
Hanning window; (b) TCC-BP algorithm without Hanning window; (c) BP algorithm with Hanning
window; (d) TCC-BP algorithm with Hanning window; (e) SVA; (f) GAN; (g) U-Net; (h) ours.

Table 3. Experiment 1: Numerical performance evaluation.

Evaluating Indicator BP TCC-BP BP (hann) TCC-BP (hann) SVA GAN U-Net Ours

IE 1.371 1.407 0.575 0.593 0.508 0.232 0.382 0.284
IAG 1.348 0.961 1.640 1.551 1.957 0.304 2.106 2.138
IC 12.589 12.469 15.436 15.295 15.715 9.998 15.977 16.295

Time (s) 1.968 0.243 2.036 0.251 0.316 0.251 + 0.198 0.251 + 0.014 0.251 + 0.023
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5.1.2. Experiment 2: Simulated Targets under −20 dB SNR

Figure 7 shows the simulated target imaging results under the SNR of −20 dB and
Table 4 shows the corresponding performance evaluation indexes. From the imaging results
and evaluation indexes, we can find that:

(1) Under strong noise conditions, the BP method in Figure 7a and the TCC-BP method in
Figure 7b can only vaguely obtain the locations of targets; the targets almost cannot be
automatically identified in the images;

(2) By using the Hanning windows, the image performance of the BP method in Figure 7c
and the TCC-BP method in Figure 7d can be improved but are still much worse than
the proposed method;

(3) The SVA method in Figure 7e has a comparable imaging capability to the Hanning-
windowed BP and TCC-BP methods;

(4) The GAN-based method in Figure 7f is unable to resist the strong noisy environment
and its imaged targets are mixed with the background noise;

(5) The U-Net-based method in Figure 7g and the proposed RAU-net-based method in
Figure 7h can clearly separate and identify the targets from the noise, and the latter’s
ability of focusing targets and suppressing noise is obviously stronger.

The results shown here demonstrate the imaging quality improvement of the proposed
method in the noisy condition.

(a) (b)

(c) (d)

Figure 7. Cont.
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(e) (f)

(g) (h)

Figure 7. Experiment 2: Imaging results of simulated targets under −20 dB SNR. (a) BP algorithm
without Hanning window; (b) TCC-BP algorithm without Hanning window; (c) BP algorithm with
Hanning window; (d) TCC-BP algorithm with Hanning window; (e) SVA; (f) GAN; (g) U-Net;
(h) ours.

Table 4. Experiment 2: Numerical performance evaluation.

Evaluating Indicator BP TCC-BP BP (hann) TCC-BP (hann) SVA GAN U-Net Ours

IE 5.873 6.181 5.445 5.491 5.414 - 3.813 2.816
IAG 0.970 0.870 1.372 1.323 1.615 - 1.674 1.966
IC 2.070 1.796 2.456 2.415 2.483 - 5.916 7.883

Time (s) 1.972 0.243 2.014 0.249 0.282 - 0.249 + 0.014 0.249 + 0.023

5.2. Experiments on Outdoor-Scene Measured Data
5.2.1. Introduction to Outdoor Experimental Scene and Targets

In this section, three experiments with real-world measured data are conducted to
illustrate the performance and effectiveness of the proposed RAU-Net-based imaging
method in practice. Figure 8 shows the MIMO radar system and the experiment scene,
where the MIMO array is on the bottom left side and the vector network analyzer (VNA)-
based data acquisition equipment is on the bottom right side. Five-type targets in the scene
are labeled in Figure 8, which are Building (A), Shrub (B), Trihedral corner reflector (CR)-1
(C), CR-2 (D) and Cars (E). The MIMO array has eight transmitters and eight receivers,
which can approximate a virtual aperture of about 1m, giving an azimuth resolution of
about 0.03 rad. The VNA is used to generate a stepped frequency continuous wave signal
with 481 frequency steps, 5 GHz central frequency, and 150 MHz bandwidth, giving a range
resolution of 1 m. Detailed MIMO radar parameters are shown in Table 2.
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A. Building

B. Shrub

C. Corner reflector 1

D. Corner reflector 2

E. Cars

A. Building

B. Shrub

C. Corner reflector 1

D. Corner reflector 2

E. Cars

Figure 8. Schematic diagram of outdoor experimental scene and targets.

5.2.2. Experiment 3: Raw Measured Data

Figure 9 shows the imaging results obtained by different methods and Table 5 shows
the corresponding performance evaluation indexes. From the imaging results and evalua-
tion indexes, we can find that:

(1) The images obtained by the BP method in Figure 9a and TCC-BP method in Figure 9b
both have obvious spurious signals caused by the sidelobes and background noise,
seriously affecting the recognition of targets;

(2) With the increase of target distance, the azimuth resolution of the BP method and TCC-
BP method gradually decreases, which causes an obvious resolution spatial-variant
problem, affecting the imaging quality;

(3) Although the SVA-based method in Figure 9c can significantly reduce the sidelobes
and solve the resolution spatial-variant problem to a certain extent, there is still much
obvious background noise in the imaging result and a large number of small targets
are mixed with the noise, making it difficult to realize effective target recognition;

(4) The GAN-based imaging method in Figure 9d can extract the target positions and
generate their scattering information, but the imaging result only contains a few strong
pixels, which greatly reduces the image readability and the amount of information;

(5) The U-Net-based method in Figure 9e and the proposed RAU-Net-based method in
Figure 9f have obvious suppression effects on sidelobes and background noise, and
they can better solve the resolution spatial-variant problem.

(6) By comparing the imaging results and evaluation indexes, it can be obviously found
that the proposed RAU-Net-based method can suppress almost all the background
noise and perform high-quality imaging of all the five-type targets.

(a) (b)

Figure 9. Cont.
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(c) (d)

(e) (f)

Figure 9. Experiment 3: Imaging results of raw measured data. (a) BP algorithm with Hanning
window; (b) TCC-BP algorithm with Hanning window; (c) SVA; (d) GAN; (e) U-Net; (f) ours.

Table 5. Experiment 3: Numerical performance evaluation.

Evaluating Indicator BP (hann) TCC-BP (hann) SVA GAN U-Net Ours

IE 4.396 4.422 4.053 1.188 1.384 1.294
IAG 0.697 0.693 1.143 0.767 2.229 2.363
IC 4.246 4.199 4.767 12.083 12.948 15.108

Time (s) 2.204 0.272 0.426 0.272 + 0.198 0.272 + 0.014 0.272 + 0.023

5.2.3. Experiment 4: Measured Data with Additional Gaussian Noise

Figure 10 shows the imaging results by adding Gaussian noise to the measured
data and Table 6 shows the corresponding performance evaluation indexes. The way
in which the Gaussian noise is added is as follows: assuming that the SNR of the origi-
nal measured data is SNRorigin and the SNR after adding noise is SNRnoisy, they satisfy
SNRorigin/SNRnoisy = 20 dB; i.e, the SNR of the measured data has been deteriorated by
20 dB. From the imaging results and evaluation indexes, we can find that:

(1) Compared to the original results, the BP and TCC-BP imaging results in Figure 10a,b
have much more spurious signals caused by the sidelobes and background noise,
nearly covering the targets;

(2) The targets in the image obtained by the SVA-based method in Figure 10c are still
almost drowned in noise;

(3) The targets imaged by the GAN-based imaging method in Figure 10d are more faint
and barely noticeable;
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(4) The U-Net-based method in Figure 10e can fully reconstruct the targets, while, as it
does not has the attention mechanism and the residual block, it suffers from the energy
dispersion on the background noise;

(5) The proposed RAU-Net-based method in Figure 10f still has obvious suppression
effects on sidelobes and background noise in a harsh, noisy environment.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Experiment 4: Imaging results of measured data with a SNR deterioration of 20dB. (a) BP
algorithm with Hanning window; (b) TCC-BP algorithm with Hanning window; (c) SVA; (d) GAN;
(e) U-Net; (f) ours.
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Table 6. Experiment 4: Numerical performance evaluation.

Evaluating Indicator BP (hann) TCC-BP (hann) SVA GAN U-Net Ours

IE 5.017 5.068 4.613 1.330 1.497 0.858
IAG 0.658 0.649 1.060 0.507 2.148 2.417
IC 3.070 3.017 3.572 11.122 11.614 13.919

Time (s) 2.105 0.260 0.428 0.260 + 0.198 0.260 + 0.014 0.260 + 0.023

5.2.4. Experiment 5: Measured Data Ablation Experiments with Additional Gaussian Noise

Finally, in Experiment 5, with the same data used in Experiment 4, we conducted
ablation experiments on the channel attention block, spatial attention block and residual
dense connection block to verify the effect of each proposed module. Figure 11 shows
the imaging results and Table 7 shows the corresponding performance evaluation indexes.
From the results in Figure 11b,c we can find that the U-Net structure has a significant effect
on removing background noise and extracting effective information, while the RD module
has a significant contribution to prevent the model from overfitting, i.e., preventing the
model from focusing too much energy on background noise. From the result in Figure 11d
and the corresponding evaluation indexes, we can corroborate the role of the SA module:
without the SA module, although the IE index decreases, the focusing of targets will
be greatly reduced, and some weak targets cannot be effectively imaged. Additionally,
although the SA block and the CA block both have some effects in improving target focusing
and reducing background noise, the role of the SA block is more obvious than the CA
block in Figure 11e. In summary, the proposed model and its corresponding modules all
contribute to the improvement of imaging performance.

(a) (b)

(c) (d)

Figure 11. Cont.
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(e) (f)

Figure 11. Experiment 5: Measured data ablation experiments with with SNR deterioration of 20 dB.
(a) TCC-BP algorithm with Hanning window; (b) U-Net; (c) RAU-Net without RD block; (d) RAU-Net
without SA block; (e) RAU-Net without CA block; (f) ours.

Table 7. Experiment 5: Numerical performance evaluation.

Evaluating
Indicator TCC-BP (hann) U-Net RAU-Net

without RD
RAU-Net

without SA
RAU-Net

without CA RAU-Net

IE 5.017 1.497 1.428 0.828 1.384 0.858
IAG 0.658 2.148 2.204 0.869 2.163 2.417
IC 3.070 11.614 12.059 12.585 13.818 13.919

Time (s) 0.260 0.260 + 0.014 0.260 + 0.021 0.260 + 0.18 0.260 + 0.021 0.260 + 0.023

6. Discussion

The model proposed in this article is constructed for spatial-variant correction and
denoising in MIMO radar imaging results, and its input and output are images rather
than radar data. For the imaging performance, on the one hand, the BP algorithm mainly
relies on the coherent superposition of experimental signals for imaging, and the removal
of complex domain signals has a limited impact on the imaging quality; on the other
hand, from the ablation experiments in the paper, we can find that the channel attention’s
contribution to the imaging quality is relatively small, and the selection of complex data
will greatly increase the complexity of the model, so the paper selects the RGB three-channel
attention mechanism. The proposed network model is a multi-channel real-data model,
so the RGB three-channel attention mechanism is selected. However, the complex-valued
model needs to be researched further to take advantage of all the information for better
imaging performance. Additionally, the labeled data used in this paper are formed by the
convolution of a high-resolution BP imaging point spread function at the target location,
which has excellent fitting performance to the point scattering target model. The model
can also be applied to distributed targets, but it is necessary to replace the labeled data
in training with distributed labeled data, and the specific labeled data used should be
selected and adjusted properly according to the actual application scenario, which needs to
be further investigated in future work.

7. Conclusions

In this article, we propose a RAU-Net-based MIMO radar imaging method that adapts
complex noisy scenarios with spatial variation and sidelobe interference. We use the U-Net
model as the underlying structure and develop the RAU-Net with two modules: a residual
unit with identity mapping and a dual attention module to obtain spatial-variant correction
and denoising on real-world MIMO radar images. Combined with the MIMO radar imaging
scenario, an improved loss function based on kernel paradigm improvement is proposed,
which enhances the network’s ability of focusing for the MIMO radar point spread function
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and denoising in MIMO radar images. Through training on the constructed simulation
datasets, the network can achieve a good generalization ability to the real measurement
data of outdoor complex targets, and the network’s ability is verified by multiple rounds
of real measurement experiments. The network realizes MIMO radar imaging based on
the TCC-BP algorithm, so the total operation time is reduced greatly compared to the
traditional BP algorithm on the basis of improving the imaging resolution and denoising
capability, ensuring it a wide range of application prospects in the field of real-aperture
MIMO radar imaging.
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