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Abstract: This paper proposes an efficient and high-fidelity image fusion method based on adaptive
smoothing filtering for panchromatic (PAN) and multispectral (MS) image fusion. The scale ratio
reflects the ratio of spatial resolution between the panchromatic image and the multispectral image.
When facing a multiscale fusion task, traditional methods are unable to simultaneously handle
the problems of spectral resolution loss resulting from high scale ratios and the issue of reduced
spatial resolution due to low scale ratios. To adapt to the fusion of panchromatic and multispectral
satellite images of different scales, this paper improves the problem of the insufficient filtering of
high-frequency information of remote sensing images of different scales by the classic filter-based
intensity modulation (SFIM) model. It uses Gaussian convolution kernels instead of traditional mean
convolution kernels and builds a Gaussian pyramid to adaptively construct convolution kernels of
different scales to filter out high-frequency information of high-resolution images. It can adaptively
process panchromatic multispectral images of different scales, iteratively filter the spatial information
in panchromatic images, and ensure that the scale transformation is consistent with the definition
of multispectral images. Using 15 common fusion methods, this paper compares the experimental
results of ZY-3 with scale ratio 2.7 and SV-1 with scale ratio 4 data. The results show that the method
proposed in this paper retains good spatial information for image fusion at different scales and has
good spectral preservation.

Keywords: panchromatic; multispectral; SFIM; Gaussian pyramid

1. Introduction

Due to the limitations of hardware conditions, optical remote sensing cameras can-
not acquire remote sensing images with both high spatial resolution and high spectral
resolution. The current mainstream satellite design uses spectral separation, where the
panchromatic image primarily stores spatial information and the multispectral image pri-
marily stores spectral information [1–3]. With the launch of the ZiYuan-3 (ZY-3) series
of satellites equipped with panchromatic and multispectral image sensors, the resolution
scale differences in panchromatic and multispectral scales of remote sensing satellites have
become more abundant. Facing future on-board processing requirements, constrained
by the limitations of on-board processing on the satellite and the requirements of real-
time, the newly designed algorithms should be characterized by a small computational
volume, not relying on external memory, and suitable for block independent processing.
Furthermore, due to the constraints imposed by on-board satellite processing capabilities
and the need for real-time operations, it is crucial to develop algorithms with a reduced
computational workload, independent processing of data blocks, and minimal reliance on
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external memory [4]. For the on-board multiscale remote sensing image fusion problem, the
deep learning approach has higher computational complexity and greater computational
power requirements, while the traditional approach simply adds the detail information of
the panchromatic image to the multispectral image without considering the difference in
spatial resolution of the two images, which has lower hardware requirements and is easier
to achieve real-time processing. Therefore, it is necessary to introduce a new conventional
method for the fusion of panchromatic multispectral images at different scales in order to
meet the needs of the constrained equipment requirements of on-board satellites as well as
the increasing number of newly launched satellites with rich differences in scales.

Classical image fusion methods fall into two main categories: multi-resolution analysis
(MRA) and the component substitution method (CS) [1,3,5]. CS-based methods replace
the components of a multispectral image with those of a PAN image, such as principal
component analysis (PCA) [6,7], Brovey transform [8,9], and Gram–Schmidt transform
(GS) [10,11]. These methods typically improve spatial quality at the expense of spectral
quality. MRA-based methods sharpen multispectral images using panchromatic images via
multiscale decomposition. This category includes wavelet transform [12,13], smoothing
filter-based intensity modulation (SFIM) [14,15], high-pass filtering (HPF) [16], morpholog-
ical filtering [17], and the Laplacian pyramid [18,19]. MRA-based methods typically retain
spectral information well but may not perform as well in the spatial domain [1].

In recent years, deep learning (DL)-based methods have become more and more
common in image fusion and have also achieved good fusion results, such as MHF-net [20]
and HyperTransformer [21]. DL can learn features hierarchically, leading to diverse feature
expression, stronger judgment performance, and better generalization [22]. DL techniques
for image fusion can be divided into two categories: minimizing a cost function to simulate
image sharpening [23,24] and simulating image sharpening using generative adversarial
networks (GANs) [25,26]. However, both methods face the challenge of not having real
training data, using only simulated data for training. In real-world situations, their effects
and versatility may be limited. Additionally, remote sensing image data volumes are
large, and traditional methods may be more efficient than DL methods in some specific
scenarios [2,27].

Given the fact that deep learning techniques necessitate substantial amounts of data
for pre-training and demand significant computational resources, which are not readily
available on satellites, their applicability is limited. Moreover, in the context of multisource
multiscale fusion tasks, employing a single training set in deep learning models may not
produce satisfactory fusion results. Consequently, this study chose to adopt the traditional
method as the primary research approach. Among the existing conventional methods,
most of them cause serious spectral distortion, while SFIM has been favored for its high
computational efficiency and good fusion effect. However, considering the huge scale
differences between the panchromatic and multispectral data from newly launched remote
sensing satellites, the spatial information fusion effect of the SFIM algorithm in performing
multiscale fusion is not satisfactory. When using SFIM for fusion, a single convolution
kernel may not sufficiently filter out high-frequency information of remote sensing images
with different scales, resulting in unsatisfactory fusion results, such as color cast and
blurred distortion.

To address the multiscale difference fusion of panchromatic and multispectral images,
this paper proposes a scale-adaptive iterative filtering algorithm. This method dynami-
cally constructs a convolution kernel by constructing a pyramid to filter out the spatial
information in panchromatic images by iterative filtering. The high-frequency information
of the panchromatic image is extracted and injected into the multispectral image using
the ratio transform to obtain the fused image. The main contributions of this paper can
be summarized as follows: (1) by improving the filtering kernel of traditional SFIM, the
processing effect is improved; and (2) adaptive calculations are performed for different
scales of filter kernel parameters to adapt to diverse situations in real-world situations.
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2. Methodology
2.1. SFIM

SFIM [14] is a high-fidelity image fusion method for processing optical remote sensing
images, which can divide the image to be processed into multiple blocks for parallel
computation and is suitable for data processing on satellites. The classic SFIM model is
defined in Equation (1):

DN(λ)sim =
DN(λ)lowDN(γ)high

DN(γ)mean

=
ρ(λ)lowE(λ)lowρ(γ)highE(γ)high

ρ(γ)lowE(γ)low

(1)

where DN(λ)low is the DN value of a low-resolution image with a wavelength of λ, and
DN(γ)high is the DN value of a high-resolution image with a wavelength of γ. DN(λ)sim
is the simulated high-resolution pixel corresponding to DN(λ)low, and DN(γ)mean is the
local average value of DN(γ)high in a neighborhood, which is equivalent to the resolution
of DN(γ)low. If solar radiation is given and constant, then the surface reflectance only
depends on the terrain. If two images are quantized to the same DN value range and have
the same resolution, then it is assumed that E(λ) ≈ E(γ) [28], so that E(λ)low ≈ E(γ)low can
cancel each other out. Meanwhile, because the surface reflectance of images with different
resolutions does not change much, it is assumed that ρlow = ρhigh, so that ρ(γ)low = ρ(γ)high
can cancel each other out. Equation (1) is transformed into Equation (2):

DN(λ)sim ≈ ρ(λ)lowE(λ)high ≈ ρ(λ)highE(λ)high ≈ DN(λ)high (2)

For panchromatic multispectral fusion, Equation (2) is simplified as Equation (3):

Fusion =
MS′ × PAN

PAN′ (3)

In the above formula, MS is a multispectral image, PAN is a panchromatic image,
MS′ image is the MS image upsampled to the resolution size of the PAN image, PAN′ is
a low-resolution panchromatic image, and Fusion is the fusion result. The ratio between
PAN and PAN′ only preserves the edge details of high-resolution images while essentially
eliminating spectral and contrast information.

The reason why the classic SFIM method performs poorly on the fusion of panchro-
matic and multispectral images of different scales is that, in the degradation process, the
average convolution kernel processing or the improved Gaussian convolution kernel pro-
cessing needs to provide the relevant convolution kernel in advance. In this way, different
convolution kernels need to be set for different satellites. Therefore, a single convolution
kernel cannot filter out the spatial information of remote sensing images of different scales
well, which leads to blurring of the fused image.

2.2. Method

The aim of the method in this paper is to generate a high-quality fusion result by
obtaining a low-resolution panchromatic image that is consistent with the spatial and
spectral characteristics of the multispectral image. The improvement of the method in this
paper focuses on obtaining a downscaled panchromatic image (PAN′) that maintains both
the spatial information and spectral features of the multispectral image. During the fusion
process, the multispectral image and the low-resolution panchromatic image have to be
resampled to maintain consistent sizes. As such, the ideal low-resolution panchromatic
image, PAN′

idea_ds (where downsampling is denoted by the subscript ds), should possess a
similar image space characteristic to the multispectral image. To achieve a similar spatial
structure for the downscaled image to the MS image, a low-pass filter is necessary to
eliminate some of the high-frequency information present. Gaussian filtering is selected
as the tool to adjust the sharpness by controlling the kernel sharpness through parameter
adjustments. Based on these improvements, this paper proposes an adaptive iterative
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filtering fusion method for panchromatic multispectral images of varying scales. The
algorithm can be summarized in the following steps:

Step 1. Calculate the scale ratio of the panchromatic and multispectral images to be fused;
Step 2. Adaptively construct convolution kernels of various scales based on the scale
ratio proportion;
Step 3. Use the constructed convolution kernels to iteratively degrade the panchromatic image;
Step 4. Upscale the multispectral and degraded panchromatic images to match the
panchromatic scale;
Step 5. Fuse the panchromatic and multispectral images using a ratio-based method.

The algorithm flow of this paper is shown in Figure 1.
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Figure 1. Process flows comparison between SFIM and proposed algorithm.

In Step 1, the scale ratio is determined by examining whether there is geographic
information on the input panchromatic and multispectral images. If geographic information
is present, the overlapping range of the panchromatic and multispectral images in the
geographic space is calculated. The overlapping range can then be back-calculated to
obtain the pixel coordinates of the panchromatic and multispectral images, and their
corresponding overlapping areas.{

PANoverlap(x0, y0, x1, y1)
MSoverlap(x0, y0, x1, y1)

(4)

Here, (x0, y0) and (x1, y1) are the pixel coordinates of the overlapping region between
the two images. (x0, y0) corresponds to the upper left corner of the overlapping area,
and (x1, y1) corresponds to the lower right corner. Additionally, the scale ratio of the
panchromatic image and the multispectral image can be expressed by the following formula:

ratio = (
PANoverlap(x1 − x0)

MSoverlap(x1 − x0)
+

PANoverlap(y1 − y0)

MSoverlap(y1 − y0)
)/2 (5)

The goal of the second step is to create convolution kernels, σ, with differing scales.
To do this, we adapt the construction process from the Gaussian pyramid. By doing so, we
can construct 2n convolution kernels based on the Gaussian pyramid transformation.

The first step in the process of constructing these kernels is to calculate the number of
convolution kernels, convNumsInt, needed based on the target scale. This value should be
an integer.

convNumsInt = ⌊log2(ratio)⌋ (6)
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Following the calculation of the integer value for the number of convolution kernels,
convNumsInt, we can now construct the floating-point quantity, convNumsDouble, for the
convolution kernel scale.

convNumsDouble = log2(ratio) (7)

If convNumsInt = convNumsDouble, this indicates that the difference between scales
is exactly a power of 2. In such cases, we can easily construct a multiscale convolution
kernel using a traditional Gaussian pyramid.

However, if convNumsInt and convNumsDouble are not equal, this implies that the
scale difference is not a power of 2. In such cases, to construct a multiscale convolution
kernel, we need to add one more layer resulting in convNumsInt + 1 scale layers.

To represent the Gaussian convolution kernel, we use the following equation:

f (x, y) =
1

(
√

2πσ)
2 e−

(x−x′)2+(y−y′)2

2σ2 (8)

In the above formula, (x, y) represents the coordinates of any point in the convolution
kernel, while (x′, y′) represents the coordinates of the kernel’s center point. In layer
convNumsInt − 1, Gaussian convolution kernels with a standard deviation of σ = 1.6 [29]
are used. According to the suggestion of SIFT, σ = 1.6 achieves optimal results when
performing 2-fold downsampling, so the value of 1.6 is chosen in this paper. However, if
convNumsInit ̸= convNumsDouble, different standard deviations must be estimated for
the convNumsInt layer. The estimation method is as follows:

σ = (convNumsDouble − convNumsInt)× 1.6 (9)

If convNumsInt and convNumsDouble are equal, then the convNumsInt layer uses a
standard deviation of σ = 1.6. The construction method of the convolutional kernels used
in the last layer is identical to that used in previous layers, which involves using Gaussian
convolutional kernels.

The third step requires iterative degradation based on the number of convolutional
layers being constructed and the corresponding convolutional kernels calculated in the
second step. Each layer uses the corresponding convolutional kernels for convolution, and
after the convolution process is complete, downsampling is performed to obtain an ideal
low-resolution panchromatic image, PAN′

idea_ds. Based on a consideration of computational
efficiency and the downsampling effect, the bilinear resampling method is adopted as the
downsampling method, and the formula is shown as follows:

f (x, y1) ≈ x2−x
x2−x1

f (Q11) +
x−x1
x2−x1

f (Q21)

f (x, y2) ≈ x2−x
x2−x1

f (Q12) +
x−x1
x2−x1

f (Q22)
(10)

where Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2, y1), Q22 = (x2, y2), and these four points
are the points around the downsampling target point p(x, y). In this way, it is possible to
resample images when the scale is not integer.

Next, in the fourth step, the original MS and low-resolution panchromatic image,
PAN′

idea_ds, are upsampled to the panchromatic PAN scale to obtain MS′ and PAN′. The
resampling method for upsampling is based on a consideration of computational efficiency
and the effect of resampling, and the same bilinear resampling model mentioned in the
previous step is selected. By building a Gaussian pyramid in this way, it is possible to
obtain a degraded panchromatic image of the corresponding scale.

Finally, the fifth step involves obtaining the fusion image, Fusion, using the ratio method:

Fusion = MS′ × PAN
PAN′ (11)

This estimation method ensures a smooth transition between convolution layers with dif-
ferent numbers of output channels, which helps maintain the method’s overall performance.
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2.3. Quality Indices

To conduct an objective evaluation of the algorithm’s performance, this study has
adopted a reduced-resolution assessment and a full-resolution assessment without ref-
erence. The reduced-resolution assessment includes the following four indicators: cross
correlation (CC), structural similarity index measure (SSIM), spectral angle mapper (SAM)
and erreur relative globale adimensionnelle de synthese (ERGAS). The full-resolution as-
sessment without reference comprises three evaluation metrics: spectral distortion index
(Dλ), spatial distortion index (DS), and hybrid quality with no reference (HQNR).

1. Reduced-resolution assessment: The reduced resolution evaluation synthesizes a
simulated image from a reference MS image and then evaluates the performance of
the method against the reference image.

(1) Cross Correlation

CC represents the spectral similarity between the computed MS and fused images,
with larger values indicating greater similarity between the MS and Fused images. CC is
defined in Equation (12), where the subscript (i, j) specifies the position of the pixel. The
ideal value of CC is 1.

CC(MS, F) =
∑M

i=1 ∑N
j=1

[
MS(i,j) − MS

][
F(i,j) − F

]
∑M

i=1 ∑N
j=1 (MS(i,j) − MS)2

∑M
i=1 ∑N

j=1 (F(i,j) − F)2 (12)

(2) Structural Similarity Index Measure

Structural similarity SSIM [30] is used to evaluate the degree of similarity between
two images, x and y, which has strong spatial interdependence and can reflect the degree
of correlation between the structural information of two images well. SSIM is defined
as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(13)

where µx and µy are the means of x and y, respectively, σ2
x and σ2

y are the variances of x

and y, respectively, σxy is the covariance of x and y, and c1 = (k1L)2 and c2 = (k2L)2 are
constants used to maintain stability, where L is the dynamic range of the pixel value, and
by default, k1 = 0.01 and k2 = 0.03. The ideal value of SSIM is 1.

(3) Spectral Angle Mapper

Spectral angle mapper (SAM) [31] is a spectral measure that represents the angle
between the reference vector and the processing vector of a given pixel in the spectral
feature space of an image, which is defined as

SAM(M̂, M) =
1
n

n

∑
j=1

arccos

(
(M̂, M)

∥M̂j∥·∥Mj∥

)
(14)

where
(

M̂, M
)
= M̂T

j Mj is the inner product between the fused image and MS at the jth
pixel. SAM is calculated as the spectral angle between the MS and fusion vectors of a given
pixel, and smaller values of SAM indicate greater similarity between the multispectral and
fusion vectors [32]. The ideal value of SAM is 0.

(4) Erreur Relative Globale Adimensionnelle de Synthese

The erreur relative globale adimensionnelle de synthese (ERGAS) [33] provides a
global indication of the reference distortion of the test multiband image. It is defined as

ERGAS = 100
dh
dl

√√√√ 1
N

N

∑
n=1

(
RMSE(n)

µ(n)

)2

(15)
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where dh/dl is the ratio between the pixel sizes of MS and PAN images. N is the number of
digits in the band, and µ(n) is the average of the nth band of the reference.

2. The full-resolution assessment without reference evaluates the quality of pansharp-
ened images at the resolution of PAN images without relying on a single reference
image. The evaluation will be performed using actual observed images.

(1) Spectral Distortion Index

The spectral distortion index Dλ [34] of the Khan protocol is defined as

Dλ = 1 − Q2n(M̂, M̃) (16)

Q2n is a multiband extension of the general image quality index, which is used for the
quality assessment of pansharpened MS images, first for 4 bands and later extended to 2n

bands [35–37]. Each pixel of an image with N spectral bands is placed into a hypercomplex
(HC) number with one real part and N − 1 imaginary parts.

z = z(c, r) and ẑ = ẑ(c, r) denote the HC representations of the reference and test
spectral vectors at pixel (c, r). Q2n can be written as a product of three components.

Q2n =
|σzẑ|
σzσẑ

· 2σzσẑ

σ2
z + σ2

ẑ
·

2
∣∣z∣∣∣∣ẑ∣∣∣∣z∣∣2+∣∣ẑ∣∣2′ (17)

The first part represents the modulus of the HC correlation coefficient between z and
ẑ, which measures the degree of linear correlation. The second and third terms measure
luminance distortion and contrast distortion on all bands simultaneously, respectively [35].
The value of Q2n ranges from 0 to 1, and Q2n is equal to 1 if, and only if, z = ẑ.

(2) Spatial Distortion Index

Spatial distortion index DS [38] is defined as

DS = q
√∣∣Q(IM̂, P)− Q(IM̂, PL)

∣∣q (18)

where Q = Q20 and IM̂ and IM are the intensities of M̂ and M, respectively, which are
defined as

IM̂ =
1

Nb

Nb

∑
b=1

Mb, IM =
1

Nb

Nb

∑
b=1

Mb (19)

(3) Hybrid Quality with no Reference

Hybrid quality with no reference (HQNR) [39] borrows the spatial distortion index
DS from QNR and the spectral distortion index Dλ from the Khan protocol. It is defined as

HQNR = (1 − Dλ)
α(1 − DS)

β (20)

where usually α = β = 1.

3. Data Introduction

The data utilized in this study is sourced from the ZiYuan-3 (ZY-3) satellite and
SuperView-1 (SV-1) of the National Land Satellite Remote Sensing Application Center,
which comes under the jurisdiction of the Ministry of Natural Resources in the “China
High-Resolution Earth Observation System”. The chosen images have a variety of terrain
features such as mountains, forests, roads, and cities. A detailed breakdown of the data
usage can be found in Table 1.
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Table 1. The introduction of data.

Satellites Parameters Description Satellites Parameters Description

ZY-3
Spectral range

PAN 500–800 nm

SV-1
Spectral range

PAN 450–890 nm

MS

450–520 nm

MS

630–690 nm
520–590 nm 520–590 nm
630–690 nm 450–520 nm
770–890 nm 770–890 nm

Spatial resolution PAN 2.1 m Spatial resolution PAN 0.5 m
MS 5.8 m MS 2 m

4. Results

In this study, a reference performance test is conducted on the fused image to verify
the effectiveness of the proposed algorithm. The comparison algorithm used in this paper
is the MATLAB toolbox [1] with version MATLAB 2021a, and the comparison method is
as follows:

• SFIM: Smoothing filter-based intensity modulation [14];
• BDSD-PC: Band-dependent spatial-detail (BDSD) model solving an optimization

constrained problem [40];
• GS: Gram–Schmidt [9,10];
• GSA: Gram–Schmidt adaptive [41];
• GS2-GLP: Segmentation-based version of the Gram–Schmidt algorithm with GLP [42];
• Brovey: Brovey transform for image fusion [8,9];
• IHS: Intensity–hue–saturation transformation [43];
• MF_HG_Pansharpen: Morphological pyramid decomposition using half gradient [17];
• HPF: High-pass filtering for image fusion [16];
• MTF-GLP: Generalized Laplacian pyramid (GLP) [37] with MTF-matched filter with

unitary injection model [44];
• MTF-GLP-FS: GLP with MTF-matched filter and a new full-resolution regression-

based injection model [45];
• MTF-GLP-HPM: GLP with MTF-matched filter and multiplicative injection model [46];
• MTF-GLP-HPM-R: A regression-based high-pass modulation pansharpening

approach [47];
• SFPSD: Smoothing filter-based panchromatic spectral decomposition (SFPSD) for MS

and HS image pansharpening [15];
• GPPNN: Gradient projection-based pansharpening neural network [48].

The ZY-3 multispectral (MS) data with a spatial size of 1000 × 1000 and the panchro-
matic (PAN) data with a spatial size of 2700 × 2700 from the dataset in Section 3 are selected,
with a scale ratio of ratio = 2.7. Image registration is preprocessed using the method de-
scribed in [49], as the registration accuracy of PAN images and MS images can greatly affect
the fusion effect [42,50]. The proposed algorithm is compared against the 15 common image
fusion algorithms mentioned above. The traditional method experiments were conducted
on an Intel i7-10700 CPU server at 2.90 GHz using MATLAB 2021a, and the comparison
experiments for deep learning were implemented in Python 3.7 and Pytorch frameworks
on the Ubuntu 20.04 platform with two NVIDIA GPUs GeForce GTX 3060 for training
and testing (NVIDIA, Santa Clara, CA, USA). The training sets for deep learning are a
self-made dataset corresponding to the image and a publicly available training set. The
code for creating the dataset and publicly available training sets come from [51]. Non-deep
learning methods do not require training. Only deep learning methods require training.

Figure 2 shows a magnified image of a portion of the region for all fusion methods
under the ZY-3 data, where the level of spatial detail and spectral retention can be clearly
seen. The red frame in the bottom left corner is an enlarged image of the small red frame in
the main picture. The subsequent images in the paper follow the same format. As evidenced
by Figure 2, it is apparent through visual analysis that certain methodologies, such as the
BDSD, SFPSD and MTF series methods, impart desirable visual effects. On the contrary,
methods such as IHS, SFIM, MF_HG and other methods have significant information loss.
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Also, the deep learning approach has better spatial information retention but suffers from
some spectral distortions. Notably, the proposed methodology yields results that exhibit
visual fidelity closest to that of the ground truth image. This method is able to preserve
both spatial and spectral information, so it has an advantage over other methods.
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In this study, the full-resolution evaluation index without reference and the reduced-
resolution evaluation index with reference were used to objectively assess the quality of the
fusion results. The evaluation indices without reference are Dλ, Ds, and HNQR, and those
with reference are CC, SSIM, SAM and ERGAS, which were introduced in Section 2. The
best-performing result among the evaluated algorithms is highlighted using bold format.
The subsequent tables in the paper follow the same format. Table 2 presents detailed results
of the evaluation indices of the different methods. The time metric in the table encompasses
the entire process of reading and fusing the image.

Table 2. The evaluation in ratio = 2.7 for ZY-3 image sharpening.

Method HQNR Dλ Ds CC SSIM SAM ERGAS Time (s)

SFIM 0.9132 0.0149 0.0730 0.9966 0.9830 0.3079 0.3946 1.1882
BDSD-PC 0.9325 0.0506 0.0178 0.9987 0.9938 0.2756 0.3195 1.3205

GS 0.8708 0.1158 0.0152 0.9987 0.9939 0.2909 0.2761 1.5687
GSA 0.9362 0.0518 0.0127 0.9987 0.9942 0.2743 0.2254 3.7302

GS2_GLP 0.9286 0.0149 0.0573 0.9987 0.9942 0.2744 0.2233 2.5892
Brovey 0.8503 0.1357 0.0161 0.9987 0.9889 0.2756 0.2257 0.3343

IHS 0.8573 0.1292 0.0154 0.9965 0.9831 0.4641 0.3280 0.3450
MF_HG 0.9042 0.0759 0.0215 0.9957 0.9812 0.4352 0.4325 0.7287

HPF 0.9121 0.0149 0.0741 0.9965 0.9831 0.3079 0.3971 1.2239
MTF_GLP 0.9298 0.0163 0.0547 0.9978 0.9871 0.4651 0.2878 1.8935

MTF_GLP_FS 0.9285 0.0149 0.0574 0.9987 0.9942 0.4651 0.2878 2.4788
MTF_GLP_HPM 0.9326 0.0158 0.0523 0.9981 0.9889 0.4350 0.2670 1.9892
MTF_GLP_HPM_R 0.9296 0.0148 0.0565 0.9989 0.9943 0.2736 0.2094 2.1570

SFPSD 0.9502 0.0301 0.0204 0.9963 0.9918 0.2834 0.2937 2.1068
GPPNN 0.8782 0.1172 0.0052 0.9973 0.9918 0.4518 0.3195 7.2666

Proposed 0.9589 0.0233 0.0182 0.9981 0.9918 0.2834 0.2937 1.3273

As can be seen from the Table 2, the proposed method achieves the best results in terms
of HQNR among the evaluation index without reference. Meanwhile, the gap between the
spectral distortion index Dλ and the spatial distortion index DS and the optimal results is
not significant. These evaluation indicators reflect the proposed method’s effectiveness in
image fusion and its ability to maintain spectral and spatial information simultaneously.
The reason that the deep learning method achieves better values in the reduced-resolution
evaluation but lower values in the full-resolution evaluation is that the training set of the
deep learning method is trained using reduced-resolution data. At the same time, the
GPPNN method mainly fuses images with a 4-fold difference between the panchromatic
and multispectral scales, and the generalization ability may not be as good for the ZY-3
data with a scale ratio of 2.7-fold. For the evaluation metric of reduced resolution, the
method in this paper did not achieve the best results, but the gap with the best results is
not particularly significant. In addition, the method in this paper has high computational
efficiency and consumes less time compared to all the above methods and is suitable for
business operations.

In order to eliminate randomness, we selected data with a size space of 2700 × 2700
on other ZY-3 data for comparison experiments. Figure 3 shows the fusion results of all the
compared methods. From this figure, we can see that methods such as SFPSD and MTF series
have good visual results with clear feature outlines and good spectral preservation. The fusion
results of GPPNN methods have better spatial results but poor spectral preservation. The
method in this paper has good performance regarding both spatial information and spectral
preservation and has a significant improvement compared to the SFIM method. The results of
the measured fusion image evaluation indicators can be found in Table 3. From the objective
metrics noted in Table 3, it can be seen that the HQNR index and the spatial distortion index
DS of the method proposed in this paper are the highest among all the compared methods.
Compared with the current mainstream PAN and MS fusion methods, this method has better
results regarding both spatial and spectral information.
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Table 3. The evaluation in ratio = 2.7 for ZY-3 image sharpening.

Method HQNR Dλ Ds CC SSIM SAM ERGAS Time (s)

SFIM 0.9633 0.0065 0.0304 0.9928 0.9759 0.3769 0.5055 1.0380
BDSD-PC 0.9637 0.0185 0.0181 0.9985 0.9953 0.3246 0.2030 1.2113

GS 0.8887 0.0678 0.0467 0.9987 0.9924 0.3787 0.4530 1.4840
GSA 0.9701 0.0163 0.0138 0.9987 0.9959 0.3249 0.1847 3.6815

GS2_GLP 0.9739 0.0057 0.0205 0.9987 0.9959 0.3248 0.1879 2.5292
Brovey 0.8677 0.0865 0.0501 0.9952 0.9848 0.5996 0.5214 0.3192

IHS 0.8781 0.0799 0.0456 0.9936 0.9823 0.6534 0.5436 0.3312
MF_HG 0.9262 0.0592 0.0155 0.9912 0.9780 0.5996 0.5359 0.6156

HPF 0.9634 0.0065 0.0304 0.9928 0.9760 0.3763 0.5054 1.0484
MTF_GLP 0.9753 0.0068 0.0180 0.9950 0.9843 0.6598 0.3709 1.8661

MTF_GLP_FS 0.9737 0.0057 0.0207 0.9987 0.9959 0.3248 0.1845 2.3291
MTF_GLP_HPM 0.9762 0.0066 0.0173 0.9960 0.9871 0.5996 0.3300 1.9018
MTF_GLP_HPM_R 0.9739 0.0056 0.0206 0.9987 0.9959 0.3252 0.1834 2.0727

SFPSD 0.9841 0.0121 0.0038 0.9916 0.9779 0.6242 0.5146 2.0730
GPPNN 0.9068 0.0792 0.0151 0.9976 0.9943 0.4237 0.2484 7.3054

Proposed 0.9858 0.0116 0.0027 0.9972 0.9924 0.3363 0.2594 1.2038

The paper also conducted a set of comparative experiments under the conventional
scale ratio = 4 using SV-1 data, as introduced in Section 3. Figure 4 presents a comparison of
the fusion results of the different methods, pointing out the advantages and disadvantages
of each method in terms of preserving spatial details and spectral fidelity. Some methods,
such as Brovey, IHS, MF_HG, and MTF_GLP_HPM, lose spectral information significantly,
while others, such as GS2_GLP, MTF_GLP_FS, and MTF_GLP_HPM_R, maintain good
spatial details and spectral fidelity. Evidently, the proposed method preserves spatial and
spectral information well compared to SFIM, and it has more spatial information. Finally,
the GPPNN method has some spectral distortion, as seen in Figure 4, but still has a strong
ability to characterize spatial details.

Table 4 provides detailed results of the evaluation metrics for the different methods.
Although the indicators in the proposed method are not the highest, the difference between
them and the best results is not significant. The difference between the fusion effect
of the proposed method and some of the best fusion algorithms on SV-1 PAN and MS
images is also not apparent, as can be inferred from Figure 4. Additionally, the proposed
method shows a more substantial improvement in the HQNR index than the classic SFIM
fused image.

In conclusion, the proposed method performs better in preserving both spatial and
spectral information in multiscale panchromatic multispectral image fusion compared with
the current mainstream PAN and MS fusion methods. At the same time, deep learning
methods may not achieve the fusion effect of traditional methods when dealing with
different source data, such as when facing highly dynamic data combinations or the fusion
of heterogeneous data combinations. Therefore, the method in this paper is simple and
efficient while having a better fusion effect, which is more advantageous on satellites
lacking a large number of computing conditions or when facing a multiscale fusion task.
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Table 4. The evaluation in ratio = 4 for SV-1 image sharpening.

Method HQNR Dλ Ds CC SSIM SAM ERGAS Time (s)

SFIM 0.8978 0.0165 0.0871 0.9905 0.9741 0.4890 0.5890 1.8550
BDSD-PC 0.8881 0.0945 0.0193 0.9977 0.9940 0.3554 0.2407 1.7390

GS 0.7235 0.2092 0.0851 0.9979 0.9891 0.5205 0.5791 2.4759
GSA 0.7913 0.1550 0.0636 0.9979 0.9945 0.3507 0.2264 6.8088

GS2_GLP 0.9378 0.0384 0.0247 0.9979 0.9945 0.3517 0.2242 4.4017
Brovey 0.6758 0.2613 0.0850 0.9880 0.9731 0.8494 0.7241 0.4627

IHS 0.6840 0.2524 0.0850 0.9895 0.9766 0.7886 0.6964 0.4859
MF_HG 0.7902 0.1946 0.0188 0.9833 0.9631 0.8494 0.6871 1.1779

HPF 0.8993 0.0170 0.0851 0.9904 0.9739 0.4928 0.5898 1.8822
MTF_GLP 0.9245 0.0689 0.0071 0.9919 0.9789 0.7581 0.4689 3.4724

MTF_GLP_FS 0.9360 0.0370 0.0280 0.9979 0.9945 0.3514 0.2240 4.3211
MTF_GLP_HPM 0.8714 0.1191 0.0104 0.9907 0.9746 0.8494 0.5153 3.5202
MTF_GLP_HPM_R 0.9375 0.0373 0.0262 0.9980 0.9947 0.3407 0.2141 3.7994

SFPSD 0.9127 0.0443 0.0450 0.9834 0.9611 0.9098 0.5890 0.7092
GPPNN 0.8087 0.1264 0.0743 0.9678 0.9176 2.2038 1.3199 16.7173

Proposed 0.9298 0.0346 0.0369 0.9963 0.9910 0.3790 0.3258 2.0556

5. Discussion

The proposed method falls under the category of MRA, but it possesses certain dis-
tinguishing features in comparison to traditional fusion methods. First, it performs well,
even in cases where there are significant differences in resolution. Additionally, it is highly
adaptable to fusing images of various scales. The following sections will delve into these
aspects in greater detail.

5.1. Effective Filtering of High-Frequency Information

An optical image can be regarded as comprising high-frequency spatial information
and low-frequency spectral information [52]. High-frequency spatial information is respon-
sible for capturing grayscale images with significant changes within them and primarily
represents the details of the image. On the other end of the spectrum, low-frequency
spectral information corresponds to slowly changing grayscale components present in
the image and mainly represents the overall image context. This can be mathematically
expressed as

F(u) = F(H)(u) + F(L)(u) (21)

In the above equation, F(u) represents the input image, F(H)(u) represents the high-
frequency component of the image, and F(L)(u) represents the low-frequency component of
the image. Additionally, for images of different spatial resolutions, two images of varying
band ranges can be expressed as{

FHR(u) = F(H)
HR (u) + F(L)

HR
FLR(u) = F(H)

LR (u) + F(L)
LR

(22)

In the above equation, the variable FHR(u) represents the high-resolution image, while
F(H)

HR (u) represents the high-frequency component of the high-resolution image, and F(L)
HR(u)

represents the low-frequency component of the high-resolution image. Similarly, FLR(u)
represents the low-resolution image, with F(H)

LR (u) representing its low-frequency component.
Additionally, it is assumed that the low-frequency components for different resolutions

of the same image are approximately the same. Therefore, the low-frequency components of
the low-resolution image may be used to replace the low-frequency components of the high-
resolution image to generate a fused image [1,2]. The fused image can be mathematically
expressed as

FFUS(u) = F(H)
HR (u) + F(L)

LR (u) (23)
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Certainly, the proposed Formula (23) demonstrates that the fusion process aims to
retain both high-frequency spatial details and low-frequency spectral information in the
resultant image. More specifically, the high-frequency spatial details are obtained from the
high-resolution image, whereas the low-frequency spectral information is extracted from
the low-resolution image. This fusion approach can be viewed as a means of replacing the
complementary information between the two input images, thereby allowing for improved
visual quality and greater accuracy in the fused image. It is a widely accepted method in
image processing and has been extensively used in research and practical applications. In
order to achieve image fusion, it is necessary to separate the high-frequency component
of the high-resolution image from the low-resolution image and perform corresponding
processing accurately. The fused image can be obtained by “simulating” directly from
the high-resolution image, since the low-resolution image is already known. However,
when the high-resolution image is downsampled to the low-resolution image scale, the
resulting degraded image is often accompanied by a “sawtooth” phenomenon, as shown
in Figure 5b above. Traditional methods cannot always completely filter out this high-
frequency information for multiscale images, resulting in blurred results during fusion.
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In this paper, an iterative filtering method is performed before each downsampling
by establishing a Gaussian pyramid, which can effectively filter out high-frequency com-
ponents in high-resolution images. As shown in Figure 5c, the “sawtooth” shape of the
road in the figure is significantly improved, and high-frequency information is effectively
filtered out. This is an important factor for the method in this paper to adapt to the fusion
of different scales and still obtain better results.

5.2. Significant Adaptive Fusion Effect

The HPM (high-pass modulation) framework [53,54] is a widely known technique
that extracts high-frequency information from PAN images and introduces it to MS images.
In this framework, the high-frequency components of the PAN image are first filtered
out, and subsequently, the high-frequency information is extracted and injected into the
low-resolution image using the ratio of the original PAN image and the filtered PAN images.
This process is expressed by the following formula:

M̂ = P ∗ (PL
M

↑) (24)

In the formula above, M̂ represents the sharpened image, P represents the PAN image,
PL stands for the pre-filtered and downsampled PAN image on the MS scale, M represents
the MS image, and the ↑ symbol indicates upsampling.

A comparison between the above formula and the formula used in the HPM frame-
work reveals that the main difference between our approach and the HPM framework
lies in where the ratio operation is applied, whether on the PAN scale or the MS scale. In
this study, we assume that all redundant high-frequency information in the PAN image is
filtered out and downsampled and that the downsampled PAN image possesses the same
spatial information as the MS image. At this point, the differences between the two images



Remote Sens. 2024, 16, 7 16 of 23

are mainly in their spectral information, which can be decomposed without altering the
spatial information by utilizing the ratio method.

To validate the efficacy of the method described in this paper, and to compare it with
the HPM framework, data from various satellites were selected for a no-reference full-
resolution evaluation. From Figure 6, it can be seen that the visual effect of image fusion
obtained using our method is better than that obtained by the HPM method. As shown
in Table 5, the HQNR achieved by our method surpasses that of the HPM framework,
with better spatial resolution and spectral quality. Our method outperforms the HPM
architecture, with more substantial advantages observable in images containing richer
spatial details, where spatial details are preserved to a greater extent. Examples include the
4-fold scale difference GF-2 and CB04 and the 2.7-fold scale difference ZY-3 data presented
in Table 5, which showcase urban and mountainous scenes with a high degree of spatial
complexity and detail. The HQNR index obtained using our method in these cases is
significantly higher than that of the HPM method.
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Table 5. Comparison between HPM framework and the proposed method.

Image Method HQNR Dλ Ds

GF-2
Proposed 0.9080 0.0521 0.0421

HPM 0.8376 0.0930 0.0765

CB04
Proposed 0.8770 0.0539 0.0731

HPM 0.8729 0.0762 0.0551

ZY-3
Proposed 0.9609 0.0186 0.0209

HPM 0.9189 0.0091 0.0727

5.3. Embedded Device Performance Testing

In order to verify the ability of the algorithms in this paper to run on-board, this paper
uses an embedded device, Jeston AGX Orin, which is the latest AI embedded development
board at the edge of NVIDIA for testing. The NVIDIA Jeston series has been successfully
applied to satellite on-board processing. For example, Luo Jia-3 carries Jeston TX2 to realize
on-board processing. The specific performance and power consumption of the Jeston AGX
Orin is shown in Table 6 below:

Table 6. The introduction of Jeston AGX Orin.

Mode ID 0 1 2 3

Power Budget EDP 15 W 30 W 50 W
Online CPU 12 4 8 12

CPU Max Frequency (MHz) 2147.48 1.1136 1.728 1.4976
GPU Max Frequency (MHz) 2147.48 420.75 624.75 828.75
DLA Max Frequency (MHz) 2147.48 1369.6 750 1369.6

PVA Cores 2 1 1 1
PVA Max Frequency (MHz) 1088 307.2 512 704

EDP represents no power consumption limit. In this paper, we use the method in Zhang’s
article [4] for the on-board ROI (Region of Interest) preprocessing of the data, where the ROI
is 4000 pixel for the panchromatic color, and then the panchromatic and multispectral data are
acquired in memory for fusion processing, respectively. This process is repeated three times,
and the fusion time is averaged. The times are shown in Table 7 below:

Table 7. Fusion time consumption.

Mode ID 0 1 2 3

First processing time (s) 1.105 3.901 2.319 1.662
Second processing time (s) 1.005 3.903 2.324 1.672
Third processing time (s) 1.107 3.906 2.345 1.658

Average time consumption (s) 1.072 3.903 2.329 1.664

As shown in Table 7, when processing ROI of 4000 × 4000 size in Orin, it can basically
reach the seconds level processing level. Especially when there is no power limit, it can
achieve a processing time of about one second, which has the potential for practical on-
board processing applications.

In order to verify the difference between the processing results of embedded arm
devices and those of x86 devices, this article conducted relevant comparisons. As shown in
Figure 7 below, Figure 7a shows the processing results for x86 devices, Figure 7b shows the
processing results for embedded arm devices, and Figure 7c shows the difference between
the two. From these, it can be clearly seen that the processing results of different platform
devices are completely consistent, and there is no error, which also shows the reliability of
the algorithm in this paper.
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5.4. Effectiveness on Public Datasets

In order to validate the effectiveness of the method proposed in this paper on a publicly
available dataset, this paper chooses to use images from the GF-2 satellite as the dataset,
which is taken from [51]. This dataset contains a wealth of information about ground
objects such as city roads, geographic buildings, parked vehicles and rivers and bridges.
The experimental metric chosen is the full-resolution assessment without reference.

Figures 8–12 show the fusion results of this paper’s method and GPPNN for five
different scenarios. It is clear from the figure that both methods perform well on the GF-2
dataset, with significant improvements regarding spatial details while maintaining good
spectral quality. In order to compare the advantages and disadvantages of the method
proposed in this paper and GPPNN in more detail, this paper enlarges some details in the
figures. It can be seen from Figure 8 that the GPPNN method has lost some information,
and the overall look is blurrier than proposed method. It can be seen from Figure 9 that
the GPPNN method is not clear enough for the trees on both sides of the road, showing
a dark area. By contrast, the details such as the road outline is clearer in the proposed
method. As can be seen from Figures 10 and 11, the vegetation area of the image fused
by the GPPNN method is blurred, and the fused image obtained by the proposed method
is clearer and more detailed in terms of features. In Figure 12, the proposed method in
this paper is also blatantly clearer but slightly worse than the GPPNN method in terms of
spectrum preservation.
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Table 8 shows the comparison of experimental results for each scenario. The HQNR
and Ds achieved by the proposed method used on the GF-2 dataset are higher than the
GPPNN, but the Dλ is lower than the GPPNN. This means the proposed method is better
regarding spatial information retention, and the GPPNN method is better regarding spectral
retention. Overall, the proposed method has a better comprehensive performance, since it
performs better in HQNR in these scenarios.

Table 8. Comparison between GPPNN and the proposed method.

ID Method HQNR Dλ Ds

1
Proposed 0.9325 0.0497 0.0188
GPPNN 0.8509 0.0349 0.1183

2
Proposed 0.9105 0.0685 0.0225
GPPNN 0.8241 0.0322 0.1484

3
Proposed 0.8868 0.0769 0.0394
GPPNN 0.8083 0.0794 0.1219

4
Proposed 0.8553 0.0857 0.0645
GPPNN 0.7768 0.0784 0.1571

5
Proposed 0.9496 0.0417 0.0091
GPPNN 0.8651 0.0321 0.1062

6. Conclusions

With the successive launches and rapid development of new satellites, the scale
differences between panchromatic and multispectral images is becoming richer and richer.
Traditional fusion strategies are difficult to adapt to a large amount of data from new
satellites, resulting in more significant spectral distortion or the loss of spatial information
during fusion. At the same time, the purpose of our research is to explore the on-board
processing of future satellites under limited environmental conditions, to be able to perform
fast and efficient multiscale fusion, which we expect to be applicable to the dynamic on-
board real-time fusion of heterogeneous data from different satellites based on embedded
devices. Algorithm efficiency and applicability are the primary factors considered in this
work. For different scale remote sensing image fusions, this paper proposes a standard
adaptive fusion method. This method is widely applicable and computationally efficient. It
not only performs well in fusing multispectral images with a scale difference of 4 times, but
also outperforms other methods in fusing panchromatic and multispectral images with a
scale difference of 2.7 times. Also, according to the experimental results of the performance,
the proposed method performs well on embedded devices, so it is more suitable for the
future requirements of on-board real-time fusion processing with multi-source data.

The proposed method constructs convolution kernels adaptively based on the scale of
images. By constructing a Gaussian pyramid, an optimal degraded panchromatic image
is obtained for high spatial and spectral resolution image fusion. This study reports a
full-resolution assessment without reference. The results show that, compared with the
other 15 methods, the methods proposed in this article have achieved good results in
subjective and objective assessments. For ZY-3 images, the proposed method outperforms
other traditional methods with an HQNR index of 0.9589 in the no-reference full-resolution
evaluation. Moreover, this method is capable of fusing panchromatic and multispectral
images of different scales while achieving satisfactory results in sharpening multispectral
images from various Chinese satellites. Finally, the method proposed in this paper is
computationally efficient, and the algorithm will be more advantageous regarding future
applications of dynamic onboard real-time fusion of heterogeneous data from different
satellites based on embedded devices.
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