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Abstract: Soil moisture (SM) data can provide guidance for decision-makers in fields such as drought
monitoring and irrigation management. Soil Moisture Active Passive (SMAP) satellite offers sufficient
spatial resolution for global-scale applications, but its utility is limited in regional areas due to its
lower spatial resolution. To address this issue, this study proposed a downscaling framework
based on the Stacking strategy. The framework integrated extreme gradient boosting (XGBoost),
light gradient boosting machine (LightGBM), and categorical boosting (CatBoost) to generate 1 km
resolution SM data using 15 high-resolution factors derived from multi-source datasets. In particular,
to test the influence of terrain partitioning on downscaling results, Anhui Province, which has diverse
terrain features, was selected as the study area. The results indicated that the performance of the
three base models varied, and the developed Stacking strategy maximized the potential of each
model with encouraging downscaling results. Specifically, we found that: (1) The Stacking model
achieved the highest accuracy in all regions, and the performance order of the base models was:
XGBoost > CatBoost > LightGBM. (2) Compared with the measured SM at 87 sites, the downscaled
SM outperformed other 1 km SM products as well as the downscaled SM without partitioning, with
an average ubRMSE of 0.040 m3/m3. (3) The downscaled SM responded positively to rainfall events
and mitigated the systematic bias of SMAP. It also preserved the spatial trend of the original SMAP,
with higher levels in the humid region and relatively lower levels in the semi-humid region. Overall,
this study provided a new strategy for soil moisture downscaling and revealed some interesting
findings related to the effectiveness of the Stacking model and the impact of terrain partitioning on
downscaling accuracy.

Keywords: SMAP L4; soil moisture downscaling; Stacking; machine learning

1. Introduction

Soil moisture (SM) is an important component of the global water cycle, affecting
rainfall and temperature through evapotranspiration processes [1]. Its variation not only
relates to plant growth and agricultural production, but also to global climate change and
extreme climate events, such as droughts, floods, and heat waves [2]. In the past, the
acquisition of SM data has mainly relied on manual sampling and site observations [3].
In situ SM can be interpolated to a larger area by geostatistical techniques. However, the
practical application is unsatisfactory, and the interpolation results have great uncertainty in
complex surfaces [4]. Therefore, the observation based on point scale makes it challenging
to meet the monitoring needs of SM at a regional or global scale.

The remote sensing technique reduces the cost of SM measurements and allows contin-
uous monitoring over a large scale. Microwave remote sensing has unique advantages in
SM monitoring, as it is not affected by weather conditions, has a certain penetration ability,
and captures SM information in the vertical profile [5]. Previous studies have found that
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L-band is less affected by surface roughness and vegetation types [6], and Soil Moisture
Active Passive (SMAP), represented by L-band, has higher accuracy and robustness than
other remotely sensed SM products [7]. SMAP L4 products provide estimates of surface
(0–5 cm) and root zone (0–100 cm) SM at a 9 km spatial resolution. These products also
fill in the gaps in SMAP observations caused by orbit and land surface characteristics,
thus providing spatially and temporally more complete SM products [8]. However, 9 km
resolution is still too coarse for many applications that require finer scale data, such as
in agriculture, hydrology, and ecology. Therefore, it is necessary to develop methods to
downscale SMAP products to higher resolutions, such as 1 km or finer.

There are many classifications for downscaling methods [9–11]. Zhao et al. [9] catego-
rized downscaling methods into three types based on the relational models used: empirical
methods, semi-empirical methods, and physics-based methods. Among these methods,
empirical methods are based on a priori knowledge and operate under the assumption that
the model’s scale remains consistent. They apply a relational model, established at a coarse
resolution, to high-resolution downscaling factors, thereby producing the downscaled SM.
This method has been widely used due to its simplicity. Machine learning (ML) belongs
to the category of empirical methods, which has a strong ability to deal with nonlinear
issues [12]. It expresses the relationship between SM and downscaling factors more rea-
sonably under the lack of a physical background, overcoming the limitations of empirical
methods and physical-based models.

ML techniques have many cases in the field of passive microwave SM downscaling.
Part of the studies performed downscaling directly through a single model. For instance,
Wei et al. [13] used the gradient boosting decision tree (GBDT) algorithm to downscale
SMAP products and obtained promising results in most regions, although improvements
are still needed in areas with denser vegetation cover. Karthikeyan et al. [14] generated
a multi-layer SM product using the extreme gradient boosting (XGBoost) algorithm, and
demonstrated that the method has high accuracy, with ubRMSE less than 0.040 m3/m3 at
most sites. Another part of the studies selected the best performing one for downscaling by
comparing a series of models in the training phase. Rao et al. [15] adopted a combination of
multiple ML methods to downscale SMAP SM, including multiple linear regression (MLR),
support vector regression (SVR), artificial neural networks (ANNs), random forest (RF)
and XGBoost. They found that XGBoost was selected most frequently and had the highest
accuracy, followed by RF. Similarly, Yan et al. [16] compared three ML algorithms: RF, SVR,
and k-nearest neighbors (KNN) for AMSR-E and AMSR2 products. They found that RF
had the best accuracy and used it to establish seasonal downscaling models. Despite the
success of these studies, there are still some potential concerns. A single ML model is prone
to overfitting in a multidimensional feature space and may not fulfill both performance
and stability requirements.

The Stacking fusion model is a heterogeneous ensemble method that can effectively
combine the advantages of multiple models and obtain better results than a single model.
Its advancement has been verified in the landslide susceptibility assessment [17], biomass
estimation [18], visibility prediction [19] and other remote sensing related fields. However,
to our knowledge, the potential of this method in the field of SM downscaling has not been
fully explored. Therefore, this study attempted to improve the resolution and accuracy
of SMAP products by using the Stacking fusion model. We chose three models as the
base estimators for Stacking: XGBoost, light gradient boosting machine (LightGBM), and
categorical boosting (CatBoost). They are improved algorithms based on GBDT, with
excellent generalization ability [20]. The superiority of XGBoost and LightGBM in SM
downscaling has been confirmed [14,21]. CatBoost is widely used in various ML tasks due
to its advantages in dealing with categorical features and regression issues [22,23]. But
its applications in SM downscaling are relatively limited, and it is necessary to evaluate
its applicability.

To enhance the interpretability of the downscaling model, auxiliary data closely related
to SM are required. Land Surface Temperature (LST) and Vegetation Index (VI) are the most
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commonly used factors that form a feature space to describe the surface water and heat
exchange process, also known as the triangular feature space [24]. In addition, Bai et al. [25]
found that combining optical/infrared data with synthetic aperture radar (SAR) data can
obtain better downscaling results in semi-arid areas with low vegetation cover. This is due
to the fact that C-band radar can penetrate the soil surface and directly detect the surface
SM content, while optical data has an indirect relationship with SM. In other words, multi-
source data can reflect SM changes from different perspectives, thereby complementing the
limitations of each data type. Apart from the dynamic variables mentioned above, some
static variables also have a significant impact on SM, such as topography, soil properties,
and land cover [21,26]. They are more important than dynamic variables because they
determine the primary level and spatial pattern of SM at a specific location, and act
as constraint conditions for the downscaling model. Dynamic variables predominantly
capture the short-term fluctuations of SM, which are influenced by climate and vegetation.
Karthikeyan et al. [14] first identified homogeneous regions by predictors in their study,
and then performed SM downscaling by region. They suggested that ML algorithms based
on homogeneous regions may solve the extrapolation problem. This inspires our study: we
want to explore whether downscaling accuracy can be improved by partitioning modeling
in regions with complex topography.

In summary, the main objective of this study is to downscale SMAP L4-SM products
using multi-source data through the Stacking strategy. In particular, we selected Anhui
Province, which has a rich and easily distinguishable terrain, as the study area. This study
compared the accuracy differences between downscaling models with and without terrain
partitioning. Furthermore, we performed a comprehensive validation of the downscaling
results through ground measured SM and precipitation data, as well as other 1km SM
products. We also analyzed the impact of different sources of downscaling factors on SM.
The contributions of this study are (1) Validating the applicability of the Stacking fusion
model in passive microwave SM downscaling. (2) Exploring whether the strategy based on
terrain partitioning can improve the downscaling accuracy. (3) Analyzing how different
downscaling factors influence SM.

2. Study Area and Data
2.1. Study Area

Anhui Province (29◦41′–34◦38′N, 114◦54′–119◦37′E; Figure 1) is situated in eastern
China and is significantly influenced by monsoon climate. It has an average annual temper-
ature of 14–17 ◦C and an average annual precipitation of 773–1670 mm. The topography of
Anhui province is diverse [27], with higher elevation in the south and lower in the north,
consisting of five geomorphic units: Huai Bei Plain (HB), Jiang Huai Hilly (JH), Wan Xi
Mountain (WX), Yan Jiang Plain (YJ), and Wan Nan Mountain (WN). This paper will use
these abbreviations to describe these geomorphic units, respectively.

HB is located in the north of Anhui province, accounting for about 27% of the total area,
with flat terrain and fertile soil, making it the largest agricultural center in the province.
JH covers around 23% of the total area, characterized by relatively low terrain and abundant
water resources. YJ, spanning about 21% of the total area, is situated along the Yangtze
River. It has a dense river network and well-developed paddy agriculture. WX and WN
make up approximately 29% of the total area and are dominated by forest, with higher
elevation.
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Figure 1. Location of the study area.

2.2. Research Data

The data used in this study included ground measured SM, SMAP SM, MODIS
products, Sentinel-1 data, DEM, soil property data, and precipitation data, all from the
period of 1 April to 1 November 2019. Table 1 provides a description of these datasets.

Table 1. Description of datasets used in this study.

Dataset Variable Spatial
Resolution

Temporal
Resolution

SMAP L4-SM SM 9 km 3 h
MOD09A1 * NDVI; NDWI; NSDSI; EVI 500 m 8 d
Sentinel-1 * VV; VH 10 m 12 d
MOD11A1 * LST (Land Surface Temperature) 1 km Daily

MOD15A2H * LAI (Leaf Area Index) 500 m 8 d
MCD43A3 * Albedo 500 m Daily

CHIRPS * Precipitation 0.05◦ Daily
HWSD Sand; Silt; Clay 1 km ——
SRTM * DEM (Digital Elevation Model) 90 m ——
SMCI1.0 SM 1 km/9 km Daily

SMAP D-SM SM 1 km Daily
MCD12Q1 * LC (Land Cover) 500 m Yearly

Datasets with * were downloaded through the Google Earth Engine (GEE). NDVI: Normalized Difference
Vegetation Index. NDWI: Normalized Difference Water Index. NSDSI: Normalized Shortwave-Infrared Difference
Bare Soil Moisture Index. EVI: Enhanced Vegetation Index.

2.2.1. Ground Measured SM Data

The ground measured SM data are provided by the Anhui Hydrology Bureau. There
are 87 SM sites, of which 11 are located in WN, 5 in WX, 18 in YJ, 16 in JH, and 37 in HB
(Figure 1). These sites collect SM data at three standard depths (10 cm, 20 cm, and 40 cm)
on the 1st, 11th, and 21st of each month at 8:00 AM using the drying method. Validation
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of downscaling results with measured SM at 10 cm may introduce some uncertainty as
the SMAP L4 represents SM at a depth of 5 cm. It has been demonstrated that SM of two
consecutive soil layers is strongly correlated [28], therefore inconsistency in measurement
depths has little effect on the correlation assessment. Theoretically, SM at 10 cm will be
slightly higher than that at 5 cm as a result of infiltration and evapotranspiration.

2.2.2. SMAP SM Data

SMAP is a satellite mission launched by the National Aeronautics and Space Adminis-
tration (NASA) in 2015 to monitor the global distribution of SM and freeze–thaw states at
the Earth’s surface. The satellite is equipped with an L-band radar and an L-band radiome-
ter, which synergistically enhance the accuracy and spatial resolution of SM retrievals [29].
The SMAP L4-SM data used in this study were acquired from the National Snow and
Ice Data Centre (NSIDC) (https://nsidc.org/data/smap, accessed on 10 April 2023). It is
generated every three hours, and data from 6:00 AM to 9:00 AM were selected to match the
observation time of the measured SM.

2.2.3. Modis Products

MODIS is a crucial data source for constructing downscaling models in this study,
providing continuous data with a spatial resolution of 250 m–1 km for important features
such as spectral indices and surface temperature. All MODIS products used in this paper
have been listed in Table 1, among which the MCD12Q1 provides LC data at 500 m
resolution for 2019, MOD15A2H provides LAI data at 500 m every 8 days, and MOD11A1
provides LST data at 1 km per day. Additionally, MOD09A1 provides reflectance data
at 500 m resolution every 8 days, and four spectral indices were calculated to provide
information on surface vegetation, water bodies, and soils. The expressions for these
indices are as follows:

NDVI = (nir − red)/(nir + red) (1)

EVI = 2.5 ∗ (nir − red)/(nir + 6 ∗ red − 7.5 ∗ blue + 1) (2)

NDWI = (green − nir)/(green + nir) (3)

NSDSI = (swir1 − swir2)/swir1 (4)

where red, nir, blue, and green correspond to bands 1–4 of MODIS, and swir1 and swir2
correspond to bands 6–7, respectively. Furthermore, MCD43A3 provides albedo data in
visible, near infrared, and shortwave bands. Since the difference between the mean values
of white-sky albedo and black-sky albedo is small and highly correlated [30], their mean
values in the shortwave band were used as an approximation of surface albedo in this study.

2.2.4. Sentinel-1 Data

Sentinel-1 is composed of two polar-orbiting satellites, Sentinel-1A and Sentinel-1B,
both equipped with C-band synthetic aperture radar (SAR) sensors to monitor land and
ocean surfaces. It has a 12-day repeat cycle and can operate in four imaging modes: strip
map (SM), interferometric wide swath (IW), extra-wide swath (EW), and wave (WV). The
IW mode is the main mode for land surface observation, providing 10 m resolution images
in both VV and VH polarizations.

In this study, the ascending orbit data of Sentinel-1 in the IW mode were utilized,
and a sliding time window processing method was applied to generate daily radar data.
The window had a size of 12 days, containing 6 days before and after each day. This
setup ensured that each day’s radar data had an equal temporal span, thus avoiding data
gaps. Within the sliding time window, daily radar data were obtained by averaging all the
Sentinel-1 images.

https://nsidc.org/data/smap
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2.2.5. Topographic Data

Topography plays an important role in SM downscaling, which is closely related to the
climate, surface runoff, and the water cycle, etc. The distribution of SM at different scales
is strongly influenced by topography (e.g., elevation, slope), and many studies have used
topographic features for SM downscaling [21]. In this study, the Shuttle Radar Topography
Mission (SRTM) data from the GEE platform were used with a spatial resolution of 90 m.

2.2.6. Soil Property Data

Soil properties (proportion of clay, sand, and silt) are also vital predictors, which de-
termine the permeability of surface water and the water-holding capacity of soil. The soil
property data used in this study were downloaded from the Harmonized World Soil Database
(HWSD) [31]. This dataset adopted the FAO-90 soil classification system, which encompassed
physical and chemical characteristics of topsoil (0–30 cm) and subsoil (30–100 cm). The clay,
sand, and silt data of topsoil were extracted and cropped to the study area.

2.2.7. Precipitation Data

Precipitation is another important climatic factor that affects SM dynamics besides
surface temperature, and the soil response to rainfall differs across depths [32]. Time
series precipitation data are commonly used to validate downscaled SM. The Climate
Hazards Group InfraRed Precipitation with Station dataset (CHIRPS), which combines
0.05◦ resolution satellite imagery and in situ station data, is currently updated to version 2.0
and provides global precipitation data from 1981 to the present. In this study, CHIRPS data
were acquired through the GEE platform as a validation set for the downscaling results.

2.2.8. Other SM Products

Two SM products with a spatial resolution of 1 km were selected for comparison with
downscaled SM. The first is SMCI1.0 (Soil Moisture of China by in situ data, version 1.0),
produced by Shangguan et al. [33]. It provides daily SM data from 2000 to 2020 and consists
of 10 depth layers (10–100 cm), offering two versions with different resolutions of 30 s
(~1 km) and 0.1 deg (~9 km). The product is available from the National Tibetan Plateau
Science Data Center (https://cstr.cn/18406.11.Terre.tpdc.272415, accessed on 6 May 2023).
This study obtained SMCI1.0 SM at 10 cm depth with a spatial resolution of 1 km as one of
the validation datasets.

Moreover, SMAP released the SMAP-derived 1 km downscaled surface SM product
(abbreviated as SMAP D-SM) in March 2023, which contains global daily 1 km resolution
surface SM [34]. Currently version 1 data are available from the NSIDC Center, and
daily SM data during the study period were obtained as another validation dataset (https:
//nsidc.org/data/smap, accessed on 25 April 2023). The product has two bands: band
1 represents the data for the ascending orbit (6 AM) and band 2 for the descending orbit
(6 PM). Given the high number of missing values, we combined the two bands to fill in the
missing values of the AM data with the PM data.

3. Methods

Section 3.1 illustrates the data preparation process based on GEE. Section 3.2 introduces
three improved algorithms for GBDT: XGBoost, CatBoost, and LightGBM, which are
tree-based ML methods that differ in model construction, feature processing, and target
optimization. To integrate the advantages of the three models, this study adopts the
Stacking strategy. This subsection can be realized with the scikit-learn library for Python3
and Jupyter Notebook. Section 3.3 demonstrates the overall downscaling strategy and
provides a schematic diagram. Finally, Section 3.4 presents several metrics to evaluate the
downscaling results.

https://cstr.cn/18406.11.Terre.tpdc.272415
https://nsidc.org/data/smap
https://nsidc.org/data/smap
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3.1. Data Preparation

Some low-quality pixels may be observed in the MODIS products due to noise (mainly
clouds). To maintain the spatial continuity and consistency of the data while minimizing
the outliers, low-quality pixels were first filtered out through the quality control bands in
each MODIS dataset. Then, for the daily-scale data (MOD11A1, MCD43A3), the missing
values were filled in by linear interpolation using the valid values of the images within
15 days before and after. Similarly, for the 8-day scale data (MOD09A1, MOD15A2H),
images of intermediate dates were generated by linear interpolation.

To further improve the quality and smoothness of the interpolated data, the SG
(Savitzky–Golay) filter was introduced. This method utilizes polynomials for the least-
squares fitting of values within a moving window, effectively removing noise while pre-
serving the trend of data [35]. There are two important parameters of the SG filter, the
half-width of the sliding window, m, and the order of the polynomial, d. Specifically, m
determines the amount of data considered by the filter, while d defines the order of the
polynomial used in the filter. A larger m and smaller d result in a smoother filtering result.
After several tests, this study set m to 5 and d to 4.

MCD12Q1 is an annual product with five classification schemes. This study selected
Land Cover Type 5, the Plant Functional Type (PFT) scheme, which includes 8 biomes
and 4 other land cover types, totaling 12 types. The area of each class was calculated and
reclassified to reduce the complexity and uncertainty of classification (Table 2). Water
bodies were excluded to minimize the negative impacts on downscaling performance.

Table 2. MCD12Q1 (PFT) land cover types and reclassification scheme.

Original Reclassified

Value Class Area (km2) Class Value

0 Water 4242.68 Water 0

1 Evergreen Needleleaf Forest 17,272.22

Forest 1
2 Evergreen Broadleaf Forest 11,409.17
3 Deciduous Needleleaf Forest 14.01
4 Deciduous Broadleaf Forest 27,420.06
5 Shrub 0.00

6 Grass 2532.65 Grassland 2

7 Cereal Croplands 45,961.34 Cropland 38 Broadleaf Croplands 26,324.97

9 Urban and Built-Up 4938.73
Urban 410 Permanent Snow and Ice 0.00

11 Non-Vegetated Lands 8.01

3.2. Machine Learning Methods
3.2.1. XGBoost

XGBoost is an ensemble learning method based on the GBDT algorithm proposed by
Chen and Guestrin [36]. Compared to the traditional GBDT algorithm, XGBoost adopts the
second-order derivative to expedite model convergence, thereby enhancing optimization
efficiency. It also incorporates a regularization term to control the model complexity.
Moreover, XGBoost can handle samples with missing features by assigning them to the left
or right subtrees based on their gain.

3.2.2. LightGBM

LightGBM was created by Microsoft in 2017 [37]. It is also based on GBDT and employs
a histogram-splitting algorithm that greatly reduces the time complexity. Unlike other
decision tree algorithms that operate level-wise, LightGBM uses a leaf-wise algorithm with
depth limits, which reduces unnecessary computation. Additionally, LightGBM utilizes
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the gradient-based one-side sampling (GOSS) algorithm to remove samples with small
gradients and prioritize under-trained data, making it particularly effective for handling
large datasets.

3.2.3. CatBoost

CatBoost is based on oblivious trees, developed by Yandex [38]. Oblivious trees are a
special type of decision tree that are characterized by the use of the same features for node
division at each level, which can minimize the depth of the tree and memory consumption.
By using the ordered boosting method, CatBoost addresses the prediction shift problem
inherent in traditional gradient boosting algorithms, thus avoiding target leakage and
overfitting.

3.2.4. Stacking Model

Current prevailing ensemble learning methods include Bagging, Boosting, and Stack-
ing. Bagging and Boosting are homogeneous ensemble algorithms, and their base estima-
tors are generated by the same algorithm. Stacking is a heterogeneous ensemble approach
that observes different aspects of the data through different models. It is essentially a
stratified structure where each layer can contain multiple estimators. In the case of two
layers, the base estimator in the first layer receives its predictions from the training data
and then passes them to the second layer for further study. This stratified structure allows
different models to complement each other, ultimately creating a more powerful model.
Considering the base models used in this study, the steps of Stacking are shown in Figure 2.
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3.3. Construction of Downscaling Framework Based on Stacking Strategy

ML methods have been widely applied in SM downscaling. Some studies experiment
directly with a single model, while others compare the performance of models during
the training phase to select the best one. However, relying on a single model may not
fully capture the complexity of SM distribution, especially when dealing with multiple
influencing factors. This study proposed a Stacking fusion model for SM downscaling with
a total of 15 predictors, including NDVI, NDWI, NSDSI, EVI, VV, VH, LAI, LST, Albedo,
sand, silt, clay, DEM, LC, and DOY (day of that year). Figure 3 illustrates the framework of
downscaling, specifically:
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Figure 3. Schematic of the proposed downscaling framework.

1. Data preparation: in Section 3.1, we performed quality control, gap-filling, and SG
filtering on MODIS data through the GEE platform, simplifying the land cover types
and removing the water bodies.

2. Data processing: To standardize the spatial resolution of all predictors to 1 km and
9 km, the MCD12Q1 dataset was aggregated using the mode method and the remain-
ing datasets were aggregated using the mean method. The coordinate systems for all
datasets were unified to the UTM projection system with WGS84 datum.

3. Sample generation: The 9 km features and SMAP L4-SM were sampled according to
the terrain partition (HB, JH, WX, YJ, WN). Besides remotely sensed features, DOY
was added to indicate the generation time of features.

4. Model construction: Taking the WN region as an example, the samples collected in
this region were randomly divided into the training set and test set with a ratio of 7:3.
XGBoost, LightGBM, and CatBoost were trained using the five-fold cross validation
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method and fused through the Stacking strategy. The test set was not involved in
training and only used for model evaluation. It is worth mentioning that, to test
the effectiveness of terrain partitioning, we also trained a Stacking model without
partitioning.

5. Model application: The trained Stacking models were then applied to the 1 km resolu-
tion features to generate downscaled SM for each region, and finally the downscaled
results were merged by date.

6. Validation: The downscaling results were validated using the measured SM from
87 sites, together with precipitation data. Furthermore, we compared the SMCI1.0
and SMAP D-SM products as well as the downscaled SM without partitioning.

3.4. Evaluation Method

To fully evaluate the proposed downscaling framework, several metrics were intro-
duced [39]. The correlation coefficient (R) and the root mean square error (RMSE) were
used to assess the performance of the trained model, measuring the difference between
the predicted and true values. The bias and unbiased RMSE (ubRMSE) were also applied.
UbRMSE is commonly used in SM downscaling studies, and the SMAP requirement for
ubRMSE is less than 0.040 m3/m3. These four metrics are calculated as follows:

R =
E[(ySMAP − E[ySMAP])(ymeasured − E[ymeasured])]

σSMAPσmeasured
(5)

RMSE =

√
E
[
(ySMAP − ymeasured)

2

]
(6)

bias = E[ySMAP]− E[ymeasured] (7)

ubRMSE =

√
RMSE2 − bias2 (8)

where E[•] represents the mean operator, ymeasured and ySMAP refer to the measured SM
and SMAP SM; and σSMAP and σmeasured are the standard deviations of the SMAP SM and
measured SM, respectively.

4. Results
4.1. Validation of Downscaling Framework

A total of 310,935 samples were obtained by sampling the feature dataset and SMAP
L4 dataset at 9 km spatial resolution during the study period. For each region, XGBoost,
LightGBM, and CatBoost models were trained using the five-fold cross validation method,
and their prediction results were fused by the Stacking strategy. Table 3 displays the num-
ber of samples for each region and the performance of the models in the training and test
sets. It is evident that all models achieved R values exceeding 0.9 and RMSE values below
0.028 m3/m3 on both training and testing sets, indicating a strong correlation between the
model predictions and the actual values. The four models successfully captured the rela-
tionship among the features and target at a coarse scale. In addition, they exhibited similar
R and RMSE values on their respective training and test sets, which further demonstrated
that they were not overfitted.

The model’s performance on the test set determines its ability to generalize to un-
known data. Figure 4 reveals that the Stacking model outperformed the others, with the
highest R and the lowest RMSE in each region. XGBoost had comparable performance to
Stacking model and was the most robust of the three base models. CatBoost also showed
reliable accuracy, confirming its feasibility for the SM downscaling task. While LightGBM
had the fastest training speed, its performance was slightly inferior to the other models. Sur-
prisingly, the WN region had the best simulation results among the five regions (Stacking:
R:0.989; RMSE:0.011 m3/m3), followed by the WX region (Stacking: R:0.981; RMSE:0.014
m3/m3), which may be attributed to the quality of the samples.
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Table 3. Number of samples and performance of XGBoost, LightGBM, CatBoost and Stacking models
on training and test sets for each region (HB, JH, WX, YJ, and WN). Bold indicates the best model
score. The unit of RMSE is m3/m3.

Region HB JH WX YJ WN

Number of samples 81,064 76,062 38,794 60,043 54,972

XGBoost
Training set R 0.964 0.966 0.988 0.984 0.991

RMSE 0.017 0.014 0.012 0.014 0.010

Test set
R 0.952 0.950 0.978 0.976 0.987

RMSE 0.020 0.016 0.015 0.017 0.012

LightGBM
Training set R 0.919 0.931 0.967 0.961 0.974

RMSE 0.026 0.019 0.019 0.022 0.017

Test set
R 0.917 0.924 0.963 0.958 0.973

RMSE 0.026 0.020 0.020 0.023 0.018

CatBoost
Training set R 0.955 0.955 0.978 0.977 0.987

RMSE 0.020 0.016 0.015 0.017 0.012

Test set
R 0.951 0.948 0.975 0.974 0.986

RMSE 0.020 0.017 0.016 0.018 0.013

Stacking
Training set R 0.967 0.967 0.987 0.984 0.991

RMSE 0.016 0.013 0.012 0.014 0.010

Test set
R 0.959 0.954 0.981 0.979 0.989

RMSE 0.018 0.015 0.014 0.016 0.011
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4.2. Overall Performance of Downscaled SM

Downscaled SM was validated using the measured SM data collected from April to
November 2019. Figure 5 shows the distribution of R and ubRMSE values for 87 sites. Over-
all, most sites exhibited satisfactory performance. Regarding R values, 52 sites performed
well (R > 0.60; 60% of the total), 26 sites showed moderate performance (0.4 < R < 0.6; 30%),
and 9 sites performed poorly (R < 0.4; 10%), including one with extremely weak correlation
(R < 0). The 9 poorly performing sites were mainly located in the HB and JH regions,
characterized by flat terrain and predominantly agricultural, so the weaker correlation may
be attributed to the irrigation conditions in these regions. This emphasizes the influence
of human activities on SM and the sensitivity of the downscaling approach to such im-
pacts. In addition, the average ubRMSE value for these 87 sites was 0.040 m3/m3, with
45 sites that met the SMAP accuracy requirements for ubRMSE (ubRMSE < 0.040 m3/m3),
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38 sites showed acceptable errors (0.040 m3/m3 < ubRMSE < 0.060 m3/m3), and 4 sites
underperformed (ubRMSE > 0.060 m3/m3), mainly in the JH and WN regions.
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87 SM sites from 1 April to 1 November 2019.

To further compare the downscaled SM across different regions, bias was introduced
to assess the deviation between downscaled SM and measured SM. As shown in Figure 6,
the positions of points represent the values of R and ubRMSE, and the colors reflect the bias
values. Red indicates a dry bias, while blue signifies a wet bias, and the darker the color,
the more severe the deviation. The results revealed that the downscaled SM in the HB and
JH regions exhibited significant dry bias. Among the 37 sites in the HB region, 33 sites had
bias values less than 0, as well as for 14 out of 16 sites in the JH region. The average bias
values for these two regions were −0.050 m3/m3 and −0.034 m3/m3. Conversely, the WX,
YJ, and WN regions displayed a clear wet bias, especially in the WN region, with average
bias values of 0.029 m3/m3, 0.026 m3/m3, and 0.090 m3/m3, respectively. The fundamental
reason for deviation was that the original SMAP products had certain uncertainties due
to the coarse resolution as well as the effects of vegetation and surface roughness, which
inevitably affected the performance of the downscaled SM. Moreover, the deviation was
related to the methods of obtaining SM data at different scales. The measured SM was
collected based on ground observations, representing specific SM values at 10 cm depth,
while the downscaled SM represented approximate average SM values at 5 cm depth
within 1 km.

We compared all SM products with measured SM and plotted their R, bias, RMSE,
and ubRMSE values. As shown in Figure 7, the downscaled SM generally had higher
correlation coefficients, with a mean R value of 0.613 and a median R value of 0.659. SMAP
L4-SM is the original coarse-resolution product, which had comparable accuracy with
the downscaled SM (mean R: 0.605; median R: 0.648). Yet, the downscaled SM showed a
significant reduction in R outliers. The downscaled SM(WP) is a downscaled version of SM
obtained without partition modeling. It also showed reliable accuracy, with a mean R value
of 0.551 and a median R value of 0.610. Compared with SMAP L4-SM, both downscaled
SM and downscaled SM(WP) displayed a narrower range of bias values and were closer
to 0. This may be explained by the fact that the downscaling process introduced more
details, making the results closer to the measured SM. Although the RMSE values of the
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downscaled SM were slightly higher than downscaled SM(WP), its ubRMSE values were
generally lower and exhibited less variability, suggesting higher overall accuracy. This
demonstrated the feasibility of the Stacking model in SM downscaling field and proved the
effectiveness of the terrain-based partitioning modeling strategy. The SMAP D-SM showed
the most significant variation of all the metrics, implying the instability of its performance.
This product consists of two bands representing SM values at 6 AM and 6 PM. Given the
high number of missing values in a single band, the practice of using the 6 PM values to
fill in the 6 AM missing values may have introduced additional uncertainties, leading to
inconsistent overall performance. Furthermore, the algorithm of the product itself also has
an impact. The SMCI1.0 product presented the lowest R level and the highest wet bias
(mean bias: 0.089 m3/m3; median bias: 0.076 m3/m3), probably related to the data and
method used by the authors. In summary, the Stacking model successfully improved the
accuracy of SM, especially under the terrain partitioning modeling strategy.

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 24 
 

 

while the downscaled SM represented approximate average SM values at 5 cm depth 
within 1 km. 

 
Figure 6. The relationships between measured SM and downscaled SM. (a) HB, (b) JH, (c) WX, (d) 
YJ, and (e) WN. The color of the points represents the bias value. n represents the number of sites, 
and sites with a correlation coefficient less than 0 are excluded from the figure. 

We compared all SM products with measured SM and plotted their R, bias, RMSE, 
and ubRMSE values. As shown in Figure 7, the downscaled SM generally had higher cor-
relation coefficients, with a mean R value of 0.613 and a median R value of 0.659. SMAP 
L4-SM is the original coarse-resolution product, which had comparable accuracy with the 
downscaled SM (mean R: 0.605; median R: 0.648). Yet, the downscaled SM showed a sig-
nificant reduction in R outliers. The downscaled SM(WP) is a downscaled version of SM 
obtained without partition modeling. It also showed reliable accuracy, with a mean R 
value of 0.551 and a median R value of 0.610. Compared with SMAP L4-SM, both 
downscaled SM and downscaled SM(WP) displayed a narrower range of bias values and 
were closer to 0. This may be explained by the fact that the downscaling process intro-
duced more details, making the results closer to the measured SM. Although the RMSE 
values of the downscaled SM were slightly higher than downscaled SM(WP), its ubRMSE 
values were generally lower and exhibited less variability, suggesting higher overall ac-
curacy. This demonstrated the feasibility of the Stacking model in SM downscaling field 
and proved the effectiveness of the terrain-based partitioning modeling strategy. The 
SMAP D-SM showed the most significant variation of all the metrics, implying the 

Figure 6. The relationships between measured SM and downscaled SM. (a) HB, (b) JH, (c) WX, (d) YJ,
and (e) WN. The color of the points represents the bias value. n represents the number of sites, and
sites with a correlation coefficient less than 0 are excluded from the figure.



Remote Sens. 2024, 16, 200 14 of 24

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 24 
 

 

instability of its performance. This product consists of two bands representing SM values 
at 6 AM and 6 PM. Given the high number of missing values in a single band, the practice 
of using the 6 PM values to fill in the 6 AM missing values may have introduced additional 
uncertainties, leading to inconsistent overall performance. Furthermore, the algorithm of 
the product itself also has an impact. The SMCI1.0 product presented the lowest R level 
and the highest wet bias (mean bias: 0.089 m3/m3; median bias: 0.076 m3/m3), probably 
related to the data and method used by the authors. In summary, the Stacking model suc-
cessfully improved the accuracy of SM, especially under the terrain partitioning modeling 
strategy. 

 
Figure 7. Comparison of all SM products with measured SM. SMAP L4-SM denotes the original 9 
km SMAP product. SMCI1.0 refers to the 1 km SM product of Shangguan et al. SMAP D-SM is the 
1 km SM product released by SMAP in March 2023. Downscaled SM is the 1 km downscaling results 
of this study. Downscaled SM(WP) indicates the 1 km downscaling results without partition mod-
eling. 

4.3. Temporal Dynamics of Downscaled SM 
To verify whether downscaled SM can capture the temporal dynamics of SM and 

respond to rainfall events, we randomly selected 11 sites and plotted a series of charts. In 
Figure 8, the first column shows the analysis results of all SM products (SMCI1.0, SMAP 
D-SM, SMAP L4-SM, downscaled SM, downscaled SM (WP)) along with measured SM, 
and precipitation data. The second column keeps only SMAP L4-SM, downscaled SM, and 
measured SM, highlighting the R, bias, and ubRMSE metrics before and after downscal-
ing. We identified these sites using CODE-Region-LC numbers, where CODE stands for 
site code, Region for location, and LC for land cover type. The findings suggested that 

Figure 7. Comparison of all SM products with measured SM. SMAP L4-SM denotes the original 9 km
SMAP product. SMCI1.0 refers to the 1 km SM product of Shangguan et al. SMAP D-SM is the 1 km
SM product released by SMAP in March 2023. Downscaled SM is the 1 km downscaling results of
this study. Downscaled SM(WP) indicates the 1 km downscaling results without partition modeling.

4.3. Temporal Dynamics of Downscaled SM

To verify whether downscaled SM can capture the temporal dynamics of SM and
respond to rainfall events, we randomly selected 11 sites and plotted a series of charts. In
Figure 8, the first column shows the analysis results of all SM products (SMCI1.0, SMAP
D-SM, SMAP L4-SM, downscaled SM, downscaled SM (WP)) along with measured SM,
and precipitation data. The second column keeps only SMAP L4-SM, downscaled SM, and
measured SM, highlighting the R, bias, and ubRMSE metrics before and after downscaling.
We identified these sites using CODE-Region-LC numbers, where CODE stands for site
code, Region for location, and LC for land cover type. The findings suggested that both
downscaled SM and downscaled SM(WP) had strong temporally consistent behavior with
SMAP L4-SM and captured the dynamic changes of SM. This observation was consistent
for all sites. Surprisingly, downscaled SM eliminated the systematic deviation of SMAP
to a certain extent, making the results closer to the measured SM. For instance, SMAP
L4 underestimated the surface SM at site 50,637,471, resulting in a strong dry bias (bias
= 0.094 m3/m3), while downscaled SM minimized it to 0.010 m3/m3. Similar dry bias
corrections were found at sites 50,435,400 and 50,901,400. Overestimation can also be
mitigated by downscaled SM, as exemplified by sites 62,905,301 and 70,140,600, where the
bias was adjusted from 0.068 m3/m3 and 0.093 m3/m3 to 0.017 m3/m3 and −0.025 m3/m3,
respectively.
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Figure 8. Time series comparisons of SMCI1.0, SMAP D-SM, SMAP L4-SM, downscaled SM, down-
scaled SM (WP), measured SM, and precipitation data at 11 selected SM sites. Note: 2019-10-01 is not
displayed because only one site had valid measured SM data on that day.

Although in some cases, the downscaled SM still had a large bias, such as the wet bias
of 0.071 m3/m3 at site 62,909,502; there was already a noticeable improvement compared
to the original SMAP L4-SM which had a wet bias of 0.138 m3/m3. In contrast, the bias
correction ability of downscaled SM (WP) was relatively unstable. Some sites improved
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(50,801,100, 62,921,000), while others actually worsened (50,637,471, 62,802,800), which
reaffirmed the advancement of the partitioning strategy. Moreover, Figure 8 illustrates that
almost every rainfall event corresponded with an increase in SM, and both SMAP L4-SM
and downscaled SM responded positively. The blue boxes in Figure 8 highlight significant
increases in SM during rainfall events, and the yellow boxes indicate a gradual return of
SM after rainfall. Such phenomena have existed at any time period. SMCI1.0 tended to
overestimate at most sites, and SMAP D-SM fluctuated wildly, with only a few valid values
from mid-June to August. This is consistent with the findings presented in Figure 7.

4.4. Spatial Distribution of Downscaled SM

To visualize the spatial heterogeneity of the downscaled SM, this section presents
average distribution maps of SMAP L4-SM, downscaled SM, precipitation, LST during the
study period, as well as DEM and clay. As can be seen from Figure 9, the downscaled SM
not only retained the spatial pattern of the original SMAP L4-SM, but also provided a higher
resolution. The SM pattern in Anhui Province presented a clear north–south variation,
being lower in the north and higher in the south. Such difference is a consequence of
combined climatic conditions, land cover, and topography [10]. The southern regions
are located in the humid zone and enjoy abundant precipitation under the influence of
monsoon. They are predominantly forested, which reduces water evaporation and runoff,
thus increasing SM retention. Meanwhile, the northern areas experience a semi-humid
climate characterized by limited precipitation. Coupled with extensive cultivation, the soil
in this region is loose and has difficulty retaining water [40].
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We additionally conducted a detailed examination of three regions, labeled A, B, and
C, which display unique topographic and climatic features. Region A is characterized
by low elevation, limited precipitation, and high temperature; region C is marked by
high elevation, abundant precipitation, and low temperature; and region B has a medium
elevation between the two, with mild temperature and precipitation. The local maps
show that downscaled SM was sensitive to changes in precipitation and LST, indicating
its strong spatial heterogeneity. And the distribution of downscaled SM in the three
regions demonstrated characteristics consistent with topography and climate: region A had
generally low SM values, suggesting a drier environment; region C tended to have higher
SM values, indicating ample water resources; and region B had intermediate SM values
and did not show significant dryness or wetness. It is noteworthy that the downscaled SM
showed high spatial correlation with DEM and clay, highlighting their dominant roles in
the downscaling models, while other features modulate the local changes and heterogeneity
of SM. This finding will be further verified in the subsequent section.

5. Discussion
5.1. Analysis of Input Predictors

We developed a SM downscaling framework based on the Stacking strategy using
15 predictors: NDVI, NDWI, NSDSI, EVI, VV, VH, LAI, LST, Albedo, sand, silt, clay, DEM,
LC, and DOY, which successfully generated SM at 1 km resolution on a daily scale. The
relative importance of the predictors and their effects on the model’s output were also
investigated. The feature importance provided by the tree models can reveal some of
the black-box nature of the model and identify the influential features, but they do not
indicate the exact relationship between the features and target, such as positive or negative
correlation. SHAP [41] values can measure the magnitude and direction of each feature’s
influence. They treat each prediction as a collaborative result of all features and assign a
SHAP value to each feature based on its contribution to the prediction. We used SHAP
values to analyze how each feature affects the prediction result in this study. To approximate
the SHAP values of the Stacking model, we combined the SHAP values of the XGBoost,
LightGBM, and CatBoost models in each region on the training set. Feature importance
was obtained by taking the mean of absolute SHAP values for each feature.

Figure 10 displays the SHAP values of the features for each region, with the most
influential features near the top of the y-axis. It is evident that DOY plays the most crucial
role in downscaling models for all regions. This suggests that it is advisable to introduce
time as a feature since it can capture the seasonal variation of SM. Moreover, the time
feature can help the model identify anomalous data caused by noise like cloud cover or
signal interference and adjust the predicted values promptly. Shangguan et al. [42] also
found the importance of the DOY in their study.

Clay is the second most influential feature, which along with sand and silt, determines
the physical properties of the soil, and in turn affects the storage and movement of SM [43].
Clay has the finest particles, and soils with more clay content generally have lower in-
filtration and permeability rates but higher water-holding capacity. Figure 10d shows a
positive correlation between clay and SM, meaning that higher clay content leads to higher
SM. Conversely, sand has the coarsest particles, and soils with more sand content have
better permeability and drainage properties but lower water-holding capacity. Figure 10c
demonstrates that sand is negatively correlated with SM, implying that higher sand content
results in lower SM. Silt has a particle size between clay and sand, which can retain some
water making the soil moist.
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DEM is the third significant feature, supported by previous studies demonstrating
that topography and soil property are crucial factors influencing SM dynamics [14,21].
In HB, JH, and YJ regions, DEM was negatively correlated with SM, which is consistent
with the results of Fu et al. [44]. These regions have lower elevations, typically below
100 m, and mainly consist of cropland. The negative correlation may be due to the flat
topography, which allows moisture to accumulate. Unlike other regions, WX and WN
have higher elevations and are predominantly forested, where a positive trend in the
correlation between DEM and SM is observed. This could be explained by the role of trees
in improving soil water retention capacity [45]. Generally, higher elevations have more
forest cover, while lower elevations are dominated by grasslands or croplands. Forested
land has more canopy and leaves, which shade solar radiation and reduce heat from the
soil surface, thereby increasing SM content. On the other hand, temperature variations
caused by elevation change are also a significant factor; higher elevations usually have
lower temperatures, which reduces the evaporation rate and favors SM retention. We
plotted the co-interaction of DEM and LST on SM in the JH and WX regions (Figure 11).
The results show that DEM was more variable in the WX region, and there was a noticeable
interaction between LST and DEM. In areas with higher DEM, LST tended to be lower and
SHAP values were positive, indicating a positive effect on SM. On the contrary, the JH
region had a small range of DEM variation, and the interaction between LST and DEM was
less pronounced. These findings suggest that the impact of DEM on SM is complex, and it
depends not only on the variation of DEM itself but also on the interaction effects of DEM
with other factors. This is exactly the purpose of our downscaling strategy based on terrain
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partitioning, which simplifies the complex influence of terrain and improves the stability
and consistency of downscaling models.
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LST controls the surface thermal changes and is the most significant dynamic variable
besides DOY. Many studies have confirmed its importance [13,46]. As shown in Figure 10,
the red LST point is on the left side of the y-axis, which means the increase of LST will
bring negative feedback to the SM. This finding is further supported by Figure 11, as the
SHAP value is less than 0 when the LST exceeds about 25 ◦C, indicating a negative effect
on SM at this point. Albedo is also of high importance as it represents the proportion of
solar radiation reflected by the Earth’s surface. Studies have shown a typical exponential
relationship between Albedo and SM, and the surface Albedo will decrease with the
increase of SM [47]. This is due to the fact that wet soils are darker than dry soils and darker
soils have lower albedo values. The negative correlation is more significant in the YJ, WX,
and WN regions.

VV and VH have a certain penetration ability and can directly detect the surface SM.
Figure 10f shows that VV is more significant than VH, which agrees with the findings of
Bai [25]. It is noteworthy that the influence of vegetation on the backscattering coefficient
under the VV mode is less than that of VH. This is because under VH polarization, the radar
microwave is vertically transmitted and horizontally received, which is more susceptible
to vegetation, resulting in more vegetation information in the backscatter. Whereas VV
polarization is vertically transmitted and vertically received, and so this mode penetrates
the vegetation better and contains more soil information in the backscatter.

Among the four spectral indices (NDVI, EVI, NDWI, and NSDSI), NSDSI has the
highest importance, followed by NDWI and EVI, and NDVI is the least. NSDSI is an index
calculated by the reflectance of the swir bands, which is sensitive to the changes of SM [48].
NDVI has been proven essential in previous SM downscaling studies, but it has little effect
in this study. This is not an isolated case; Yang et al. [49] also found that NDVI had a low
score in their study. The role of vegetation was significant in some studies [6,50], but others
found that vegetation played a limited role at the 1 km scale [51]. This may be caused
by the nonlinear and threshold effects of vegetation on SM, and the relationship between
NDVI and SM may be positive, negative, or irrelevant for different vegetation cover. In
terms of this study, these indices including LAI played a minor role in the downscaling
models, while clay, DEM, and LST played a major role.
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5.2. Uncertainty of This Study

Despite the encouraging results of our downscaling study, as with most studies, there
are some unavoidable uncertainties. The first is the quality of the remote sensing data
sources, including both the predictors and target. During the data preparation step, we
performed interpolation and filtering operations on the quality-controlled feature datasets
to obtain more reliable continuous data. In fact, there were still missing values and outliers,
especially in the LST data. Missing values reduced the number of valid samples, while
outliers interfered with the judgement of the downscaling models to make inaccurate
predictions. On the other hand, the accuracy of downscaling results is highly dependent
on the coarse-resolution SM products. Since the model was constructed based on the
relationship between the aggregated high-resolution predictors and coarse-resolution SM
products, the uncertainty of the original SM products directly affected the accuracy of the
downscaling results. As can be seen from Figures 7 and 8, SMAP L4 products tended to
underestimate at lower SM levels (HB, JH) and overestimate at higher SM levels (WX, YJ,
and WN). These uncertainties were propagated and amplified during the downscaling
process, leading to biases in the downscaled SM. Future research should aim to enhance
the reliability of data sources and minimize the losses associated with data quality.

The second uncertainty relates to scale. To align the resolution of the predictors with
SMAP L4, the numerical features were aggregated using the average method. However,
this process led to a loss of extreme values. For instance, the range of DEM changed from
1–1683 m to 4–1212 m. These extreme values reappeared when the model was applied, and
the unlearned data may affect the accuracy of the model’s output.

The third uncertainty occurs in the validation phase since the measured SM and the
remotely sensed SM have different depths and breadths. On the one hand, the measured
SM is acquired manually by the drying method, which always represents the SM condition
at a depth of 10 cm, while the remotely sensed SM is obtained by inverting the microwave
signal. SMAP L4 claims that the depth of the surface SM is the top 5 cm of the soil, but
the actual penetration depth of the microwave signal is not fixed and varies with the soil
water content [52]. This means that the remotely sensed SM may contain SM information
from different depths, not just from the top 5 cm. On the other hand, the measured SM only
reflects the SM condition in a small area, while the downscaled SM represents the average
SM condition within 1 km. In summary, the inconsistency of depth and breadth will affect
the representativeness of the measured SM collected at a specific depth, thus reducing the
comparability of the results.

6. Conclusions

This study proposed a downscaling framework for SMAP soil moisture based on
a Stacking strategy that considers the geomorphic units. The spatial resolution of the
SMAP L4-SM product was successfully improved from the original 9 km to 1 km by using
multi-source datasets including: MODIS, Sentinel-1, topography, and soil property. The
main findings are summarized as follows.

1. The framework incorporated three ML models, XGBoost, LightGBM, and CatBoost.
Comparison revealed that the Stacking model achieved the highest accuracy in all
regions, followed by XGBoost, CatBoost, and LightGBM. Validation with measured
SM showed that 60% of the sites were highly correlated with downscaled SM (R > 0.6),
with an average ubRMSE of 0.040 m3/m3, which satisfied the accuracy requirements
of the SMAP products. Moreover, the downscaling results outperformed the avail-
able 1 km resolution SM products (SMCI1.0, SMAP D-SM) and method without
partitioning (downscaled SM (WP)).

2. Both downscaled SM and downscaled SM (WP) exhibited temporal consistency with
SMAP L4-SM and responded positively to rainfall events. They also mitigated the
systematic bias of the SMAP L4 product, but downscaled SM (WP) performed in-
consistently and sometimes even aggravated the bias. The spatial pattern analysis
indicated that the downscaled SM preserved the overall trend of SMAP L4-SM while
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enriching the details. The downscaled SM was higher in the humid regions and lower
in the semi-humid regions, which agreed with the actual situation.

3. Among the 15 predictors, DOY, clay, and DEM were the most important and deter-
mined the overall distribution of SM. It is worth noting that the relationship between
DEM and SM was complex; they exhibited a negative correlation in the plains and
a positive correlation in the mountains. LST and Albedo reflected the dynamics of
surface energy and showed a negative correlation with SM in all regions. VV polariza-
tion was less affected by vegetation and thus captured SM changes more effectively
than VH. NSDSI was found to be more sensitive to SM than the other spectral indices,
and together they regulated local variations and spatial heterogeneity of SM.

In conclusion, this study provides evidence supporting the applicability of the Stacking
model in SM downscaling studies. Furthermore, it validates the effectiveness of the terrain-
based partitioning strategy. Future studies can further explore the effects of long series
data in practical applications, such as assessing the response of SM to climate change and
human activities and analyzing the variability of downscaling results in different seasons.
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