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Abstract: Accurate snow cover data are critical for understanding the Earth’s climate system, and
exploring hydrological processes and regional water resource management over High Mountain Asia
(HMA). However, satellite-based remote sensing observations of snow cover have inevitable data
gaps originating from cloud cover, sensor, orbital limitations and other factors. Here an effective
cloud-gap-filled (CGF) method was developed to fully fill the data gaps in Moderate Resolution
Imaging Spectroradiometer (MODIS) normalized difference snow index (NDSI) product. The CGF
method combines the respective strengths of the cubic spline interpolation method and the spatio-
temporal weighted method for generating the CGF Terra-Aqua MODIS NDSI product over HMA
from 2000 to 2021. Based on the validation results of in situ snow-depth observations, the CGF NDSI
product achieves a high range overall accuracy (OA) of 93.54–98.08%, a low range underestimation
error (MU) of 0.15–3.49% and an acceptable range overestimation error (MO) of 0.84–5.77%. Based on
the validation results of high-resolution Landsat images, this product achieves the OA of 88.52–92.40%,
the omission error (OE) of 1.42–10.28% and the commission error (CE) of 5.97–17.58%. The CGF
MODIS NDSI product can provide scientific support for eco-environment sustainable management
in the high mountain region.

Keywords: snow cover; MODIS; normalized difference snow index; cloud-gap-filled method; High
Mountain Asia

1. Introduction

Snow cover has been identified as an essential geophysical parameter for understand-
ing the Earth’s climate system, covering about 40% to 50% of the Northern Hemisphere
during winter [1–3]. Snow cover exerts a strong control on the surface energy budget,
water cycle, primary productivity and surface gas exchange [4–7]. As a natural solid water
reservoir within the cryosphere, snow cover holds a crucial role as the source of water
supply, benefiting over 17% of the global population with fresh drinking water through
seasonal snowmelt-driven runoff [8–10].

High Mountain Asia (HMA) is the largest expanse of snow cover outside of the polar
regions and feeds several large rivers, often referred to as the “Earth’s third pole” and the
“Water Tower of Asia” [11,12]. Since the 1970s, HMA has undergone drastic environmental
changes, including the air temperature rate more than double the global average [13]. The
warming climate may be accountable for accelerated melting of glaciers and snow cover
over HMA and surrounding, which could have a significant impact on water supply and
water security in this region. Given these concerns, it is crucial to monitor the variability of

Remote Sens. 2024, 16, 192. https://doi.org/10.3390/rs16010192 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16010192
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5498-0196
https://orcid.org/0000-0001-5721-9247
https://orcid.org/0000-0002-6681-3640
https://doi.org/10.3390/rs16010192
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16010192?type=check_update&version=2


Remote Sens. 2024, 16, 192 2 of 22

snow cover over HMA, while the long-term and highly accurate snow cover products are
fundamental for snow cover research over HMA.

Compared to the limited field surveys and the sparse, uneven distribution of avail-
able snowfall observation data, satellite remote sensing data exhibit great advantages in
depicting the long-term spatio-temporal patterns of snow cover in large-scale and rugged
terrain regions (like HMA). The rapid development of remote sensing technology during
the last decades has generated a series of snow cover products including optical-based
and microwave-based (mainly derived from passive sensors) products. Microwave-based
snow products (e.g., snow depth (SD) and snow water equivalent) derived from passive
sensors have been proven to be useful for monitoring snow cover [14–18]. However, their
coarse (∼25 km) footprints and the saturation of observations in deep snow (>0.8 m depth)
greatly limit the applicability for mountainous areas [19–21]. In comparison, optical-based
sensors can also provide snow cover data, in terms of more appropriate temporal and
spatial resolutions by making full use of snow’s unique reflective properties in the vis-
ible and shortwave infrared bands [18,22–25]. Currently, a variety of long-time series
optical-based snow cover products with different temporal and spatial resolutions have
been widely used, such as Advanced Very High Resolution Radiometer (AVHRR) Global
Area Coverage (GAC) daily snow cover fraction products [26], the daily Visible Infrared
Imaging Radiometer Suite (VIIRS) snow cover products [27] and the Moderate Resolution
Imaging Spectroradiometer (MODIS) snow cover products [28]. Among them, the daily
MODIS snow cover products from the Terra (MOD10A1) and Aqua (MYD10A1) satellites
are widely used to depict the spatio-temporal patterns of snow cover, due to the advantages
of a long-time series (available since 2000), high spatio-temporal resolution (i.e., 500 m and
daily), global coverage and being freely available. Previous studies have demonstrated that
MODIS snow cover products perform well in extracting snow cover information, exhibiting
an overall accuracy exceeding 90% under clear sky conditions, despite some remaining
uncertainties in forest coverage and mountainous areas [25,29–34]. Nevertheless, cloud
contamination in MODIS snow cover products often causes numerous data gaps, which
greatly limits their applications [35–37].

To reduce or eliminate the effects of cloud data gaps in the MODIS snow cover
products, various methods have been developed over the past decade. Traditional cloud
removal algorithms can be categorized into four types: temporal, spatial, multi-source
fusion and spatio-temporal combination methods [18]. In addition, these methods have
mainly been aimed at binary snow cover (BSC) or fractional snow cover (FSC) data from
the MODIS snow cover product Collection 5 (C5) [18]. Temporal methods include the Terra
and Aqua combination (TAC) [38], adjacent temporal deduction [39,40], multi-day com-
bination [38,41] (e.g., the 8-day composite products of MOD/MYD10A2 product), season
filter [39,42] and temporal interpolation using a mathematical function [31,43–45]. These
temporal methods utilize the instability of cloud cover and the temporal correlation of snow
cover to effectively reduce cloud cover, either partially or completely, with high overall
accuracy. However, they have the problems of sacrificing temporal resolution, failing to
reduce the cloud cover completely and having low accuracy when cloud coverage is contin-
uous. Spatial methods include the spatial neighborhood filter [42], the snowline mapping
approach [46] and spatial interpolation based on a regression function [47]. These spatial
methods utilize the spatial distribution characteristics of snow cover for reclassifying cloud
pixels. However, they have the problems of high computational complexity, and having low
accuracy in a region with high cloud coverage for all spatial methods. Multi-source fusion
methods, including the optical/microwave observations fusion, optical/meteorological
station observations fusion and optical/microwave/meteorological station observations
fusion [16,48–50]. These multi-source fusion methods have the capability to eliminate all
cloud pixels, while the accuracy depends on the complementarity and precision of the input
data [18]. However, they often sacrifice spatial resolution and result in varying degrees of
uncertainty. Considering all the appearing problems from the above three methods, the
spatio-temporal combination methods can achieve satisfactory cloud removal effectiveness
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and accuracy. Spatio-temporal combination methods rely on the correlations of snow cover
in space and time, typically taking two basic forms [1]. One is to take advantage of multiple
spatial methods and temporal methods step by step [38,40,42,47,51]. The other is to utilize
the spatial and temporal information simultaneously [52–55]. Between the two forms of
methods, the latter has shown more promise in recent years because it uses spatio-temporal
information from the snow cover and removes all cloud contamination in one step. For
example, Li et al. [54] developed an adaptive spatio-temporal weighted method to estimate
cloud pixels by considering the probability of snow cover; Hou et al. [52] introduced a
gap-filling method that utilizes a non-local spatio-temporal filter method to eliminate cloud
contamination for daily MODIS FSC products; Huang et al. [53] proposed a spatio-temporal
model based on hidden Markov random fields that integrates spatio-temporal-spectral
information along with environmental relationships. However, these methods suffer from
issues related to high computational complexity and excessively high time costs.

Currently the version of MODIS snow cover product has moved from C5 to Collection
6 (C6), because the forward processing of MODIS product C5 has been discontinued in
2016. In addition, since the NDSI from C6 is a more accurate description index of the
snow detection as compared to the FSC from C5 [56], more studies are shifting to the
use of MODIS C6 products. Research works have demonstrated that the MODIS snow
cover product C6 has high accuracy in the Tibetan Plateau, with Terra product C6 being
comparable to Terra product C5, and Aqua product C6 truly having better accuracy than
Aqua product C5 [57–59]. However, the data gaps from cloud contamination in C6 still
exist, and thus a cloud removal algorithm for MODIS NDSI products is necessary. Given
the advantages and disadvantages of the above cloud removal methods, we propose a
cloud-gap-filled (CGF) method to retrieve the missing NDSI information beneath the
cloud gaps in the MODIS NDSI product. The CGF method can effectively combine the
temporal interpolation method with the spatio-temporal weighted method, leveraging
their individual strengths. The ultimate goal is to develop a long-term daily cloud-free
MODIS NDSI product for HMA with high precision. This product will facilitate climate
and glacio-hydrological modelling and understanding of the present dynamics of the
cryosphere in the region. The abbreviations for key terminology mentioned in this paper
are shown in Table A1.

2. Study Area and Data
2.1. Study Area

The HMA refers to the vast high-altitude geographical area in Central Asia (spanning
22–47◦N and 64–107◦E), encompassing the Asian mountain ranges (e.g., Tien Shan, Pamir,
Karakoram, Kunlun Mountain, and the Himalayas) surrounding the Tibetan Plateau (Figure 1).
Fifteen subregions of HMA according to the Randolph Glacier Inventory version 6.0 (RGI
v6.0) are shown in Figure 1 [60]. With an average elevation exceeding 4000 m, the HMA
constitutes the largest expanse of snow cover outside of the Earth’s polar regions. Many
rivers (e.g., Yangtze, Yellow, Indus, Brahmaputra and Syr Darya) are recharged by the abun-
dant snow/glacier melt water in HMA and provide a major headwater for almost 2 billion
people [12,61–65]. In addition, the HMA has typical alpine vegetation cover, mainly in-
cluding alpine grassland (1.52 × 106 km2), alpine meadow, temperate grassland, deciduous
broad-leaved forest and forest [66]. The changes in snow cover triggered by climate change
have a significant impact on terrestrial ecosystems, notably affecting the phenology of alpine
vegetation [67,68].
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tion of meteorological stations and Landsat-8 OLI scenes utilized for validation, and the verification 
regions are also shown. 
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2.2.1. MODIS Snow Cover Products 

The version six MODIS Terra (MOD10A1 C6) and MODIS Aqua (MYD10A1 C6) daily 
snow cover products from 2000 to 2021 from the National Aeronautics and Space Admin-
istration (NASA) Earthdata website (https://search.earthdata.nasa.gov/search, accessed on 
10 April 2022) are used in this study, covering the whole study area with nine tiles (Figure 
1). The C6 product has implemented several algorithm improvements of snow cover and 
replaces the BSC and FSC layers in the C5 products with two new layers: raw NDSI and 
NDSI snow cover. The original MODIS NDSI layer is mosaicked, resampled and con-
verted to a geographic projection (WGS84 coordinate system, 0.005 degree resolution). 
After that, the pixel value in the original MYD10A1 and MOD10A1 products are reclassi-
fied into two categories: (1) valid NDSI_Snow_Cover values ranging from 0 to 100 (with 
values for inland water and ocean set to 0); (2) invalid cloud-gap values of 250, encom-
passing the original classifications for cloud, missing data, detector saturated, night and 
no decision. 

2.2.2. Ground Snow Depth (SD) Measurements 
The SD observations at 99 meteorological stations (Figure 1) from 2001 to 2013 

(https://data.tpdc.ac.cn/en/data/72d6dadf-8e1c-458b-b24e-91539042dfe6/, accessed on 5 
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formed quality control and homogenization procedures to be a high-quality data resource. 
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Figure 1. Topography and location of the HMA. In names of subregions from RGI v6.0, these
individual letters ‘W’, ‘C’, ‘E’ and ‘S’ correspond to west, central, east and south, respectively.
The location of meteorological stations and Landsat-8 OLI scenes utilized for validation, and the
verification regions are also shown.

2.2. Data
2.2.1. MODIS Snow Cover Products

The version six MODIS Terra (MOD10A1 C6) and MODIS Aqua (MYD10A1 C6)
daily snow cover products from 2000 to 2021 from the National Aeronautics and Space
Administration (NASA) Earthdata website (https://search.earthdata.nasa.gov/search,
accessed on 10 April 2022) are used in this study, covering the whole study area with nine
tiles (Figure 1). The C6 product has implemented several algorithm improvements of snow
cover and replaces the BSC and FSC layers in the C5 products with two new layers: raw
NDSI and NDSI snow cover. The original MODIS NDSI layer is mosaicked, resampled and
converted to a geographic projection (WGS84 coordinate system, 0.005 degree resolution).
After that, the pixel value in the original MYD10A1 and MOD10A1 products are reclassified
into two categories: (1) valid NDSI_Snow_Cover values ranging from 0 to 100 (with values
for inland water and ocean set to 0); (2) invalid cloud-gap values of 250, encompassing the
original classifications for cloud, missing data, detector saturated, night and no decision.

2.2.2. Ground Snow Depth (SD) Measurements

The SD observations at 99 meteorological stations (Figure 1) from 2001 to 2013 (https://
data.tpdc.ac.cn/en/data/72d6dadf-8e1c-458b-b24e-91539042dfe6/, accessed on 5 August
2022) are utilized for accuracy validation [69,70]. The released SD data have performed
quality control and homogenization procedures to be a high-quality data resource.

2.2.3. Landsat OLI Satellite Images

The Landsat-8 OLI satellite images (45 scenes, Figure 1) are used to derive high-
resolution BSC maps for comparison and validation of the CGF MODIS NDSI product

https://search.earthdata.nasa.gov/search
https://data.tpdc.ac.cn/en/data/72d6dadf-8e1c-458b-b24e-91539042dfe6/
https://data.tpdc.ac.cn/en/data/72d6dadf-8e1c-458b-b24e-91539042dfe6/
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in this study. The images with less than 30% cloud coverage are selected through the
‘CLOUD_COVER’ under clear sky and visual identification. The images are provided
and processed by the Google Earth Engine platform (https://earthengine.google.com/,
accessed on 12 August 2022). The detailed selected images information is shown in Table A2.
All data processing is on the platform.

2.2.4. Digital Elevation Model (DEM) Data

The Shuttle Radar Topography Mission (SRTM) 90 m gridded digital elevation model
(DEM) version 4.1 data are available from CGIAR Consortium for Spatial Information
(CGIAR-CSI, http://srtm.csi.cgiar.org/, accessed on 13 April 2022). These data are re-
sampled to 500 m for matching the MODIS snow cover product and used for extracting
elevation information during the procedure of CGF method.

3. Methods

In this study, the implementation of the CGF method included three substeps: (1) the
Terra and Aqua daily combination is executed to remove partial cloud gaps; (2) three
temporal interpolation methods (TI) and a spatio-temporal weighted (STW) method are
experimented for reconstructing NDSI information of cloud pixel separately; (3) the “Cloud
Assumption” approach and cloud persistence days (CPD) are introduced to assess the
performance of these four methods, and then the final CGF method is determined by how
these four methods are combined (Section 4.1). Figure 2 presents a detailed flowchart of
the proposed CGF method for MODIS NDSI product. Finally, daily CGF MODIS NDSI
product is generated, and its accuracy is evaluated based on in situ SD observations and
high-resolution snow cover maps derived from Landsat images.
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3.1. Cloud-Gap-Filled (CGF) Method
3.1.1. Terra and Aqua Daily Combination (TAC)

The TAC refers to merge MOD10A1 (Terra) and MYD10A1 (Aqua) products on the
same day on a pixel-by-pixel basis, efficiently reducing the cloud gaps with negligible
precision sacrifice [71]. Thus, this method is introduced as a preprocessing to reduce cloud
coverage preliminarily. The complete combination rule is: (1) when a pixel is cloud-free in
both MOD10A1 and MYD10A1, the combination pixel value is set to the MOD10A1 NDSI
value; (2) when a pixel is cloud-free only in one of the products, the combination pixel value

https://earthengine.google.com/
http://srtm.csi.cgiar.org/
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is set to the cloud-free NDSI value; (3) for the remaining pixels, they are identified as cloud
pixels; (4) for the first 2 years only Terra was in orbit, thus the period before 4 July 2002 is
only based on MOD10A1 product.

3.1.2. Temporal Interpolation (TI) Method

After TAC, there are still a large number of clouds in the MODIS NDSI products. The
NDSI can offer an accurate depiction of the gradual changes in snow cover over time,
due to NDSI’s ability to accurately depict the gradual changes in snow cover over time,
the clouds in MODIS NDSI data can be removed through temporal interpolation filtering.
Tang et al. [71] developed a cubic spline interpolation (CSI) for MODIS NDSI products,
and this method effectively filled in the missing data under the cloud cover. In this study,
three temporal interpolation methods: linear interpolation (LI), quadratic interpolation (QI)
and CSI are used for experimental test of temporal interpolation filtering. All interpolation
processes are carried out in the Interactive Data Language platform (IDL, version 8.5).

3.1.3. Spatio-Temporal Weighted (STW) Method

However, the temporal interpolation algorithm may cause some error in the case of
long cloud persistence days [71]. Inspired by the work of Jing et al. [24] and Li et al. [54],
this study proposes STW as the comparison with the above three temporal interpolation
methods, which simultaneously takes advantage of the spatial and temporal correlations
of snow cover. In the proposed approach, the NDSI information of candidate cloud-free
pixels within a certain spatio-temporal window are used to reconstruct the missing NDSI
information of the target cloud pixel. The implementation of STW included three substeps:
(1) the spatio-temporal selection of candidate cloud-free pixels; (2) the calculation of spatio-
temporal weights for candidate cloud-free pixels; (3) the calculation of NDSI values for
target cloud pixel based on the spatio-temporal weights (Figure 2).

In a target TAC image, N candidate cloud-free pixels are extracted within a 3 × 3 × t
(7 ≤ t ≤ 15) space-time cube, which denotes a spatial window of dimensions 3 × 3 and a
time window of t days with the center of the time window corresponding to the day of data
gap. A space-time cube that is too small may not provide sufficient candidate cloud-free
pixels, while a space-time cube that is too large can result in increased computational
and time costs during the cloud removal process [72]. Thus, the value of t depends on
whether it is satisfied such that N accounts for at least 30% (this threshold has been tested
to be appropriate) of the total number of pixels in the space-time cube. In addition, many
studies have demonstrated that snow fraction exhibits a positive linear correlation with
elevation [73–75]. Thus, an elevation control condition (i.e., the absolute value of the
difference in elevation between the candidate cloud-free pixels and the target cloud pixel
should be less than or equal to 500) is added in this study to constrain the selection of
candidate cloud-free pixels.

The reconstructed NDSI information of the target cloud pixel can be expressed by
Equations (1)–(5). The weight Wi decides the contribution of the candidate cloud-free pixels
to reconstructing NDSI information of the target cloud pixel and is calculated by the inverse
distance weighted (IDW) method. It is determined by the temporal distance, geographic
distance and elevational distance between the target cloud pixel and the candidate cloud-
free pixels. Shorter time intervals, smaller distance and closer elevation of the candidate
cloud-free pixel to the target cloud pixel produce a higher weight (i.e., greater contribution)
for the candidate cloud-free pixel.

NDSIT
k = ∑N

i Wi × NDSIC
i · · ·where Wi = (1/Di)/∑N

i (1/Di) (1)

Di =

√
(dt

i)
2
+ (dg

i )
2
+ (de

i )
2 (2)

where NDSIT
k denotes the final weighted NDSI of the target cloud pixel k. NDSIC

i is the
preprocessed (i.e., TAC) NDSI of the candidate cloud-free pixel i. N is the number of
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the candidate cloud-free pixels. Wi denotes the spatio-temporal weight. Di denotes the
synthetic spatio-temporal distance.

The temporal distance dt
i between the target cloud pixel k and the candidate cloud-free

pixel i can be calculated according to Equation (3). The unit of time is the day.

dt
i = 1 + abs(timei − timek)/tw (3)

where tw is the width of searching temporal window that is used to normalize the temporal
distance.

The geographic distance dg
i between the target cloud pixel (xk, yk) and the candidate

cloud-free pixel (xi, yj) can be calculated according to Equation (4). The unit of horizon-
tal or vertical distance is the number of pixels between the two pixels in horizontal or
vertical direction.

dg
i = 1 +

√
(xi − xk)

2 + (yi − yk)
2/gw (4)

where gw is the width of searching geographic window (gw = 1) that is used to normalize
the geographic distance.

The elevational distance de
i between the target cloud pixel k and the candidate cloud-

free pixel i can be calculated according to Equation (5). The unit of elevation is meter.

de
i = 1 + abs(elevationi − elevationk)/ew (5)

where ew is the width of searching elevational window (ew = 500 m) that is used to normalize
the elevational distance.

3.2. Validation Method
3.2.1. Accuracy Assessment Based on “Cloud Assumption”

Utilizing the original NDSI value of the MODIS snow cover product as the validation
data provides the most direct way to assess the accuracy of different TI methods and STW
method in filling in cloud gaps over the entire study area. Therefore, the strategy we
perform is to assume that the images on multiple random dates are cloud-covered. In
addition, then we use different TI methods and STW method to reconstruct NDSI values
(i.e., simulated NDSI values) for these images and subsequently compare them with the
original images assumed before (i.e., reference true NDSI value). The TAC NDSI image
of twenty dates (i.e., 12 February, 12 May, 13 October and 27 October of 2017; 5 February,
7 April, 31 July and 4 November of 2018; 16 February, 12 April, 12 August and 8 December
of 2019; 27 March, 23 May, 17 September and 10 November of 2020; 20 March, 25 June,
26 August, 11 November of 2021) from 2017 to 2021 are selected. The performance of each
method is evaluated using two metrics: mean absolute error (MAE) and root mean square
error (RMSE), calculated using Equation (6) and Equation (7), respectively.

MAE =

n
∑

i=1
|ci − si|

n
(6)

RMSE =

√√√√√ n
∑

i=1
(ci − si)

2

n
(7)

where ci and si are the simulated NDSI value and reference true NDSI value, respectively;
n is the total number of reference true NDSI pixels.

In addition, we introduce the cloud persistence days (CPD) combined with MAE and
RMSE to evaluate the accuracy of different reconstruction methods and determine the final
CGF method. The CPD represents the number of consecutive days of cloud observed for a
pixel from the last cloud-free observation to the next cloud-free observation [71]. The CPD
for each cloud pixel are calculated using the daily TAC images from 2017 to 2021.
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3.2.2. Validation Based on In-Situ SD Observations

The CGF MODIS NDSI product are compared with the daily SD observed by ninety-
nine meteorological stations from 2001 to2013. The confusion matrix widely used [76],
presented in Table 1. The ε1= 1, 2, 3 and 5 cm are the defined threshold values (referring to
different measurements of SD) for the in situ SD observations. In addition, the ε2= 0.10 [57],
0.29 [58] and 0.40 [37] are the defined threshold values for the MODIS NDSI to determine
whether a pixel is covered by snow.

Table 1. Accuracy evaluation of confusion matrix based on in situ SD observations. The metrics
derived from confusion matrix are: overall accuracy (OA), underestimation error (MU) and overesti-
mation error (MO). The ε1 and ε2 indicate the defined SD threshold value and MODIS NDSI threshold
value, respectively.

Observed SD

Snow Cover (≥ε1 cm) No Snow (<ε1 cm)

MODIS NDSI
Snow cover (≥ε2) a b

No Snow (<ε2) c d
Cloud e f

OA = ((a + d)/(a + b + c + d + e + f )) × 100%
MU = (c/(a + b + c + d)) × 100% MO = (b/(a + b + c + d)) × 100%

Number of available pixels = a + b + c + d

3.2.3. Validation Based on Landsat-8 OLI Images Derived BSC Maps

The BSC maps with 30 m resolution retrieved from Landsat-8 OLI images based on
the Google Earth Engine platform are used to verify the CGF MODIS NDSI product in
this study. The method of BSC map generation consists of two parts: the first part is the
SNOMAP algorithm [2,77], which defined the NDSI of a snow pixel as greater than or
equal to 0.40. Furthermore, to eliminate the influence of water bodies and other land cover,
the reflectance of NIR greater than 0.11 and green band greater than 0.10 are adopted in
this algorithm [78]. The second part is proposed by Wang et al. [79] and the normalized
difference vegetation index (NDVI), which are introduced in this study to enhance the
identification of the forest snow cover. The specific strategy is that a pixel with NDSI < 0.4,
NDFSI > 0.4 and NDVI < 0.6 is identified as the snow pixel in the forest [80]. The NDSI,
NDFSI and NDVI are defined as follows Equations (8)–(10):

NDSI =
ρgreen − ρswir

ρgreen + ρswir
(8)

NDFSI =
ρnir − ρswir

ρnir + ρswir
(9)

NDVI =
ρnir − ρred
ρnir + ρred

(10)

where ρgreen, ρswir, ρnir and ρred correspond to the reflectance of the green, SWIR, NIR and
red bands measured in Landsat imagery.

In addition, the 500 m BSC maps are aggregated from the Landsat 30 m BSC maps
through 50%-pixel aggregation to match the spatial resolution of the MODIS NDSI product.
The specific strategy is that if an aggregated pixel (500 m) contains more than 50% snow
cover pixels (30 m) and lower than 5% cloud pixels (30 m), it is assigned to “snow covered”;
otherwise, it is assigned “snow free” or “cloud” (those with >5% of the 30 m pixels flagged
as “cloud” or “cloud shadow”) [58,78]. Both cloud and cloud shadow are identified using
the quality assessment (QA) band of Landsat-8 OLI image. Then, the CGF MODIS NDSI
derived BSC maps are evaluated with the Landsat BSC maps based on the confusion matrix
including the metrics of OA, commission error (CE) and omission error (OE) (Table 2).
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Table 2. Confusion matrix comparing MODIS NDSI derived BSC maps with Landsat BSC maps. The
ε2 indicates the defined MODIS NDSI threshold value.

Landsat OLI

Snow Cover No Snow

MODIS NDSI
Snow cover (≥ε2) SS NS

No now (<ε2) SN NN

OA = ((SS + NN)/(SS + NS + SN + NN)) × 100%
OE = (SN/(SS + SN)) × 100% CE = (NS/(NN + NS)) × 100%

4. Results
4.1. The Determination and Effectiveness of the CGF Method

As shown in Figure 3a, the frequency of the CPD reduces gradually as the increasing
of CPD value, and the frequency of CPD ≤ 5 d and CPD ≤ 15 d for the cloud-covered
pixels reach 70.92% and 94.07%, respectively. It can be clearly seen that the accuracy of
these four methods is related to CPD with the MAE and RMSE increasing as the rising of
CPD (Figure 3b,c). The accuracy of LI and QI is obviously lower than the CSI and STW
due to higher values of MAE and RMSE. For the CSI method and STW method, when the
CPD < 8 d, the MAE and RMSE curves of the two methods are approximately the same,
i.e., a close accuracy; in the case of the CPD ≥ 8 d, the STW has the slightly higher accuracy
than CSI due to the lower values of MAE and RMSE. The overall MAE/RMSE of the
methods of LI, QI, CSI and STW using the frequency of CPD as the weight are 0.080/0.137,
0.088/0.144, 0.066/0.101 and 0.064/0.099, respectively.
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Figure 3. (a) The mean frequency of CPD from 2017 to 2021, and (b) MAE and (c) RMSE of retrieved
NDSI data using different TI methods and STW method under different CPD conditions. The dashed
line indicates that CPD is equal to 8 d.

To directly show the cloud removal results, Figure 4 shows the spatial comparison
in three regions (R1, R2 and R3, Figure 1), including the TAC NDSI image, real cloud
and cloud assumption image, CPD image, CSI NDSI image, STW NDSI image and the
CSI-STW NDSI image. The CSI-STW image is the combination of the CSI NDSI image
(when the CPD < 8 d, and the frequency of CPD is 80.53%) and STW NDSI image (when
the CPD ≥ 8 d, and the frequency of CPD is 19.47%) based on the CPD NDSI image. It
can be clearly seen that both CSI NDSI and STW NDSI images can generally maintain well
the spatial distribution of snow cover compared with the true TAC NDSI image, and the
distribution of reconstructed pixels have spatial continuity. However, there are some abrupt
changes in the reconstructed pixels of the CSI NDSI image with high CPD. In addition, the
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reconstructed result of STW NDSI image tends to have some overestimations in low CPD
region, but performs better in high CPD region than the CSI NDSI image. Therefore, the
combination of the CSI and STW (i.e., CSI-STW NDSI image) is determined as the final
CGF method, which can take full advantage of the respective precision advantages and
spatial accuracies of CSI and STW NDSI (Figure 4, column 6). Moreover, this combination
ensures high efficiency, due to higher time cost (high computational complexity) for STW.
The CPD threshold (CPD = 8 d) for the combination is taken from the accuracy results in
Figure 3.
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4.2. The Accuracy of the CGF MODIS NDSI Product
4.2.1. Validation Based on In Situ SD Observations

The in situ SD observations are used as the ground truth to verify the snow classi-
fication accuracy of the TAC NDSI and CSI-STW NDSI datasets (Table 3). For different
threshold combinations of ε1 and ε2, the OAs, MUs and MOs obtained by the CSI-STW
NDSI compared with the TAC NDSI show satisfactory performance. The CSI-STW NDSI
efficiently captures the snow cover referring to the in situ measurements, with an average
OA of more than 95%. However, the TAC NDSI is insufficient to accurately detect the snow
cover, with an average OA of only 60.45%. Note: The reason for the significant difference in
OA between TAC NDSI and CSI-STW NDSI is that the calculation of OA is considering the
case where TAC is cloud-covered when station records SD (e and f in Table 1). Although
the MU and MO of the CSI-STW NDSI are slightly higher than the TAC NDSI, they are still
within an acceptable range. To sum up, the CGF method proposed in this study can fill all
of the data-gap pixels, capture more snow events and restore the snow cover information
with a high reliability.
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Table 3. Validation results for TAC NDSI and CSI-STW NDSI based on in situ SD observations in the
Tibetan Plateau from 1 January 2001 to 31 December 2013. The definitions and calculations of the
indices in this table are shown in Table 1.

Threshold Values
for Snow Cover

TAC NDSI CSI-STW NDSI

OA
(%)

MU
(%)

MO
(%)

OA
(%)

MU
(%)

MO
(%)

ε1 = 1 cm, ε2 = 0.1 59.21 1.70 3.23 93.54 2.32 4.14
ε1 = 1 cm, ε2 = 0.29 60.26 2.07 1.16 95.39 3.15 1.46
ε1 = 1 cm, ε2 = 0.4 60.43 2.26 0.70 95.67 3.49 0.84
ε1 = 2 cm, ε2 = 0.1 59.61 0.71 3.57 94.16 1.19 4.65
ε1 = 2 cm, ε2 = 0.29 60.86 0.93 1.34 96.71 1.56 1.73
ε1 = 2 cm, ε2 = 0.4 61.10 1.07 0.83 97.18 1.81 1.01
ε1 = 3 cm, ε2 = 0.1 59.66 0.32 3.87 94.30 0.61 5.10
ε1 = 3 cm, ε2 = 0.29 61.03 0.45 1.55 97.15 0.83 2.02
ε1 = 3 cm, ε2 = 0.4 61.33 0.54 0.99 97.78 0.99 1.22
ε1 = 5 cm, ε2 = 0.1 59.52 0.08 4.35 94.08 0.15 5.77
ε1 = 5 cm, ε2 = 0.29 61.00 0.11 1.94 97.26 0.20 2.54
ε1 = 5 cm, ε2 = 0.4 61.36 0.15 1.33 98.08 0.27 1.65

Average value 60.45 0.87 2.07 95.94 1.39 2.68
Number of available pixels 289,595 465,010

4.2.2. Validation Based on High-Resolution BSC Maps

In the absence of meteorological station data, a good way to evaluate the accuracy
of the CGF MODIS NDSI product is to compare it with snow cover maps derived from
higher-resolution sensors. In this study, a total of 45 Landsat-8 images (Figure 1, Table A2)
with different snow coverages from January 2017 to December 2021 are selected for this
accuracy validation. As shown in Table 4, the OA of TAC NDSI is 88.86–93.11% for different
MODIS NDSI thresholds. Based on the CGF method, the data gaps are filled very effectively,
with the OA of CSI-STW NDSI (88.52–92.40%) slightly lower than TAC NDSI (with less loss
of accuracy). Table 5 further presents the validation results of CSI-STW NDSI for filling the
data-gap pixels in the TAC NDSI dataset, based on the Landsat-8 BSC maps under clear-sky
conditions. The OA of CSI-STW NDSI for data-gap pixels in TAC NDSI is 86.23–88.41%
for different MODIS NDSI thresholds, which is 2.63–6.08% slightly lower than TAC NDSI
(gap-free pixels) in Table 4. The results from Tables 4 and 5 demonstrate that the CGF
method proposed in this study can develop more reliable snow cover products, with high
OA and acceptable OE and CE. In addition, the MODIS NDSI threshold is an important
factor affecting the accuracy of MODIS snow cover mapping. The OA tends to increase, the
CE tends to decrease and the OE tends to increase as NDSI threshold increases. However,
the NDSI threshold of 0.29 notably improves the detection of snow cover and achieve
outstanding OE and CE, compared to the other two thresholds. It can be concluded that the
NDSI threshold of 0.29 is the best threshold to describe the spatial pattern of snow cover
of HMA when using MODIS snow-cover data, which is coherent with the conclusion of
Zhang et al. [58]. Figure 5 shows the snow cover mapping results, i.e., TAC BSC, Landsat
BSC, Landsat BSC aggregation and CSI-STW BSC, correspond to four Landsat scenes to
facilitate the analysis of their spatial consistency. In addition, the MODIS NDSI threshold is
set to 0.29. It can be seen that the spatial distribution of CSI-STW BSC is fairly consistent
with Landsat BSC, with notably improvement in the detection of snow cover information
compared to the TAC BSC. Overall, the CGF MODIS NDSI product can accurately reflect
the spatio-temporal pattern of snow cover in HMA and reliably serve the research field of
hydrology and climate change.
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Table 4. Validation results for TAC NDSI and CSI-STW NDSI based on Landsat-8 BSC maps under
clear-sky conditions. The definitions and calculations of the indices in this table are shown in Table 2.

Metrics
(%)

NDSI Threshold: 0.1 NDSI Threshold: 0.29 NDSI Threshold: 0.40

TAC NDSI CSI-STW
NDSI TAC NDSI CSI-STW

NDSI TAC NDSI CSI-STW
NDSI

SS 1,765,524 2,255,700 1,688,278 2,158,014 1,608,492 2,053,084
NS 575,201 662,668 290,431 340,524 190,413 225,094
SN 21,234 32,577 98,480 130,263 178,266 235,193
NN 2,990,539 3,107,687 3,275,309 3,429,831 3,375,327 3,545,261

Total 5,352,498 6,058,632 5,352,498 6,058,632 5,352,498 6,058,632
OE 1.19 1.42 5.51 5.69 9.98 10.28
CE 16.13 17.58 8.15 9.03 5.34 5.97
OA 88.86 88.52 92.73 92.23 93.11 92.40

Table 5. Validation results of CSI-STW NDSI for filling the data-gap pixels in the TAC NDSI dataset,
based on the Landsat-8 BSC maps under clear-sky conditions. The definitions and calculations of the
indices in this table are shown in Table 2.

Metrics
(%) NDSI Threshold: 0.1 NDSI Threshold: 0.29 NDSI Threshold: 0.40

SS 489,451 469,736 444,592
NS 85,163 50,093 34,681
SN 12,068 31,783 56,927
NN 119,452 154,522 169,934

Total 706,134 706,134 706,134
OE 2.41 6.34 11.35
CE 41.62 24.48 16.95
OA 86.23 88.41 87.03
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4.3. Spatio-Temporal Patterns of Snow Cover over HMA

The CGF MODIS NDSI product developed in this study can be utilized to detect the
spatio-temporal patterns of snow cover over HMA. The snow cover over HMA exhibit
large spatial heterogeneity due to the complex topographic and climatic conditions, and a
characteristic of a marked reduction in space during the snow melt period (Figure 6). Using
0.29 of the MODIS NDSI threshold, the snow-covered days (SCD) and snow-covered extent
(SCE) can be calculated [71]. As seen in Figure 7, the areas with high SCD (SCD > 120 d) are
mainly distributed in high-altitude mountain ranges, such as Tien Shan, Karakoram, Kunlun,
Qilian Shan, Hengduan Shan and Himalayas, accounting for 22.25% of HMA (elevation
greater than 1500 m). The areas with low SCD (SCD < 20 d) are primarily distributed in the
interior of the Tibetan Plateau and low altitude areas around it, accounting for 34.45%. Figure 8
displays the interannual variations in the daily snow-covered extent (SCE), monthly SCE and
yearly SCE for HMA (elevation greater than 1500 m) from 2000 to 2021. The daily SCE and
monthly SCE presents strong interannual volatility in winter months, while there is steady
fluctuation in summer months. As for the yearly SCE, the mean SCE and minimum SCE show
smooth interannual fluctuations with an insignificant trend. However, the maximum SCE
shows significant interannual fluctuation, which can reflect some extreme weather events to
some degree, such as the extreme snow event in 2008.
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5. Discussion

In recent years, several researchers have successively developed good long-term cloud-
free snow cover products for different regional scales (Table 6). Overall, cloud-free SCE
products produced by composite algorithms are frequently released, while only a few
NDSI products have been produced. The global cloud-gap-filled MODIS NDSI dataset
(MOD10A1F) were generated by retaining clear-sky views of the surface from previous
days in MOD10A1 NDSI product to fill the cloud-covered pixel [81,82]. However, this
product performs poorly in China, where periodic and transient snow is dominant [59], and
so does HMA. Jing et al. [59] developed the Spatio-Temporal Adaptive fusion method with
erroR correction to generate the cloud-free STAR NDSI collection. This product provides a
detailed snow cover dataset with high accuracy for China and have excellent application
prospects. Tang et al. [71] developed a cloud removal method based on CSI for MODIS
NDSI products. Even though this method effectively filled in the missing data under the
cloud cover, it may cause some error in the case of long cloud persistence days. Our study is
an inheritance and a great improvement of our previous work [71] in a sense. In this study,
three temporal interpolation methods (LI, QI and CSI) and a STW method are synthesized
and compared for determining the final CGF method. Accuracy evaluations based on
in situ SD observations and high-resolution Landsat-8 OLI images derived snow cover
maps verified the reliability of the CGF MODIS NDSI product in terms of accuracy and
consistency. In addition, the CGF MODIS NDSI product effectively improves the accuracy
of NDSI reconstructions in areas with long cloud persistence days. Additionally based on
this high accuracy product, the binary snow cover (BSC) product could be derived using
a certain MODIS NDSI threshold (such as 0.29 of Zhang et al. [58]) or the fractional snow
cover (FSC) product could be derived using the empirical relationship of Zhang et al. [59]
between FSC and MODIS NDSI, which in turn can be engaged in other applications.

Table 6. Typical long-term cloud-free snow cover products for different regional scales.

Product
Type References and Dataset DOI Spatial

Coverage
Temporal
Coverage

Temporal
Resolution

Spatial
Resolution

SCE
Huang [83]

https://doi.org/10.12072/ncdc.CCI.db0
044.2020, accessed on 21 March 2022

Northern
Hemisphere 2000–2015 Daily ∼1 km

SCE
Hao et al. [84]

https://doi.org/10.11888/Snow.tpdc.271381,
accessed on 21 March 2022

China 1981–2019 Daily ∼5 km

SCE
Hao et al. [85]

https://doi.org/10.12072/ncdc.I-SNOW.
db0001.2020, accessed on 15 May 2022

China 2000–2020 Daily ∼500 m

SCE
Muhammad and Thapa [86]

https://doi.org/10.1594/PANGAEA.918198,
accessed on 21 March 2022

HMA 2002–2019 Daily ∼500 m

SCE
Huang et al. [87]

https://doi.org/10.11888/Cryos.tpdc.272204,
accessed on 30 September 2022

Tibetan
Plateau 2002–2021 Daily ∼500 m

SCE
Li et al. [88]

https://doi.org/10.57760/sciencedb.j000
76.00112, accessed on 27 September 2022

HMA 1982–2019 Daily ∼5 km

FSC
Qiu et al. [89](<10% Cloud coverage)

https://doi.org/10.11922/sciencedb.457,
accessed on 21 March 2022

HMA 2002–2018 Daily ∼500 m

NDSI
Hall and Riggs [81]

https://doi.org/10.5067/MODIS/MOD1
0A1F.061, accessed on 21 March 2022

Global
coverage 2000–present Daily ∼500 m

https://doi.org/10.12072/ncdc.CCI.db0044.2020
https://doi.org/10.12072/ncdc.CCI.db0044.2020
https://doi.org/10.11888/Snow.tpdc.271381
https://doi.org/10.12072/ncdc.I-SNOW.db0001.2020
https://doi.org/10.12072/ncdc.I-SNOW.db0001.2020
https://doi.org/10.1594/PANGAEA.918198
https://doi.org/10.11888/Cryos.tpdc.272204
https://doi.org/10.57760/sciencedb.j00076.00112
https://doi.org/10.57760/sciencedb.j00076.00112
https://doi.org/10.11922/sciencedb.457
https://doi.org/10.5067/MODIS/MOD10A1F.061
https://doi.org/10.5067/MODIS/MOD10A1F.061
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Table 6. Cont.

Product
Type References and Dataset DOI Spatial

Coverage
Temporal
Coverage

Temporal
Resolution

Spatial
Resolution

NDSI
Han et al. [90]

https://doi.org/10.12072/ncdc.I-SNOW.
db0024.2021, accessed on 21 March 2022

Northeast
China

2000–2020
(snow season) Daily ∼500 m

NDSI
Tang et al. [71]

https://doi.org/10.11888/Cryos.tpdc.272836,
accessed on 29 September 2022

HMA 2000–2021 Daily ∼500 m

NDSI
Jing et al. [59]

https://doi.org/10.5281/zenodo.5644386,
accessed on 12 July 2022

China 2001–2020 Daily ∼500 m

However, limitations of the CGF MODIS NDSI product (including its accuracy val-
idation) may come from the following: (1) the original MODIS NDSI products are not
perfect due to the difficulty of detecting snow in the mountainous area with complex terrain
and land cover, as well as snow/cloud confusion errors in the cloud-masking algorithm
for MODIS snow data; (2) the slope and aspect of the terrain, and forest canopy obstruc-
tion may affect the reconstruction of NDSI or the accuracy of NDSI from MODIS original
products [33,34]; (3) the NDSI approach cannot always accurately distinguish between
snow and cloud, which leads to snow misclassification errors [91,92]; (4) the in situ SD
observations are sorely scarce, especially in high-altitude areas, which creates challenges in
verifying snow category classification [58]; when there is high cloud coverage in Landsat
images, aggregating from the Landsat snow cover map with 30 m spatial resolution to the
snow cover map with 500 m MODIS spatial resolution may introduce some uncertainties;
and (5) there are also spatial inconsistencies between the CGF MODIS NDSI product and
Landsat snow cover, possible reasons are as follows: firstly there is a difference between
the Landsat OLI and MODIS sensors and their snow cover mapping algorithms; secondly
the snow cover information obtained from the two images is inconsistent, even on the
same day, because the snow can change rapidly affected by wind speed, sunshine duration,
air temperature and precipitation [78]; lastly due to scaling effects, Landsat is superior to
MODIS in portraying snow cover in areas of complex terrain. In addition, as the temporal
and spatial resolution of satellite remote sensing increases, different strategies need to be
adopted when reconstructing snow cover information, taking into account different snow
conditions, microtopographic factors (e.g., as slope gradient and aspect), land-cover types
and vegetation coverage in forests.

6. Conclusions

The MODIS NDSI snow cover product is susceptible to the influence of the cloud
contamination, leading to numerous data gaps. In this study, an effective CGF method was
developed to fully fill the data gaps in MODIS NDSI snow cover product. The CGF MODIS
NDSI product generally has the following strengths:

(1) The proposed CGF method combines the respective strengths of the CSI method
(high accuracy and computational efficiency in the case of short cloud persistence days)
and the STW method (comprehensively considering spatial and temporal correlations of
the snow cover).

(2) An accuracy evaluation based on in situ SD observations verified the reliability of
the CGF MODIS NDSI product in terms of accuracy and consistency. The CGF MODIS NDSI
product achieves a high-range OA of 93.54–98.08%, a low-range MU error of 0.15–3.49%
and an acceptable-range MO error of 0.84–5.77% for different combinations of NDSI and SD
observed thresholds. Compared with the high-resolution Landsat-8 OLI images derived
snow cover maps, the CGF MODIS NDSI product largely corresponds to the Landsat
snow cover maps, even if there are scaling effects. In addition, the CGF MODIS NDSI

https://doi.org/10.12072/ncdc.I-SNOW.db0024.2021
https://doi.org/10.12072/ncdc.I-SNOW.db0024.2021
https://doi.org/10.11888/Cryos.tpdc.272836
https://doi.org/10.5281/zenodo.5644386
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product effectively improves the accuracy of NDSI reconstructions in areas with long cloud
persistence days.

(3) Overall, the CGF MODIS NDSI product performs well and is able to provide a
set of long-term, spatiotemporally continuous and highly accurate snow cover dataset for
HMA, and thereby provide a valuable input dataset for hydrological and climate modeling,
snow cover dynamics and other water-related studies.
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Appendix A

Table A1. Summary table of abbreviations of key terminology in this paper.

No. Abbreviation Full Terminology

1 BSC Binary snow cover
2 CGF Cloud-gap-filled
3 CPD Cloud persistence days
4 CE Commission error
5 CSI Cubic spline interpolation
6 HMA High Mountain Asia
7 LI Linear interpolation
8 MAE Mean absolute error
9 MODIS Moderate Resolution Imaging Spectroradiometer
10 NDSI Normalized difference snow index
11 OE Omission error
12 OA Overall accuracy
13 MO Overestimation error
14 QI Quadratic interpolation
15 RMSE Root–mean–square–error
16 SCD Snow-covered days
17 SCE Snow-covered extent
18 SD Snow depth
19 STW Spatio-temporal weighted
20 TAC Terra and Aqua combination
21 TI Temporal interpolation
22 MU Underestimation error

https://doi.org/10.5281/zenodo.7341828
http://data.tpdc.ac.cn
http://data.tpdc.ac.cn
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Table A2. Statistical description of Landsat-8 OLI images used for comparison and validation of the
CGF MODIS NDSI product in this study.

Image Pair No. Path/Row Date of Acquisition Cloud Cover (%)

1 134/37 2017/04/18 4.28
2 134/40 2017/06/05 11.78
3 134/40 2020/02/06 4.82
4 134/40 2021/03/28 4.44
5 135/33 2017/11/19 2.72
6 135/33 2019/05/01 3.12
7 135/33 2021/12/16 2.61
8 140/36 2018/04/15 11.66
9 141/36 2021/11/08 2.92
10 141/40 2016/12/28 2.78
11 141/40 2018/05/08 13.14
12 141/40 2019/02/04 3.49
13 141/40 2021/12/10 2.95
14 142/37 2016/01/18 7.05
15 142/37 2021/12/17 3.23
16 143/36 2017/06/04 12.29
17 143/36 2021/11/22 0.29
18 144/36 2021/11/13 2.04
19 145/30 2016/03/27 26.43
20 145/30 2018/10/27 4.9
21 145/30 2019/09/12 6.61
22 145/39 2017/06/02 12.39
23 145/39 2018/04/18 6.15
24 145/39 2019/12/01 3.27
25 145/39 2020/02/03 2.31
26 145/39 2021/04/26 2.75
27 146/35 2016/07/24 3.83
28 146/35 2018/05/11 3.37
29 147/37 2017/01/23 3.26
30 147/37 2017/07/02 13.45
31 147/37 2018/06/03 2.45
32 147/37 2019/10/28 1.49
33 148/35 2016/12/29 28.13
34 148/35 2018/05/09 12.37
35 148/35 2019/06/29 13.19
36 149/34 2018/01/24 2.99
37 149/34 2021/07/11 2.26
38 150/34 2016/07/20 2.46
39 150/34 2016/11/09 4.46
40 151/33 2017/04/09 0.3
41 151/33 2019/05/01 4.46
42 151/33 2020/08/23 2.37
43 151/33 2021/07/09 1.59
44 151/35 2017/04/09 0.43
45 151/35 2019/05/01 9.88
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