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Abstract: When natural disasters occur, timely and accurate building damage assessment maps are
vital for disaster management responders to organize their resources efficiently. Pairs of pre- and post-
disaster remote sensing imagery have been recognized as invaluable data sources that provide useful
information for building damage identification. Recently, deep learning-based semantic segmentation
models have been widely and successfully applied to remote sensing imagery for building damage
assessment tasks. In this study, a two-stage, dual-branch, UNet architecture, with shared weights
between two branches, is proposed to address the inaccuracies in building footprint localization and
per-building damage level classification. A newly introduced selective kernel module improves the
performance of the model by enhancing the extracted features and applying adaptive receptive field
variations. The xBD dataset is used to train, validate, and test the proposed model based on widely
used evaluation metrics such as F1-score and Intersection over Union (IoU). Overall, the experiments
and comparisons demonstrate the superior performance of the proposed model. In addition, the
results are further confirmed by evaluating the geographical transferability of the proposed model on
a completely unseen dataset from a new region (Bam city earthquake in 2003).

Keywords: natural disaster; damage mapping; deep learning; selective kernel; building damage
assessment; semantic segmentation; UNet

1. Introduction

Annually, thousands of people worldwide lose their lives due to damages caused by
natural disasters [1–3]. Countries spend millions of dollars on rebuilding infrastructures
and compensating for the associated damages. Accordingly, providing accurate build-
ing damage assessment maps, with the location, number, and severity of damages, is
critical for emergency responders and relevant organizations to manage their resources
appropriately [4].

Remote sensing images are capable of providing overviews from large regions of the
affected area for faster building damage assessment. Remote sensing data, i.e., satellite
images, drone/aerial imagery, or Synthetic Aperture Radar (SAR) data, have proven
their applicability in providing useful information for disaster management. Although
SAR sensors propose all-weather data availability [5,6], or drone imagery obtains higher
spatial resolutions [7,8], satellite optical images are more cost-effective with respect to the
coverage area. They can be obtained in near-real-time thanks to the numerous satellites
and constellations in orbit, and thus, are one of the best choices to rely on during disaster
conditions [9]. In summary, key attributes of optical satellite images are their wide area
coverage, rapid revisits, simple interpretation, and fast deployment [9].
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According to the temporal usage of satellite images for building damage assessment,
the current literature can be divided into two categories: (1) techniques that only use post-
disaster images and (2) techniques that are based on both pre- and post-disaster images.
For the first group, which relies on post-disaster images, the task of damage assessment is
mainly considered to be a semantic segmentation problem [10–13]. However, without using
pre-disaster images, post-disaster images are not appropriate sources for precise extraction
of building footprints [14]. Additionally, researchers require auxiliary information, such as
pre-disaster building masks obtained from external resources, e.g., municipality databases
or OpenStreetMap, to enhance their results [15,16]. On the other hand, having both pre-
and post-disaster satellite images from the affected region will help locate the buildings
and assess their damaged parts.

It is worth mentioning that the problem of building damage assessment using both
pre- and post-disaster satellite images is inherently very similar to a change detection
problem. In both scenarios, pre- and post-disaster images are compared with each other to
find changes [17,18]. The main difference, making damage assessment a more complicated
problem, is that in change detection, only changed objects (e.g., buildings) are detected,
and everything else is ignored. In contrast, both changed (damaged) and unchanged
(not-damaged) buildings should be found in the building damage assessment. Another
difference is the requirement to classify different damage categories, which implies a
multi-class change detection problem [14,19].

From another point of view, according to the utilized processing techniques, building
damage assessment has been addressed by (1) visual interpretation of images, (2) machine
learning-based methods relying on hand-crafted features, and (3) deep learning techniques.
Traditionally, satellite images were visually interpreted by researchers and experts to obtain
estimations of the amount of damage over the affected area [20]. Even with large groups
of experts and interpreters, visual investigation of remote sensing images for building
damage assessment is not a time- and cost-efficient procedure. Therefore, automatic
techniques were introduced to process remote sensing images for building extraction and
damage assessment. Based on the human experience obtained from visual interpretations,
machine learning techniques with very few trainable parameters, which relied on hand-
crafted features, such as textural, spectral, and spatial features, were developed [21–24]. In
addition to the amount of time and experience required for feature extraction, manually
extracted features were not generalizable to other geographical regions, and in most cases,
they were valid for specific conditions [25].

Recently, deep learning models, primarily based on Convolutional Neural Networks
(CNNs), have shown great success in various computer vision tasks such as classification
or semantic segmentation [26–28]. These models are well-suited for such applications due
to their ability to automatically learn hierarchical representations of low- to high-level
features from raw images. Many studies leveraged deep learning methods to tackle the
task of building damage assessment and achieved noteworthy developments [15,29–31].
For instance, Abdi et al. [32] classified building patches into four levels of damage by
employing CNNs on post-hurricane Unmanned Aerial Vehicle (UAV) images. Likewise,
Zhang et al. [33] used bi-temporal images acquired before and after disasters to develop
an end-to-end procedure for solving a semantic segmentation problem with the aim of
building damage assessment.

Using pre- and post-disaster images is an approved way for building damage assess-
ment. The key question is how to exploit the required information from these images to
ensure efficient performance. Inspired by the Siamese-network concepts introduced by
Zhan et al. and Daudt et al. in [17,18], two-branch CNN architectures were used in building
damage assessment using bi-temporal satellite images. Moreover, researchers utilized vari-
ous types of feature fusion schemes to address this problem. For instance, Duarte et al. [30]
conducted experiments on multiple feature concatenation strategies for building façade
damage detection. In another study, Mei et al. [34] developed a dual-temporal aggrega-
tion module to capture global change patterns and performed a difference-aware fusion
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technique to assess building damages. Based on the powerful properties of attention-
mechanism-enabled networks, which focus on more important regions of the images [35],
Shen et al. [36] introduced a cross-directional attention module to explore the spatial and
channel-wise correlations between pre- and post-disaster images.

Based on the literature, our proposed method was motivated by the two-branch
CNN architecture for pre- and post-disaster feature fusion. The basic foundation of our
model relied on the well-known UNet model [37], widely used for segmentation tasks,
which is an encoder-decoder-based network with skip-connections between the encoder
and decoder paths for further enhancement of spatial features. Our introduced network
utilized a two-stage framework, where in the first stage, a single UNet was used for
building footprint localization, and in the second stage, localization features were used
to guide the two-branch damage assessment network. The guidance borrowed from
the first stage helped the second stage network learn more efficiently. Standard CNNs
are designed to have convolutional kernels (i.e., receptive fields) of the same size. In
contrast, changing the size of receptive fields, such as using atrous convolutions, has shown
promising results in segmentation problems [38]. Moreover, letting the network decide
which size of the receptive field to use is a superior solution [39]. Thus, we proposed a
dynamic selection mechanism for our UNets, which allowed the network to adjust the
receptive fields adaptively based on the weights obtained from the input information. By
leveraging the proposed selective kernel module (SKM) in our UNets, the network was
able to enhance the extracted features from pre- and post-disaster satellite images and focus
on more important channels.

We implemented our experiments on the xBD dataset [40], which is the largest dataset
for building damage assessment at this time. Our experiments showed that the proposed
strategy for building damage assessment yielded higher accuracies and outperformed other
state-of-the-art models. Furthermore, in order to evaluate the transferability, generalization
power, and robustness of our method, we utilized another set of data acquired from
Bam city, Iran, during the 2003 earthquake. The main contributions of our study can be
summarized as follows:

• We proposed a two-stage UNet-based architecture for building localization and dam-
age classification from pre- and post-disaster satellite images, and the performance of
different backbones within our UNets was evaluated.

• In order to improve the capability of our network to extract suitable features and
enhance the performance of the above-mentioned two-stage framework, we intro-
duced an SKM that adaptively adjusts the kernel sizes through our network’s feature
extraction process. Adaptive receptive field selection within the SKM, in three steps of
Split, Fuse, and Select, enhanced the quality of the extracted features.

• To further regularize the learning process of our model and cope with the challenge of
limited samples in different classes, heavy data augmentation, including CutOut [41],
was applied to the xBD images.

• Moreover, to investigate the transferability power of our model, we used another set
of data from a completely different region with different types of buildings to assess
building damage after an earthquake.

• Finally, we investigated the correlations between image acquisition attributes (e.g., Sun
elevation, satellite-looking angle, and GSD) and the performance of the proposed
model in both localizations and damage assessment stages per disaster type in detail.

The remainder of this paper is organized as follows. Related studies are first discussed
in the “Related Works” section. Then, we introduce the datasets that we used for our model
development in the “Datasets and Preparations” section. In “Methodology”, we introduce
our proposed model architecture along with the evaluation metrics. “Experiments and
results” provide the implementation details of our experiments and comprehensive results
and comparisons that we assessed during our experiments. Finally, “Discussion” and
“Conclusion” conclude the paper.
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2. Related Works

This section discusses the methods that recently were used for building damage as-
sessment using remote sensing satellite images. Due to the high impact of natural disasters
on human lives, it has always been a hot topic to study various techniques to cope with
the damages that occur to cities. Many researchers from two decades ago have started to
use satellite images for the purpose of building damage assessment [6,20,42]. In the mean-
time, researchers have developed more sophisticated methods based on machine learning
techniques to automate the assessment process [9,25,43]. As an example, Putri et al. [25]
tried to generate building damage assessment maps using textural and spectral features
extracted from pre- and post-disaster Sentinel-1 and Sentinel-2 images. They fed the fea-
tures into a Random Forest classifier for classification. Alatas et al. [44] compared different
morphological profiles with Haralick’s texture features to detect damaged buildings using
a k-Nearest Neighbor classifier. Likewise, Janalipour et al. [45] utilized an ANFIS-based
decision-making system powered by geometrical features and bi-temporal satellite images
combined with building vector maps to detect damaged buildings in the Bam earthquake.

Recently, deep learning techniques have been widely studied to provide more general
solutions for the task of building damage assessment [19,36]. The ability of deep learning
models to provide high-dimensional representations of images has enabled them to solve
more sophisticated challenges. For instance, Zheng et al. utilized a deep object-based
semantic change detection method to evaluate damages to buildings that occurred due
to natural and man-made disasters [19]. In [46], Wu et al. proposed a variety of attention
UNets to localize and classify building damages. By detecting changes in super-pixels,
Qing et al. [14] proposed a CNN-based network for damage assessment using UAV images.
Moreover, in [12], Deng et al. proposed a two-stage UNet supplemented with the Squeeze
and Excitation (SE) module to improve the damage assessment results.

According to the usage of only post-disaster images [11,32,47] or the pair of pre- and
post-disaster images [12,34,36], various methodologies have been proposed for building
damage assessment. In [29], Duarte et al. proposed various fusion strategies for build-
ing damage assessment from post-disaster satellite, aerial, or UAV images using CNNs.
In [15], Tilon et al. proposed an unsupervised method for building damage assessment.
However, without any guidance from pre-disaster images or possible external sources of
building footprint maps such as OpenStreetMap [15], post-disaster images cannot provide
precise building boundaries [14]. In this regard, in 2013, Dong et al. [9] showed that most
of the studies tend to use pairs of pre- and post-disaster images to be able to locate the
damaged building and evaluate the damage by detecting meaningful changes. Accord-
ingly, Khodaverdizahraee et al. [48] extracted building properties such as shape, geometry,
shadow, texture, and color from pre- and post-disaster imagery and fed them into machine
learning algorithms for improved building damage assessment. Likewise, Xu et al. [49]
compared different pre- and post-disaster feature fusion scenarios in CNN models for the
Haiti earthquake.

From the architecture’s point of view in deep learning methodologies, various archi-
tectures from the computer vision community have been proposed for building damage
assessment. Inspired by atrous spatial pyramid pooling networks, with dilated convolu-
tions, Gupta et al. [50] proposed a network (RescueNet) with multiple segmentation heads
for simultaneous building detection and damage classification. Valentijn et al. [51] studied
the effective parameters of damage assessment predictions by using simple, fully connected
CNNs. Compared with other architectures, UNets, with encoder-decoder paths that were
improved by adding skip-connections to aggregate low-level and high-level features, have
been widely used for the task of building damage assessment [12,36,46].

In order to improve the performance of baseline semantic segmentation architectures,
researchers have used various strategies and extensions in their networks. For instance,
Bai et al. [52] used a lightweight approach based on knowledge distillation to reduce the
dependence on computing resources and increase the speed of damage assessment in
emergency situations. In contrast, in order to achieve more accurate results with fewer
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labels, Qiao et al. [53] implemented a weakly supervised technique that could improve
the quality of activation maps and boost model performance. Attention techniques [34,53],
which try to emphasize important regions of the images, have been widely used in computer
vision tasks. Mei et al. [34] used a difference-aware attention strategy to predict more
accurate localization and classification results after disasters. For a superior combination
of features in spatial and channel directions, Shen et al. [36] proposed BDANet with a
cross-directional attention mechanism and obtained enhanced damage assessment maps.
Attention-based mechanisms have shown promising results in both computer vision and
building damage assessment.

From the development point of view, appropriate and carefully annotated datasets
play a major role in deep learning models. Deep learning models are data-hungry, and
the issue is exacerbated by the complexity of the problem [54]. Building damage assess-
ment is a complicated problem and, thus, requires large amounts of ground truth data
for model development. Preparing annotated remote sensing images for such tasks is
time-consuming and requires huge manual work. Although the number of benchmark
datasets is growing in the remote sensing community, high-quality datasets that are suitable
for building damage classification are still rare [55]. The xBD dataset [56] has played a
game-changing role in building damage assessment during the past five years. However,
it still has some challenges, such as highly biased classes towards no-damage buildings.
Furthermore, complexities of minor-damage and major-damage classes, besides similarities
between minor-damage and no-damage classes, lead to moderate misclassification [57].
Preprocessing techniques such as data augmentation have been widely utilized to increase
the size of data and robustness of the model [58]. They can also act like regularization
techniques that feed models with more challenging scenarios [58,59]. Advanced augmenta-
tion methods, such as the Cutout, randomly mask out square regions of input images to
improve the feature representation ability of the model [41].

Currently, most of the deep learning architectures for building damage assessment
follow the concepts from change detection problems. The main framework seems to be the
two-stage model with separate localization and classification streams. Moreover, obtaining
accurate results for challenging classes is still an open problem. A two-stage UNet-based
network is proposed and enhanced with SKM to improve feature representations and deal
with previous limitations. Accordingly, augmentation techniques were applied to cope with
the problem of imbalanced datasets to alleviate the complexities of damage classification.

3. Datasets and Preparations

Training and validation of a deep semantic segmentation model requires large amounts
of accurately annotated ground truth images. Usually, in the case of natural disasters, which
often occur suddenly, appropriate ground truth information is unavailable after the disaster,
at least for a few weeks, and preparing a dataset immediately after the disaster is time-
consuming. However, benchmark datasets, which are prepared before disaster situations,
can be helpful in both developing algorithms and comparing the results with previous
studies. We used two datasets in this study. The xBD benchmark dataset was used as the
first one to develop, train, analyze, and evaluate the proposed deep learning model and
compare it with other state-of-the-art models. The second one was the Bam city earthquake
dataset, which was utilized to study the transferability of the proposed model. In both
cases, pre- and post-disaster images were co-registered and preprocessed by data providers.

3.1. xBD Dataset

xBD [40,56] is the largest optical satellite imagery benchmark dataset for building
segmentation and damage assessment in the remote sensing community [55]. The xBD
dataset offers very high-resolution images (1.2 m to 2.4 m) acquired before and after
different natural disasters, such as earthquakes, wildfires, tsunamis, and floods. As
one of the largest datasets in remote sensing, it includes 22,068 RGB images (11,034
pairs) with a size of 1024 × 1024 × 3 pixels acquired from different high-resolution
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optical satellites, e.g., Worldview-2 or GeoEye, in various off-nadir (5◦ to 40◦) and sun
elevation (30◦ to 80◦) angles, causing the dataset to be more complicated in terms of
spatial resolution or shadow length. xBD contains 850,736 building polygons with
different areas and in multiple locations around the world, in various types of textures
such as low/high density urban or rural regions. The georeferencing information and
damage class of each building, along with the disaster type and sensor parameters, are
included in a metadata file for each image. Gupta et al. [40] provided the images in
four groups: Train, Test, Holdout, and Tier3. The first three groups were specifically
considered to be used for training, testing, and validation purposes, respectively, while
the fourth group was released later and was designed to be merged with the Train set
to increase the diversity of the dataset. Using the same set of images of a benchmark
dataset for specific steps allows researchers to be able to fairly compare their methods.
Figure 1 shows how the image pairs are distributed in these four groups. For instance,
images from wildfire events can be found mainly in the Tier3 group. Furthermore,
Figure 1 reveals that although the xBD dataset covers six types of disasters, it is highly
unbalanced, such that fires, floods, and wind events have many more samples in the
dataset compared to volcanic eruptions, tsunamis, or earthquakes.
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xBD is a dataset with four classes of building damage, which are (1) no-damage, (2)
minor-damage, (3) major-damage, and (4) destroyed; but it is biased towards no-damage
buildings, such that the number of no-damage buildings is approximately five times the
number of other classes. Figure 2 visualizes the geographical distribution and type of
disasters present in xBD and their corresponding number of buildings in each category
of damage. It is obvious that most of the pie charts are dominated by green, i.e., the
no-damage class, and other classes are in the minority. Even more, there are some disasters,
such as the Mexico earthquake, where almost all of the buildings are in the no-damage
category; only 3 out of 51,500 buildings are categorized as destroyed. On the other hand,
from the geographical distribution point of view, most of the xBD’s disaster events are
located across the United States, and only a few events are in other countries, such as Nepal,
Australia, Indonesia, and Portugal.



Remote Sens. 2024, 16, 182 7 of 34

Remote Sens. 2024, 16, x FOR PEER REVIEW  7  of  36 
 

 

across the United States, and only a few events are in other countries, such as Nepal, Aus-

tralia, Indonesia, and Portugal. 

 

Figure 2. Geographical distribution and  type of disasters  in  the xBD dataset. The corresponding 

number of building damage classes in each disaster is shown in pie charts. Each disaster is pinned 

on the map by a relative icon that shows its type. On the pie charts, green, light yellow, orange, and 

red show no-damage, minor-damage, major-damage, and destroyed classes, respectively. Black rep-

resents the unclassified buildings. 

3.2. Bam Dataset 

On 26 December 2003, at 5:26 a.m. local time, a 6.5 magnitude earthquake, with its 

epicenter very close to the city and to the Earth’s surface, hit Bam, Kerman, Iran. Approx-

imately 27,000 deaths were recorded, 30,000 people were injured, and 75,000 people were 

left homeless. In terms of human loss, the quake was the worst in Iranian history [60,61]. 

About three months before the disaster, on September 30th, Quickbird acquired an image 

from Bam with an off-nadir angle of 10 degrees. The post-disaster  image was acquired 

eight days after the earthquake, on 3 January 2004, with an off-nadir angle of 24 degrees. 

The spatial resolution of the images was 2.4 m, which was then increased to 0.6 m through 

a pan-sharpening step. Building damages were mainly concentrated in the eastern parts 

of the city [42], while the western section of the city was covered mainly by vegetation and 

fewer buildings. Buildings were mostly built with mud bricks, and the overall arrange-

ment of buildings in Bam was regular with low-rise, flat-roof buildings, and there was no 

separation between most of the houses. Pre- and post-disaster satellite images of Bam city 
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number of building damage classes in each disaster is shown in pie charts. Each disaster is pinned
on the map by a relative icon that shows its type. On the pie charts, green, light yellow, orange,
and red show no-damage, minor-damage, major-damage, and destroyed classes, respectively. Black
represents the unclassified buildings.

3.2. Bam Dataset

On 26 December 2003, at 5:26 a.m. local time, a 6.5 magnitude earthquake, with its
epicenter very close to the city and to the Earth’s surface, hit Bam, Kerman, Iran. Ap-
proximately 27,000 deaths were recorded, 30,000 people were injured, and 75,000 people
were left homeless. In terms of human loss, the quake was the worst in Iranian his-
tory [60,61]. About three months before the disaster, on September 30th, Quickbird
acquired an image from Bam with an off-nadir angle of 10 degrees. The post-disaster
image was acquired eight days after the earthquake, on 3 January 2004, with an off-
nadir angle of 24 degrees. The spatial resolution of the images was 2.4 m, which was
then increased to 0.6 m through a pan-sharpening step. Building damages were mainly
concentrated in the eastern parts of the city [42], while the western section of the city
was covered mainly by vegetation and fewer buildings. Buildings were mostly built
with mud bricks, and the overall arrangement of buildings in Bam was regular with
low-rise, flat-roof buildings, and there was no separation between most of the houses.
Pre- and post-disaster satellite images of Bam city were used to verify the robustness
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and transferability of the proposed model in this study. Figure 3 shows the geographical
location of Bam in Kerman, Iran, and the municipality regions along with our study area.
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Figure 3. Location of Bam city in Kerman province of Iran (top left), the municipality blocks along
with the building footprints overlaid with the pre-disaster satellite image of the study region (bottom
left), and the post-disaster satellite image covered by some sample regions showing damage (red)
and no-damaged (green) buildings (right).

In total, 22,318 building polygons existed in the city boundary, while our study area,
which was captured from the densest portion of the city, contained 10,360 buildings. High-
quality ground truth annotations were generated with the help of experts who visually
interpreted high-resolution pre- and post-disaster images of Bam. Even in high-resolution
images, it was difficult to understand the details of the damages from close-nadir-looking
satellite images [29,47]. Therefore, based on the previous studies [48,62–65], and since
the visual interpretation of pre- and post-disaster images was complicated for multi-class
labeling, we only considered two classes of damage for further steps. Additionally, the
building vector map was employed to locate the buildings and decrease human error
during interpretation. After careful labeling, 4997 and 2299 buildings were classified as
no-damage and destroyed, respectively. The other 3064 buildings were left unclassified.
Since the pre- and post-disaster images were acquired with different viewing angles and
at different times of the year, resulting in different vegetation cover and unequal lighting
conditions (different building shadow lengths and brightness) over the region, the manual
labeling of the buildings was a complicated task. Furthermore, no other ground truth
information except the building vector map was available for the study area. Figure 4
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shows the satellite image acquired before the earthquake and three zoomed regions with
their pre-/post-disaster images, along with ground truth data.
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Figure 4. Overview of pre-disaster image acquired from the study area (left) and three samples of
pre-disaster (left squares) and post-disaster (middle squares) images along with their correspond-
ing ground truth data (right squares). Green and red show the buildings with no-damage and
damaged, respectively.

We tiled the satellite image of Bam into 36 patches of 1024 × 1024 × 3 pixels to be
similar to the xBD dataset. In the ground truth generation procedure, the highest precision
and effort were put into annotating buildings reliably and with suitable distribution over
the entire study area. Figure 5 shows the distribution of labeled buildings and the corre-
sponding zoom plots of 6 sample regions. As can be seen, most of the damaged buildings
are in the eastern part of the city. Labeled buildings show three colors: red, green, and
black. Red and green are considered to be damaged and no-damage, respectively, and black
are unlabeled buildings.

3.3. Dataset Preparation

The semantic segmentation of damaged buildings from satellite images is a com-
plicated task due to the unbalanced nature of the xBD dataset. Most of the image area
is considered to be background pixels, and only a small portion is covered by buildings.
From the total area covered by building regions, the majority of the buildings are
categorized as no-damage class, and only a small portion of buildings are assigned to
other categories of damage classes. Moreover, cloud occlusions, sun elevation and illu-
mination changes, and different satellite viewing angles make the assessment process
more challenging. Thus, in order to boost the performance of the models, add more reg-
ularizations to the model, and reduce the risk of overfitting, researchers usually utilize
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a data augmentation step in every round of the training procedure [58]. Augmentation
tries to expand the size of the training dataset or increase its diversity by applying
simple and random mathematical, geometrical, or image processing operations on the
images. The randomly augmented images could be stored on the disk drive or could
be used on the fly during the training procedure. We implemented the second way,
in which some probabilities were defined, and the images were augmented based on
those probabilities, while they were inserted into the model. The implemented aug-
mentations consisted of random cropping (p = 1, which means that this augmentation
was applied on all of the images), horizontal and vertical flipping (p = 0.5, i.e., only half
of the images, 50%, were treated by this operation), rotations (p = 0.5) and transposes
(p = 0.5), brightness and contrast manipulations (p = 0.2), and blurring operations
(p = 0.7). Furthermore, in order to apply more regularization to the models, an image
Cutout technique (p = 0.6) was added, which randomly masked out square regions
from the input images to improve the robustness and overall performance of the net-
work [41]. Figure 6 visualizes these operations performed on a single sample image.
On the left, the original input image is shown, and the outputs of the augmentation
process are illustrated in other columns.
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It is worth mentioning that our augmentation process did not produce new images to
be stored on the disk drive. In particular, every time an image was fed into the network,
a random number was generated, and if the random number was within the limits of
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the specific thresholds, the augmentations were applied; otherwise, the image would be
fed into the network without any changes. This augmentation technique was performed
randomly, and thus, the dataset imbalance was not taken into account.

Remote Sens. 2024, 16, x FOR PEER REVIEW  11  of  36 
 

 

regularization to the models, an image Cutout technique (p = 0.6) was added, which ran-

domly masked out square regions from the input images to improve the robustness and 

overall performance of the network [41]. Figure 6 visualizes these operations performed 

on a single sample image. On the left, the original input image is shown, and the outputs 

of the augmentation process are illustrated in other columns. 

 

Figure 6. Augmentation techniques were applied to input images for further regularizing the model. 

On the left, pre- and post-disaster images are displayed, and other images are the outputs of specific 

augmentations. 

It is worth mentioning that our augmentation process did not produce new images 

to be stored on the disk drive. In particular, every time an image was fed into the network, 

a random number was generated, and if the random number was within the limits of the 

specific thresholds, the augmentations were applied; otherwise, the image would be fed 

into the network without any changes. This augmentation technique was performed ran-

domly, and thus, the dataset imbalance was not taken into account. 

4. Methodology 

Figure 7  illustrates  the overall and complete workflow of our study.  It consists of 

multiple sections which are summarized as: 

1. Data Preparation: In the first part of the process, the Train, Tier3, and Hold groups of 

the xBD dataset which were used for training and validation steps, respectively, were 

augmented. The Test group was directly used for validation without any augmenta-

tion. 

2. Damage Assessment: The second part  included  two sub-sections,  the Localization 

and Classification models. UNet was used as the base architecture in both models. 

The weights of the trained Localization model were transferred to the Classification 

models. The outputs of this section were used for evaluating the performance of our 

proposed model. 

3. Transferability Analysis: In order to further study the generalization power and ro-

bustness of our proposed models, the trained models were used on another new da-

taset, i.e., Bam city, and the damage assessment maps were compared with the cor-

responding ground truth. 

Figure 6. Augmentation techniques were applied to input images for further regularizing the model.
On the left, pre- and post-disaster images are displayed, and other images are the outputs of specific
augmentations.

4. Methodology

Figure 7 illustrates the overall and complete workflow of our study. It consists of
multiple sections which are summarized as:

1. Data Preparation: In the first part of the process, the Train, Tier3, and Hold groups
of the xBD dataset which were used for training and validation steps, respec-
tively, were augmented. The Test group was directly used for validation without
any augmentation.

2. Damage Assessment: The second part included two sub-sections, the Localization
and Classification models. UNet was used as the base architecture in both models.
The weights of the trained Localization model were transferred to the Classification
models. The outputs of this section were used for evaluating the performance of our
proposed model.

3. Transferability Analysis: In order to further study the generalization power and
robustness of our proposed models, the trained models were used on another new
dataset, i.e., Bam city, and the damage assessment maps were compared with the
corresponding ground truth.

Figures 8 and 9 present the overall architecture of the proposed deep learning models.
Our methodology for overcoming the building damage assessment task consisted of two
major stages: (1) building segmentation in the first stage (Localization) and (2) per building
damage assessment in the second stage (Classification or Damage Assessment). In both
stages, the UNet model was the main architecture that handled the segmentation task. For
the building localization stage, a single branch UNet, supplemented with only the pre-
disaster images, was utilized to produce building segmentation masks (see Figure 8). After
building footprint localization, pre- and post-disaster images were fed into parallel UNets
of a dual-branch model in the second stage, as illustrated in Figure 9. The extracted deep
features from both branches were concatenated with each other to enter the segmentation
head of the model, which handled the final multi-class segmentation task. In order to
further improve the capabilities of the networks and enhance their performance, various
strategies have been implemented. For the first time, we introduced the Selective Kernel
Module (SKM) into UNet architecture for the task of localization and classification of
building damages after natural disasters. The SKM introduced an adaptive receptive field
learning procedure, which improved the quality of extracted features. The details of the
proposed framework and components are described in the following sub-sections.
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Figure 8. Schematic diagram of a UNet for our building localization stage, which shows different
components of our UNet model, including encoder and decoder paths, skip connections, and pre-
trained backbones. The output of this model is a binary segmentation map of building footprints.
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Figure 9. Schematic diagram of a dual-branch UNet network for the building damage assessment
method. Each of the pre- and post-disaster images enters a separate branch with shared weights, and
the output feature maps are concatenated and inserted into the segmentation head. The output of
this stage is a per-building damage classification map.

4.1. Localization Model

The first step in a building damage assessment procedure is to locate building objects.
Buildings affected by disasters on post-disaster images can have an adverse impact on
the performance of the localization network and may introduce errors in the localization
results; thus, only pre-disaster images were utilized in the first stage to locate building
footprints. The proposed segmentation network used in this stage was based on a UNet
encoder-decoder architecture. Among various deep learning architectures, UNets [37],
with a down-sampling step for feature extraction, up-sampling structure to retrieve the
input image resolution, and concatenating high- and low-level features with each other
through skip connections, have shown great performance in semantic segmentation tasks.
UNet architecture is a fully convolutional encoder-decoder network, enhanced with skip
connections that connect features from the encoder block to their corresponding layers in
the decoder block and enhance gradient flow. Skip connections help the network recover
the original pixel resolution of the input image and share the information learned by the
encoder with the decoder. Shallow features, which are concatenated with deep features
from the decoder path, help reduce spatial information loss through the backpropagation
step. The output of a UNet in this stage is a pixel-level map showing the locations of objects.

Figure 8 illustrates a schematic view of a UNet model with different parts of the
network highlighted. We can name the six main components of a UNet model as (1) the
input image, (2) the encoder or feature extractor path, (3) the bridge or the bottleneck of the
network, (4) the decoder or the expanding path, (5) the extracted deep features, and (6) the
skip connections between encoder and decoder paths. By changing the parameters, such
as the number of convolutional layers, increasing and decreasing the number of filters in
convolutions, or adding and removing different modules to the network, researchers create
variations of UNets that suit their desired applications.
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In the encoder part, the input image is convolved and pooled in successive convolu-
tional blocks (involving 2D convolutions, batch normalizations, and rectified-linear unit
activations) and becomes smaller in terms of spatial resolution but richer in terms of deep
features. With the network becoming deeper, the deep feature space becomes larger, and
the spatial resolution decreases. The decoder or expansion path expands the high-level,
low-resolution feature maps into higher-resolution maps by successive transposed convo-
lutions, which learn to up-sample the layers by a 2× factor. In order to keep the details
of input images and target objects, such as detailed borders and small objects, along with
precise localization, skip connections are utilized to pass information from the encoder to
the decoder path. The output of the localization step is a binary segmentation map, which
indicates the target building locations extracted from the input pre-disaster satellite images.

Pretrained backbones are usually used as a simple transfer learning strategy to enhance
the performance of the encoder part in Convolutional Neural Networks [66–68]. Backbones
are small to large models with various architectures, which are usually trained on a similar
classification task (usually ImageNet classification), and one of their main goals is to boost
the learning process in new complicated architectures. Pre-trained backbones often carry
optimized weights and can improve the network learning trend during training. We utilized
different backbones in our implementations to study their role in both the localization and
classification tasks. As can be seen on the right side of Figure 8, the pre-trained backbone
features were replaced by the encoder component of our UNet.

4.2. Damage Classification Model

The next step was to assess building damage levels using the proposed dual-branch
UNet architecture. Both pre- and post-disaster images were fed into the dual-branch
network, which was conceptualized based on the well-known Siamese-based networks [18]
that perform semantic change detection or building damage assessment [36,46,57]. The
backbone network that was used in this step was the already trained building localization
UNet mentioned in the previous section. Having the weights to be shared between both
branches in the initialization step, the trained network helped the dual-branch model to
obtain more reliable deep features from both pre- and post-disaster images and converge
faster. Deep features were then concatenated into a larger feature map which was then
entered into a segmentation head containing convolutional and batch-normalization layers.
Figure 9 illustrates the schematic diagram of such a dual-branch Siamese-UNet with similar
weights. The proposed two-stage, dual-branch framework is capable of considering the
spatial and temporal attributes of pre- and post-disaster images at the same time and,
consequently, improves the building segmentation and damage assessment results.

4.3. Selective Kernel Module (SKM)

In the localization and classification stages, UNet models extracted semantic contex-
tual information through many convolutional layers, which resulted in predicting the
location and damage classes of buildings. However, the receptive fields of the artificial
neurons (convolution kernels) in layers were designed to have the same size. Here, we pre-
sented an approach to aggregate information from different kernel sizes to obtain semantic
features from more adaptive receptive fields. The SKM based on the SKNets proposed
by Li et al. [39] is a three-stage module that acts to pay more attention to more important
features through the information extraction steps from adaptive receptive fields. The three
stages are (1) Split, (2) Fuse, and (3) Select, as illustrated in Figure 10, where a two-branch
case with two possible receptive fields is shown.

After entering the Input Features ∈ RH×W×C, on the Split part, different kernels with
different sizes (e.g., 3 × 3, and 5 × 5) are applied to features within multiple branches to

obtain
∼
U ∈ RH×W×C and Û ∈ RH×W×C. The Fuse operator combines the information from

multiple branches by an element-wise summation to obtain Û +
∼
U = U. Then, the global

information S ∈ RC is embedded via a global average pooling (GAP) operation applied to
U, where a reduction of dimensionality is performed by feeding S into a fully-connected
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layer (FC) to obtain the compact feature map z ∈ Rd, that enables precise and adaptive
selection of features. Weight vectors are calculated using a Softmax function to obtain a
global representation of the importance of features. Finally, the Select operator aggregates
features from multiple branches based on the weights obtained from the Fuse operator to
obtain the guided information through an element-wise product. The result is a weighted
feature map V ∈ RH×W×C, with the same size as the input features but weighted based on
the activations with multiple kernel sizes.
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4.4. Evaluation Metrics

One key step in assessing the quality and reliability of a model is to evaluate its per-
formance using appropriate evaluation metrics. Accordingly, the ground truth annotated
buildings were used for comparison and statistical accuracy assessment of our proposed
method. For this purpose, true building classes in reality, which indicate trueness or false-
ness, were compared to predictions of the model in the structure of a confusion matrix.
Figure 11 simplifies the understanding of how a confusion matrix can be interpreted in a
binary classification scenario. True positive (TP), false positive (FP), true negative (TN),
and false negative (FN) values were extracted from the confusion matrix by looking at their
exact definitions. After defining the basic parameters, according to the confusion matrix,
four other dependent metrics, i.e., precision, recall, F1-score (i.e., Dice coefficient), and
Intersection-over-Union (IoU, i.e., Jaccard index), could be defined by Equations (1)–(4) [69]:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1score = 2 × Precision × Recall
Precision + Recall

=
2 × TP

2 × TP + FP + FN
(3)
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IoU =
TP

TP + FP + FN
(4)
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Precision is the ratio of correctly classified buildings to the total number of samples
that were assigned to the building class, as in the localization stage. Recall is the ratio
between the number of correctly classified buildings and the total number of buildings
that really exist. Higher precision relates to a lower false positive rate, i.e., lower false
alarms, and higher recall is related to lower false negative rates, i.e., lower algorithm
misses. It should be noted that in the building damage assessment stage, a four-class
problem (i.e., damaged, no-damaged, minor damaged, major damaged) was considered
for performance evaluation. In localization and classification problems, higher values for
both of these metrics are desired. For this reason, the F1-score, the harmonic mean between
precision and recall, is defined to understand the overall performance of a model with
one measure. The other metric that is capable of estimating the performance of a model is
Overall Accuracy, defined as the number of all correctly classified buildings divided by the
number of all existing buildings in the scene. Finally, in order to enhance the assessment
procedure, the generated building damage assessment maps were visually evaluated by
comparing the results with pre- and post-disaster satellite images.

5. Experiments and Results

In this section, we provide the details of implementations, such as different param-
eters and the configuration set-ups during the experiments. After that, the results of the
experiments with the proposed method, along with the comparisons made with state-of-
the-art networks, are demonstrated. Finally, we showed the robustness and transferabil-
ity of the proposed method by applying it to another dataset from an entirely different
geographical region.

5.1. Implementation Details

The models (i.e., in the first and second stages) were trained using Adam optimizer [70]
with a learning rate starting at 0.0001, which was incrementally reduced by a factor of 0.1
when the models reached a plateau in learning. The localization models were trained with a
batch size of 10 pre-disaster images, randomly cropped into patches of 256 × 256 × 3 pixels,
while the damage assessment models were trained with a batch size of 5 pairs of pre- and
post-disaster images, randomly cropped into patches of 256 × 256 × 3 pixels. The localiza-
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tion and damage assessment networks were trained for 70 and 30 epochs, respectively. The
selection of the number of epochs was based on the observations from the literature, which
used more epochs for the localization stage and less for the classification stage, and several
try-and-error attempts to find the most suitable numbers. Moreover, we configured them
in such a way as to avoid overfitting in the models.

It is worth mentioning that the ground truth masks for the localization task were
256 × 256 × 1 pixels, while for the damage assessment stage, we used one-hot encoded
masks. One-hot encoded masks contain pixels of each class in a separate channel. Thus, the
masks of the second stage had 256 × 256 × 5 shapes, where the last four were for the four
damage classes, and the first channel was selected to contain building localization masks
(see Figure 12). Figure 12 illustrates the above-mentioned preparations in a schematic
diagram. On the left, the random 256 × 256 cropping procedure is shown. In particular,
in each iteration during the training phase, one random 256 × 256 patch is extracted from
the 1024 × 1024 input image. This step is highly important in increasing the generalization
power of the model, as it decreases the chance of the model to see one similar patch in
every iteration. On the right side, a schematic illustration of the augmentation process and
the one-hot encoded classes, along with their corresponding weights, are shown.
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A combination of Focal loss (λFocal) [71], Dice loss (λDice) [72], and Cross Entropy loss
functions were utilized in the localization model training stage [73]. Focal loss function
addresses data imbalance, while Dice loss tries to fit the prediction masks with ground
truth building masks by maximizing their overlaps. Moreover, for the multi-class semantic
segmentation model training, Binary Cross Entropy was replaced with a Weighted Cate-
gorical Cross Entropy loss function (λWCE) which takes into account data imbalance by
applying different weights to classes. The weights were proportional to the number of
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samples in each damage category [73]. Equation (5) clarifies the utilized loss function.
Finally, on the last layer of the model, a Sigmoid activation function was used.

Total Loss = {λWCE : − 1
N ∑N

n=1 rnωnlog pn + (1 − rn)log(1 − pn)} + . . .

. . . {λFocal : −(1 − pn)
γlog pn} + {λDice : 1 − ∑N

n=1 2rn pn+ϵ

∑N
n=1 rn+pn+ϵ

},
(5)

where rn refers to reference pixels and pn is the predicted pixels for class n.
After training the localization networks, they were used as weight initializers for

the second stage. The weights of localization networks were initially shared between the
dual Siamese paths of the damage classification network and were incrementally updated
with a low learning rate during backpropagation. In order to avoid overfitting and to
be able to perform training, validation, and testing steps in a reasonable and efficient
time, after trying different settings, we kept the number of epochs equal to 70 and 30 for
the localization and classification stages, respectively. The localization UNet as a base
network required more epochs for better convergence, while its weights can be further
used in the classification stage, and the dual-UNets can be trained in fewer epochs. On the
other hand, different model configurations may converge at different rates, but having a
fixed number of epochs for all the considered models makes the comparison fair. In fact,
the model that can achieve a superior performance in a fixed number of epochs can be
considered a better model. Furthermore, data augmentation was applied to both stages
for regularization purposes to make the models robust to variations and noise. Train and
Tier3 images (2799 + 6369 pairs) were used simultaneously for training, while Holdout
(933 pairs) and Test (933 pairs) groups were kept for validation and testing, respectively.
All the experiments were performed on an NVIDIA GeForce RTX 2080 Ti GPU, and the
codes were implemented in Tensorflow and Keras packages. Model training in each epoch
took approximately 400–650 s for the smallest to the largest models, while the inference
time for each 1024 × 1024 × 3 image was less than 1 s.

5.2. Results Analysis

To further study the performance of our proposed method and verify its effectiveness,
we employed several state-of-the-art benchmark methods to compare results on the xBD
dataset. Six state-of-the-art UNet-based segmentation networks were considered to assess
the performance of the proposed localization method (see Figure 13 and Table 1). For
damage assessment method evaluation, the two-stage framework was kept unchanged,
but four UNet-based architectures were used to compare the results. Figure 13 shows the
fundamental structures of networks that we used for comparisons. The predefined evalua-
tion metrics were used for statistical assessments, and the localization and classification
maps were further visually investigated to better understand the performances.

5.2.1. Localization Models

First of all, the basic UNet introduced in [37] was used as the starting point. After that,
the Attention-Unet [35] which was powered by attention gates on Unet skip-connections,
was used. Attention-Unet is powerful at focusing on more important spatial structures
of varying shapes and sizes. For the third model, a Residual-Unet [74] was utilized.
Although the number of parameters of the Residual-UNet model was almost the same as
those of the basic UNet, its performance was improved with the help of residual blocks
added to both encoder and decoder paths. Shortcut connections added in each layer of
Residual-UNet improved gradient flow through the network [75,76]. In addition, we tried
to empower our networks with pre-trained backbones. Accordingly, for the next model,
we replaced the encoder path of the Base-UNet with a pre-trained ResNet34 backbone.
Deep features extracted by pre-trained backbones could be beneficial in faster learning
and convergence of the network. In the same way, in order to evaluate the performance of
more powerful backbones, we selected one of the most accurate pre-trained backbones, the
EfficientNetB7 [77], and replaced it with ResNet34. EfficientNetB7 utilizes convolutional
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blocks that contain Squeeze-and-Excitation modules in their heart, resulting in a competing
performance for extracting fine-grained structures. Finally, the best-performing model,
EfficientNetB7-UNet in our case, was selected, and the Selective-Kernel Module was added
to its endpoint. The addition of the SKM could improve the feature extraction process by
applying adaptive receptive field learning to the network. Table 1 presents the details of
the six models and their corresponding number of parameters. The overall architectures of
these models are also visualized in Figure 13.
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Table 1. The six models that were used for comparison in the first stage of our methodology; the
building localization.

Localization Models Extensions Number of Parameters References

1 Base-UNet
- Fully convolutional
encoder-decoder, with
skip-connections

15.6 M (trainable) Ronneberger et al., 2015
[37]

2 Attention-UNet - Attention-gates added
to skip-connections 15.8 M (trainable)

Wu et al., 2021,
Oktay et al., 2018

[35,46]

3 Residual-UNet - Residual blocks
added to each layer 15.6 M (trainable)

Khankeshizadeh et al., 2022,
Zhang et al., 2018

[74,78]

4 ResNet34-UNet

- ResNet34 pre-trained
weights on ImageNet
were used as
the backbone

3 M (trainable) + 21 M (non-trainable) He et al., 2016
[75]
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Table 1. Cont.

Localization Models Extensions Number of Parameters References

5 EfficientNetB7-UNet

- EfficientNetB7
pre-trained weights on
ImageNet were used as
the backbone

11 M (trainable) + 63 M
(non-trainable)

Baheti et al., 2020, Tan et al.,
2019 [66,77]

6 EfficientNetB7-SKM-
UNet

- EfficientNetB7
pre-trained weights on
ImageNet were used as
the backbone
- Selective Kernel
Module added to the
decoder for adaptive
receptive field learning

11 M (trainable) + 63 M (non-trainable)
~5 K from SKM

Proposed method
[39,66]

The xBD benchmark dataset was used in all experiments in a similar way to provide a
fair comparison between networks. After training the localization networks for 70 epochs,
binary segmentation maps were produced for the Test set, and the evaluation metrics,
i.e., precision, recall, F1-score, and IoU, were calculated for all the images. Subsequently,
box plots, which indicate the minimum, maximum, and median values, along with the
lower and upper quantiles of each metric, were generated. Figure 14 illustrates the box
plots of each model, separated by evaluation metrics. In order to generate this plot, all the
models mentioned in Table 1 were tested on the same set of images. For all the images,
TP, FP, TN, and FNs were obtained based on their building localization results, and then
evaluation metrics were obtained. Focusing on boxplots over all the metrics shows that
the performance of the first three models (i.e., Base-UNet, Attention-UNet, and Residual-
UNet), which did not utilize pre-trained backbones was approximately the same, with a
weaker performance for the Attention-UNet. Interestingly, although the EfficientNetB7-
UNet introduced approximately 4× more parameters than the ResNet34-UNet model, they
both performed nearly the same. On the other hand, inserting the SKM at the endpoint
of the fifth model, generating the EfficientNetB7-SK-UNet model, obviously improved
its performance by about 5% in precision, 7% in recall, 6% in F1-score, and 7% in IoU.
The efficiency of SKM is highlighted by the fact that it only introduced about 5 thousand
new parameters to the total number of trainable parameters of the network. Additionally,
boxplots indicate that the model, which was empowered by SKM, had fewer outliers,
and its box is more compact, showing that the standard deviation of metrics’ values had
decreased, which is another indicator of improved performance and accuracy.
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Figure 15 presents several samples of the localization stage from the considered
models for visual investigations. In this figure, pre-disaster images and the localization
predictions from the six models are illustrated and compared with the corresponding
ground truth labels. For a better understanding of the models’ performances, we
visualized the four variables that define evaluation metrics with four colors: green
for TP, blue for FP, red for FN, and white for TN. These variables were obtained
by comparing the results of each localization output with the ground truth of the
corresponding image. Wherever the model predicted the buildings correctly, as in
the ground truth, it was considered TP and colored green. Everywhere that should
not be assigned to the building class and was predicted correctly in the localization
stage was considered TN and colored white. Red and blue were associated with pixels
that the localization models were predicting incorrectly. Blue represents pixels that
were not buildings but were incorrectly detected as buildings and red pixels refer to
the reverse case. It can be seen that EfficientNetB7-SKM-UNet introduced the least
number of FPs and FNs. Results provided in Figure 15 show that the proposed model
provides more accurate predictions with fewer FP and FN pixels. This indicates a
superior performance compared to other models in the localization task, which is the
first step towards obtaining more accurate building damage assessment maps.
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5.2.2. Damage Assessment Models

Four models were selected to compare the damage assessment results in the second
stage and ensure the applicability of the proposed method. We selected the Siamese-
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Base-UNet as a common model (vanilla model) in the damage assessment stage and also
expanded it with an SKM. Moreover, in order to further understand the impact of adding
the SKM to the networks, SKM was added to the segmentation head of the EfficientNetB7-
UNet building damage assessment model. Table 2 summarizes all the models that were
compared in the damage assessment stage of our study.

Table 2. The four model architectures that were used for comparison in the second stage building
damage assessment.

Damage Assessment Models Extensions

1 Siamese-Base-UNet - Basic localization UNets in each branch

2 Siamese-Base-UNet+SKM - Basic localization UNets in each branch
- SKM added in segmentation head

3 Siamese-EfficientNetB7-UNet+SKM - EfficientNetB7-UNets from localization in each branch
- SKM added in segmentation head

4 Siamese-EfficientNetB7+SKM-UNet - EfficientNetB7-UNets from localization in each branch
- SKM added at the end of each branch

We trained damage assessment models for 30 epochs on the xBD dataset and pro-
duced damage classification maps. F1-score and overall accuracy were observed during the
training process and recorded as the evaluation metrics of the damage assessment stage.
Figure 16 shows the mentioned metrics for the four models. Training and validation loss
values, shown in Figure 16, represent that the learning procedure was almost steady for
all models. Furthermore, F1-score and Accuracy values demonstrate that the proposed
model with SKM on each localization branch, the EfficientNetB7-SKM-UNet (black line),
outperformed other damage assessment models in both F1-score and accuracy. The pro-
posed model performance was improved by at least 5% in the overall F1-score using richer
features obtained through the SKM.
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The qualitative comparisons are also displayed in Figure 17, where the damage
assessment model outputs for six sample images from the Test set are compared with
their corresponding ground truth images. Visual investigation of the results indicated
a higher localization and classification performance for the proposed models with
EfficientNetB7-UNet architecture. The EfficientNetB7-UNet model with SKM added
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at the end of each branch had the best building damage assessment performance and
outperformed other models. All models could predict destroyed and intact buildings
with higher precision, while minor- and major-damaged buildings were the most
challenging classes.
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5.3. Transferability Analysis

Given the emergency disaster context, accessing real-time and appropriate anno-
tated images from the current disaster events to train or fine-tune deep learning models
is not always possible. Eventually, accurate annotation of images, even with a team of
experts, is time-consuming and cannot be performed within a short time just after the
disaster. In such conditions, a pre-trained model that is already trained on images from
past disasters could be capable of generalizing to the images of the new disaster [79]
with no or less training effort. Here, the difficulty and complexity of the generalization
problem lie in the variations between either of the datasets (i.e., images of the current
disaster and those of previous disasters). Major sources of such variations could be
the change of geographical region (e.g., differences in textures and urban structure) or
acquisition attributes (e.g., differences in Sun elevation angle, satellite-looking angle,
and acquisition time), which can result in different types of images compared to those
that the predefined model was trained on.

To further study the robustness, generalization power, and transferability of our
proposed method, we used another set of data, i.e., Bam, Iran earthquake images, which
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were not included in the xBD dataset. The results of applying our proposed model to the
Bam city dataset are presented in this section. Differences between the Bam earthquake
dataset and xBD are threefold:

1. Their acquisition conditions, i.e., time, geographical region, and satellites, are com-
pletely different. The xBD images were mostly acquired with Worldview-2 and -3
satellites from 2018 to 2021, while the Bam images were captured by Quickbird in
2003. Moreover, no instance of disaster events from Middle-Eastern countries exists
in the xBD dataset.

2. Building types in Bam differ from those in xBD, with most of them being low-rise and
compact, which were built in a dense tree-covered region;

3. There are almost no instances of earthquake-damaged buildings in the xBD dataset,
except for only three damaged buildings in the Mexico earthquake, (see Figure 2),
meaning that our models were completely trained on natural disasters other
than earthquakes.

Several previous studies concentrated on the binary distinction of building damages.
Moreover, binary classification often satisfies the requirements of operational cases in
emergency situations [51]. On the other hand, it is essential to note that visual assessment
of building damages and assigning damage categories on a 4-level scale from only
satellite images is an uncertain and complex task. Minor- and major-damage classes
are difficult to assess. Only those buildings with some destruction on their rooftops or
damages distinguishable from surrounding debris can be confidently classified. Thus,
we used a limited number of classes for the Bam scenario. Accordingly, minor- and
major-damage predictions from classifiers were ignored, and a binary classification
map was generated for the study area, including only no-damage and destroyed classes.
Based on the pre-disaster images, almost all of the buildings were identified correctly in
the localization stage, except for a limited number of false positive predictions due to
the shape of buildings or the overlap of trees. For the task of damage assessment, based
on the pre- and post-disaster satellite images, damage classes were identified precisely.
The overall accuracy was 84%, and F1-score values for no-damage and destroyed classes
were 80% and 87%, respectively, showing promising results for transferring damage
assessment learning from previous disaster events to a new and unseen dataset. Figure 18
demonstrates a combination of localization and damage assessment results on seven
sample regions of Bam city, along with their probability maps derived from the proposed
model. These maps show the probability of each pixel belonging to one of the two classes
of destroyed or no-damage. Precise damage assessment results are visible for different
regions. In order to enhance the classification results, we utilized the provided building
mask to refine the final classification output. The refined binary damage assessment
map is visualized in the last column. Each building is colorized red or green to show the
destroyed or no-damage classes, respectively. Moreover, building borders are similarly
colorized and overlaid to show the ground truth information for each building. Some
features were identified in the Bam images that could negatively affect the predictions,
including (1) yard walls of properties have guided the localization algorithm to think of
yards as building regions and incorrectly assign building pixels to them, (2) dense and
tall trees on some part of the study area, intensified varying illumination angles, have
made difficult conditions for identifying the correct class for some pixels, and (3) using
white materials in furnishing yards have mistaken the algorithm to think of them as
buildings. However, the results demonstrated the applicability and robustness of the
method over the unseen dataset of the Bam earthquake.
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and destroyed classes are shown in the middle with the relevant color map. The building damage
classification map is demonstrated on the right, and the ground truth data for each building is
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6. Discussion

This paper focused on designing and enhancing a two-stage UNet-based building
damage assessment network to achieve accurate and precise building localization and
damage classification, which led to at least a 5% increase in the evaluation metrics. Pre-
trained backbone feature extractors were utilized to extract deep representations from pre-
and post-disaster satellite images. Simultaneously, the SKM, conceptualized from the idea
of adaptive receptive fields, was introduced into the UNet architecture to enhance the
performance of the model. Fair comparisons, in either of the localization and damage as-
sessment stages, were made between the proposed model and state-of-the-art UNet-based
architectures. Experimental analysis showed that the proposed framework outperformed
existing CNN-based methods, proving its effectiveness. In the first stage, as illustrated in
Figure 14, the localization results obtained from the proposed model outperformed other
models in terms of all the evaluation metrics. The proposed model resulted in fewer false
positive (false alarms) and fewer false negative pixels. In addition to large buildings, which
are simpler for identification, sparse and smaller buildings in non-urban regions or compact
buildings in dense urban regions were also correctly located.

The second stage, which was conceptualized based on change detection approaches,
used a Siamese-based two-branch UNet architecture. The SKM was also utilized in this
stage to improve damage classification results. Training and validation metrics, along with
visual investigations, demonstrated the superior performance of the proposed model with
respect to other methods. It was observed that although the models successfully identified
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damaged portions of buildings, they were not accurate in assigning them to the relevant
classes. This mostly happened in buildings with minor- or major-damages classes where
some part of the building is usually damaged. This finding highlights a limitation of the
current models in handling complex damage prediction tasks and suggests areas for future
research and development.

It should be noted that the classification of all four damage categories was difficult,
leading to misclassifications in minor- and major-damage classes compared to no-damage or
destroyed classes, which were mostly classified correctly. This behavior can be attributed to
several reasons. Firstly, there was a significant imbalance in the number of samples between
damage categories. Secondly, other sources of uncertainty and complexity in the dataset,
such as relying solely on satellite images, could have contributed to the misclassification
issue. It is worth mentioning that even with high-quality images, evaluation of damage
categories for buildings using only satellite images is a complicated task, as the assessment
is limited to the building’s roof, while some categories of damage in natural disasters
affect walls and building floors. The addition of extra degradation parameters such as
cloud coverage, varying viewing angles, as well as changes in sun elevation angle increase
the level of difficulty in the damage classification procedure. In this regard, for a better
understanding of these sources of uncertainty, Figure 19 visualizes the image acquisition
conditions in pre- and post-disaster images for all 19 disaster events in the xBD dataset.
This has been conducted by schematically demonstrating the sun and satellite positions, as
well as the variations in spatial resolution, before and after each disaster. For each disaster
event, the number of image pairs (top right), type of disaster (bottom right), and pre-/post-
disaster sun and satellite angles are visualized in each box. Focusing on satellite look
angles before disasters (the blue satellites) reveals that most of the images were taken from
near-nadir angles, which results in sharper images, while in post-disaster conditions (red
satellites), images were mostly taken during emergency situations that satellite tracks were
not necessarily crossing the region of interest and look angles tend to be higher. Another
aspect of image attributes in the xBD dataset is the time gap between pre- and post-disaster
image acquisitions, which results in different sun elevation angles (the red and blue Sun
symbols). This will result in dissimilar shadow lengths and directions, which could affect
the inference procedure. Moreover, in order to show that ground sampling distance (GSD)
was not consistent across images in xBD, two scales are visualized on the top left corner of
each box. A 1 m2 GSD is in the middle, and the larger squares relatively show how much
the actual GSDs in each imaging scenario vary concerning the reference scale. The closer
the boxes are to the reference central box, the less variation exists in the imagery resolutions.
Furthermore, different box sizes in pre- and post-disaster cases explain the complexity of
GSD variations in the xBD dataset. This scale simplifies the understanding of different
resolutions in pre- and post-disaster situations.

For the first time, Figure 19 provides a detailed representation of the xBD dataset,
revealing various associate imbalance attributes, including different Sun elevations, off-
nadir-looking angles, and dissimilar GSDs in pre- and post-disaster images. One of the
key contributions of this study was that we investigated the correlations between these
attributes and the performance of our proposed model in detail. Accordingly, multiple
experiments were designed to analyze how each parameter could affect the performance
of our proposed model in either the localization or classification stages. To address this
investigation, we identified three parameters of (1) Sun elevation angle, (2) GSD, and (3)
satellite off-nadir looking angle, as the influencing parameters on the localization stage
performance. Similarly, three relative parameters between pre- and post-disaster images,
including (1) differences in Sun elevation angle, (2) differences in GSDs, and (3) differences
in off-nadir angle, along with the disaster types, shaped the structure of four influencing
parameters on the classification results. In order to be able to conduct these experiments,
we should have chosen some thresholds for each of the influencing parameters to create a
comparison basis and assess the performance of the model. In this regard, we investigated
the distribution of each variable by studying its histogram.
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Figure 20 illustrates the histogram of the above-mentioned variables. Since image
resolution and off-nadir-looking angle have a physical relationship with each other, a bi-
variable scatter plot was generated for further investigations. With the aim of comparing the
localization and classification results, we chose thresholds that make distinctive separations
between the variables’ values. For instance, we decided on 50◦ as the separation value for
the pre-disaster Sun elevation angles, making an approximate 10◦ separation between the
two groups so that their comparison would be more reasonable and meaningful. Moreover,
on top of each graph, the number of images that fall within the threshold limits is illustrated.
We only employed Test set images with more than one building for these experiments,
which resulted in 752 image pairs. It is important to recognize that the varying number
of images in each experiment was a factor beyond our control. Therefore, it is important
to understand this limitation and its impact on the analysis and results; thus, it should be
considered when interpreting the findings.
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experiment. The number of images for each experiment is presented next to the curly brackets.
Subfigures are displaying (a) histogram of pre-disaster Sun elevation angles, (b) off-nadir angle
vs. ground resolution, (c) histogram of differences between pre- and post-disaster Sun elevation
angles, (d) histogram of differences between pre- and post-disaster GSDs, (e) histogram of differences
between pre- and post-disaster off-nadir angles. The blue circles are showing the specified threshold
which has been used for further analysis.

We exclusively utilized the pre-disaster images to analyze the effect of parameters on
the localization stage performance. The effect of parameters on the quality of localization
results was studied in seven different configurations which are illustrated in Figure 21. The
results illustrated that experiment A (images with 1.2 m < GSDs ≤ 1.8) achieved the best
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performance. This highlights the importance of using high-resolution images for building
footprint localization. Conversely, the worst performance was obtained when utilizing
close-to-nadir images (images with off-nadir angle ≤ 18◦) in experiment C. The large
difference between values obtained from experiments C and D suggests that compared
to nadir images, oblique satellite images could generate more accurate building masks.
Experiments F and G, with a subtle difference in their performance, show that shorter
shadows (images with Sun elevation > 50◦) obtain better masks.
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In order to study the effect of relative parameters on the classification stage perfor-
mance, we should have used both the pre- and post-disaster images. In these experiments,
we investigated the relative relation between pre- and post-disaster satellite images, such as
the differences in Sun elevation angle, differences in GSD, or differences in off-nadir angles.
Figure 22 illustrates the evaluation metrics computed from each experiment. Although the
results have shown approximately the same performance in all configurations, satellite
images with more similar Sun elevation angles could result in higher accuracy.
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Finally, we investigated the model’s performance based on individual natural disaster
types. Accordingly, images from different events such as fires, earthquakes, volcanic erup-
tions, tsunamis, or winds were separately fed into the model, and the evaluation metrics
were calculated (see Figure 23). Fire-related images obtained the best performance when
considering all the evaluation metrics simultaneously. One reason for this achievement
is that damaged buildings in fire-related images are mostly destroyed, and their damage
assessment was performed more confidently. Volcanic eruption events had the least num-
ber of images (only five images), and their evaluation was not statistically reliable. Wind
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events had experienced the worst performance in damage assessment and classification.
One reason for this behavior could be the types of damage that occur to buildings after
typhoons and tornados, which are different from other disasters.
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According to our experiments, several key factors can critically affect the performance
of deep learning semantic segmentation networks for building damage assessment. Either
the data imbalance towards specific classes or specific disaster types, such as the case in the
xBD dataset, can decrease the training performance. Although the architecture and depth
of deep networks are important parameters, other hyperparameters such as loss function,
activations, or attention modules play major roles in model performance. In contrast to the
superior performance of our proposed EfficientNetB7-SK-UNet in experiments, our model
still faces some limitations. One of the shortcomings of our methodology is its weakness
in classifying minor- and major-damaged buildings. This can be further improved by
training on a more diverse dataset that contains more instances of these complicated classes.
Another one is that pancake collapses of multistory buildings or façade damages cannot
be assessed from satellite images [29,30]. Damage assessment based on satellite images
is limited to near-nadir observations, and most of the time, only rooftop damages can be
detected. Similarly, although the xBD dataset is currently the largest dataset for building
damage assessment, the imbalance of classes and disaster types, as well as complexities
in the pre- and post-disaster image acquisition conditions, makes it a challenging dataset
to support general solutions. Therefore, huge efforts are still required to generate high-
quality annotated datasets for building damage assessment. Multi-modal datasets that
leverage the synergistic potential of multiple sensors, such as SAR or LiDAR, along with
high-resolution optical satellite images or oblique UAV imagery, should be generated. Such
datasets can provide more comprehensive and accurate information for damage assessment
and disaster response, significantly contributing to damage assessment operations and the
development of the scientific community. Finally, training deep neural networks, especially
the semantic segmentation models, usually takes up to several hours and requires large
numbers of annotated data. This is not suitable for real-world disaster situations where
fast decision-making is critical. Developing more robust and lightweight models will help
in tackling these limitations.

Urban planning and infrastructure monitoring are important applications of remote
sensing technologies and satellite imagery. In this regard, utilizing satellite imagery as
a valuable source for monitoring urban changes can help plan for future developments.
Accordingly, the dual-branch UNet architecture, which proved its applicability in semantic
segmentation, can be used in further developments for building footprint localization
and change detection applications using bi-temporal satellite images. Developing useful
and automated applications for handling various real-world problems, such as those
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mentioned above, requires robust, efficient, and scalable algorithms that can be used with
less training effort. Accordingly, appropriate hardware, i.e., more powerful computing
resources, empowered with lighter networks that can train faster while achieving the same
performance as heavy models, are the future of artificial intelligence applications.

7. Conclusions

In this research, we designed a two-stage dual-branch UNet-based network for the
tasks of building localization and damage assessment after natural disasters. Pre-trained
feature extraction backbones, along with the proposed SKM for the UNets, were utilized to
improve the localization and damage assessment performances. For this purpose, the xBD
dataset was used as a benchmark to develop models and compare different networks. The
results verified that compared with state-of-the-art UNet-based architectures, the proposed
strategy could achieve significant improvements in both stages. Then, in order to study
the transferability capability of our model, we evaluated it on a completely unseen dataset
from another region in the world. The Bam dataset was extremely challenging not only
because of the limited number of images that banned the fine-tuning step of the models but
also because of the completely different type and density of buildings in the city compared
to buildings that existed in the xBD dataset. All the experiments and transferability analysis
demonstrated the applicability of the SKM-UNets for building localization and damage
assessment. Further investigations using the xBD dataset revealed the relative importance
of GSDs, Sun elevation angles, and satellite-looking angles in building localization and
damage assessment.
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55. Schmitt, M.; Ahmadi, S.A.; Xu, Y.; Taşkin, G.; Verma, U.; Sica, F.; Hänsch, R. There Are No Data Like More Data: Datasets for
Deep Learning in Earth Observation. IEEE Geosci. Remote Sens. Mag. 2023, 11, 63–97. [CrossRef]

56. Gupta, R.; Goodman, B.; Patel, N.; Hosfelt, R.; Sajeev, S.; Heim, E.; Doshi, J.; Lucas, K.; Choset, H.; Gaston, M. Creating XBD: A
Dataset for Assessing Building Damage from Satellite Imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 10–17.

57. Da, Y.; Ji, Z.; Zhou, Y. Building Damage Assessment Based on Siamese Hierarchical Transformer Framework. Mathematics 2022,
10, 1898. [CrossRef]

58. Takahashi, R.; Matsubara, T.; Uehara, K. Data Augmentation Using Random Image Cropping and Patching for Deep CNNs. IEEE
Trans. Circuits Syst. Video Technol. 2018, 30, 2917–2931. [CrossRef]

59. Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image
Augmentations. Information 2020, 11, 125. [CrossRef]

60. Hessami, K.; Tabassi, H.; Abbassi, M.R.; Azuma, T.; Okumura, K.; Echigo, T.; Kondo, H. Surface Expression of the Bam Fault Zone
in Southeastern Iran: Causative Fault of the 26 December 2003 Bam Earthquake. J. Seismol. Earthq. Eng. 2004, 5, 5–14.

61. Iranica Online. Available online: https://www.iranicaonline.org/articles/bam-earthquake-2003 (accessed on 20 July 2023).

https://doi.org/10.1109/TGRS.2021.3080580
https://doi.org/10.1109/TPAMI.2017.2699184
https://www.ncbi.nlm.nih.gov/pubmed/28463186
https://doi.org/10.1193/1.2101047
https://doi.org/10.1016/j.compeleceng.2022.108536
https://doi.org/10.1109/JSTARS.2015.2458582
https://doi.org/10.3390/rs13050905
https://doi.org/10.1109/TGRS.2022.3200872
https://doi.org/10.1016/j.ijdrr.2020.101505
https://doi.org/10.3390/rs12172839
https://doi.org/10.1007/s10707-022-00480-3
https://doi.org/10.1109/LGRS.2023.3243575
https://doi.org/10.1109/MGRS.2023.3293459
https://doi.org/10.3390/math10111898
https://doi.org/10.1109/TCSVT.2019.2935128
https://doi.org/10.3390/info11020125
https://www.iranicaonline.org/articles/bam-earthquake-2003


Remote Sens. 2024, 16, 182 34 of 34

62. Gusella, L.; Adams, B.J.; Bitelli, G.; Huyck, C.K.; Mognol, A. Object-Oriented Image Understanding and Post-Earthquake Damage
Assessment for the 2003 Bam, Iran, Earthquake. Earthq. Spectra 2005, 21, 225–238. [CrossRef]

63. Yang, W.; Zhang, X.; Luo, P. Transferability of Convolutional Neural Network Models for Identifying Damaged Buildings Due to
Earthquake. Remote Sens. 2021, 13, 504. [CrossRef]

64. Wang, C.; Zhang, Y.; Xie, T.; Guo, L.; Chen, S.; Li, J.; Shi, F. A Detection Method for Collapsed Buildings Combining Post-
Earthquake High-Resolution Optical and Synthetic Aperture Radar Images. Remote Sens. 2022, 14, 1100. [CrossRef]

65. Ji, M.; Liu, L.; Du, R.; Buchroithner, M.F. A Comparative Study of Texture and Convolutional Neural Network Features for
Detecting Collapsed Buildings after Earthquakes Using Pre-and Post-Event Satellite Imagery. Remote Sens. 2019, 11, 1202.
[CrossRef]

66. Baheti, B.; Innani, S.; Gajre, S.; Talbar, S. Eff-Unet: A Novel Architecture for Semantic Segmentation in Unstructured Environment.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19
June 2020; pp. 358–359.

67. Elharrouss, O.; Akbari, Y.; Almaadeed, N.; Al-Maadeed, S. Backbones-Review: Feature Extraction Networks for Deep Learning
and Deep Reinforcement Learning Approaches. arXiv 2022, arXiv:2206.08016.

68. Le Duy Huynh, N.B. A U-Net++ with Pre-Trained Efficientnet Backbone for Segmentation of Diseases and Artifacts in Endoscopy
Images and Videos. CEUR Workshop Proc. 2020, 2595, 13–17.

69. Maxwell, A.E.; Warner, T.A.; Guillén, L.A. Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote
Sensing Studies—Part 1: Literature Review. Remote Sens. 2021, 13, 2450. [CrossRef]

70. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
71. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2017, arXiv:1708.02002.
72. Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised Dice Overlap as a Deep Learning Loss Function

for Highly Unbalanced Segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision
Support, Proceedings of the Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Québec City, QC,
Canada, 14 September 2017; Springer: Cham, Switzerland, 2017; pp. 240–248.

73. Kaur, N.; Lee, C.; Mostafavi, A.; Mahdavi-Amiri, A. Large-scale Building Damage Assessment Using a Novel Hierarchical
Transformer Architecture on Satellite Images. Comput.-Aided Civ. Infrastruct. Eng. 2023, 38, 2072–2091. [CrossRef]

74. Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [CrossRef]
75. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
76. Chen, F.; Wang, N.; Yu, B.; Wang, L. Res2-Unet, a New Deep Architecture for Building Detection from High Spatial Resolution

Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1494–1501. [CrossRef]
77. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th

International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019.
78. Khankeshizadeh, E.; Mohammadzadeh, A.; Moghimi, A.; Mohsenifar, A. FCD-R2U-Net: Forest Change Detection in Bi-Temporal

Satellite Images Using the Recurrent Residual-Based U-Net. Earth Sci. Inform. 2022, 15, 2335–2347. [CrossRef]
79. Bouchard, I.; Rancourt, M.-È.; Aloise, D.; Kalaitzis, F. On Transfer Learning for Building Damage Assessment from Satellite

Imagery in Emergency Contexts. Remote Sens. 2022, 14, 2532. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1193/1.2098629
https://doi.org/10.3390/rs13030504
https://doi.org/10.3390/rs14051100
https://doi.org/10.3390/rs11101202
https://doi.org/10.3390/rs13132450
https://doi.org/10.1111/mice.12981
https://doi.org/10.1109/LGRS.2018.2802944
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/JSTARS.2022.3146430
https://doi.org/10.1007/s12145-022-00885-6
https://doi.org/10.3390/rs14112532

	Introduction 
	Related Works 
	Datasets and Preparations 
	xBD Dataset 
	Bam Dataset 
	Dataset Preparation 

	Methodology 
	Localization Model 
	Damage Classification Model 
	Selective Kernel Module (SKM) 
	Evaluation Metrics 

	Experiments and Results 
	Implementation Details 
	Results Analysis 
	Localization Models 
	Damage Assessment Models 

	Transferability Analysis 

	Discussion 
	Conclusions 
	References

