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Abstract: In polarimetric synthetic aperture radar (POLSAR), it is of great significance for civil and
military applications to find novel model-based decomposition methods suitable for ship detection in
different detection backgrounds. Based on the physical interpretation of polarimetric decomposition
theory and the Lasso rule for sparse features, we propose a four-component decomposition model,
which is composed of surface scattering (Odd), double-bounce scattering (Dbl), volume scattering
(Vol), and ±45◦ oriented dipole (Od). In principle, the Od component can describe the compounded
scattering structure of a ship consisting of odd-bounce and even-bounce reflectors. Moreover, the
pocket perceptron learning algorithm (PPLA) and support vector machine (SVM) are utilized to
solve the linear inseparable problems in this study. Using large amounts of RADARSAT-2 (RS-2)
fully polarized SAR data and AIRSAR data, our experimental results show that the Od component
can make a great contribution to ship detection. Compared with other conventional decomposition
methods used in the experiments, the proposed four-component decomposition method has better
performance and is more effective and feasible to detect ships.

Keywords: polarimetric synthetic aperture radar (POLSAR); ship detection; pocket perceptron linear
algorithm (PPLA); model-based scattering power decomposition

1. Introduction

Polarimetric synthetic aperture radar (POLSAR) is an advanced microwave remote
sensing system and is extensively used in the military and civil fields owing to its unique
advantages of all-day all-weather and multi-channel continuous observation. It can acquire
not only high-resolution imagery but also the complete electromagnetic scattering charac-
teristics of targets [1–4]. Ship detection in POLSAR imagery plays a vital role in marine
monitoring and has attracted enormous attention to help government departments deal
with maritime emergencies in a timely manner in recent years.

To the best of our knowledge, ship detectors using POLSAR can be divided into main
categories, including the following: (1) independent polarization channel composition [5],
(2) polarization optimal [4,6], (3) polarimetric scattering mechanism [7,8], (4) ship wake
detection [9], and (5) data-driven or deep learning-based [10–12]. Regarding the polari-
metric scattering mechanism, various target decomposition algorithms are used for ship
detection. Ringrose et al. used the Cameron coherent target decomposition method to
detect ships from spaceborne imaging radar C-band data [13]. Chen et al. proposed a ship-
detection method which used polarization cross-entropy as a discriminative parameter [14].
Zhang et al. combined the complete polarimetric covariance difference matrix and the
four-component decomposition proposed by Yamaguchi for ship detection [8]. Among
these target decomposition algorithms, the model-based scattering property decomposition
algorithm has good prospects for application in ship detection because it has strong physi-
cal interpretability and can correlate each resolution unit with the corresponding physical
scattering mechanism.
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The decomposition objects of the model-based decomposition for polarized scattering
characteristics include the scattering matrix [15,16], the Kennaugh matrix [17,18], and the
coherency or covariance matrix [19–29]. Among these, target decomposition methods using
covariance or coherency matrices are the most widely used. These decomposition methods
usually assume that some scatterers exist in the scattering target and decompose different
scattering models according to different scatterers.

The model-based scattering power decomposition method was first developed by
Freeman and Durden [19] around 1998. This three-component decomposition model
(FDD) is based on simple physical scattering mechanisms and is built under the reflection
symmetry assumption that

〈
SHHS∗

HV
〉
= 0 and

〈
SHVS∗

VV
〉
= 0. FDD has been successfully

applied to the natural distribution regions which satisfy reflection symmetry, and shows
good classification results.

To address the non-reflection symmetric case that
〈
SHHS∗

HV
〉
̸= 0 and

〈
SHVS∗

VV
〉
̸= 0,

Yamaguchi et al. [20] added the helix scattering power for the more general scattering
mechanism. FDD was extended and a four-component scattering model (Y4O) was pro-
posed in 2005. Furthermore, in Y4O, the volume-scattering component was modified. Y4O
is effective in both urban and vegetated areas. However, the polarimetric information
is still not utilized completely. It is known that there are nine independent polarimetric
parameters in coherency matrices or covariance matrices. In Y4O, six parameters of the
covariance matrix are used, and the remaining three parameters are not considered. In
order to mitigate or eliminate the above problem of incomplete utilization of polarimetric
parameters, many significant improvements have been proposed.

The orientation angle compensation is introduced to the model-based decomposi-
tion [21–23]. By rotating the coherency matrix, the number of independent parameters
reduced from nine to eight, leaving two unaccounted. In 2013, Singh et al. [24] proposed
a new generalized four-component decomposition model (G4U) in which all nine polari-
metric parameters have been utilized by performing a set of unitary transformations on
the coherency matrix. Compared with other model-based decompositions that existed at
that time, G4U was able to improve the image interpretation considerably. Later, the ad
hoc procedures for making full use of the polarization information in the coherency matrix
were developed [2,25]. In 2018, Singh et al. [26] proposed a six-component decomposition
method (6SD) which accounted for the oriented dipole structures. It was shown that 6SD
was easier to display the additional relevant information than the decomposition models
which existed previously. Similarly, many researchers attempt to improve the scattering
models to apply to general scattering cases [27–29]. However, the improved decompo-
sition models became more and more complicated. Since the complexity of the model
increases with the number of components, a compromise is made between the complexity
and efficiency of the model. It is important to note that we focus on the four-component
decomposition model.

This paper intends to propose a four-component decomposition method which is
applicable to ship detection in different detection backgrounds. The main contributions of
this study are:

(1) Extracting 23-dimensional polarization features from six kinds of conventional po-
larimetric decomposition methods and using Least Absolute Shrinkage and Selection
Operator (Lasso) to select the optimal polarization features. The initial optimal polar-
ization features are Odd, Dbl, Vol, and Od.

(2) Using the Odd, Dbl, Vol, and Od components, we derive a four-component decompo-
sition model from mathematical and theoretical perspectives.

(3) PPLA and SVM are adopted to solve the linearly inseparable problems under low-
resolution experimental circumstances. The rationality of our decomposition model is
verified using large amounts of RADARSAT-2 data and AIRSAR data.

The organization of this paper is as follows. Section 2 introduces the basic theory
of POLSAR and presents a novel four-component decomposition method. In Section 3,
the effectiveness of the four-component model is validated using the simulated data and
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the measured data. Experimental results in comparison with other conventional decom-
position methods and the corresponding analysis are also demonstrated in this section.
Sections 4 and 5 are the discussion and conclusion, respectively.

2. Materials and Methods
2.1. POLSAR Data Description

In a POLSAR measurement system, each pixel can be represented by a 2 × 2 complex
scattering matrix [S] [30]. The expression is as follows [31].

[S] =
[

SHH SHV
SVH SVV

]
(1)

The horizontally polarized waves and vertically polarized waves are respectively
by H and V. SHH , SVV , and SHV are the backscattering coefficients of the HH, VV, and
HV polarimetric channels, respectively. When the reciprocity theorem is satisfied, i.e.,
SHV = SVH , the Pauli scattering vector kP is obtained as:

kP =
1√
2

SHH + SVV
SHH − SVV

2SHV

 (2)

However, in real scenarios, relying only on the scattering matrix cannot describe the
full properties of the target. The second-order statistics of the scattering matrix is a better
form [32]. Here, we use the coherence matrix which is defined as

⟨[T]⟩ =
〈

kpk†
P

〉
=

T11 T12 T13
T21 T22 T23
T31 T32 T33

 =

 |k1|2 ⟨k1k∗2⟩
〈
k1k∗3

〉〈
k2k∗1

〉
|k2|2

〈
k2k∗3

〉〈
k3k∗1

〉
⟨k3k∗2⟩ |k3|2

 (3)

where

kP =

k1
k2
k3

 =
1√
2

SHH + SVV
SHH − SVV

2SHV

 (4)

where ⟨·⟩ denotes the ensemble average in the data processing, ∗ denotes the complex
conjugation, and † denotes complex conjugation and transposition [26].

There are two different data formats in model-based POLSAR decomposition, com-
monly known as the coherency matrix [2,21,23,24,26] and the covariance matrix [19,20,28].
Since these two matrices are frequently used in the data analysis, it is necessary to explain
the relation between the two. The covariance matrix and coherency matrix are equivalent
mathematically. Therefore, the information contained inside is the same. One should
note that we concentrate on decomposing the coherency matrix, whereas for generating
simulated data, we use the covariance matrix which is defined as

⟨[C]⟩HV =


〈
|SHH |2

〉 √
2
〈
SHHS∗

HV
〉 〈

SHHS∗
VV
〉

√
2⟨SHVS∗

HH⟩ 2
〈
|SHV |2

〉 √
2
〈
SHVS∗

VV
〉

⟨SVVS∗
HH⟩

√
2
〈
SVVS∗

HV
〉 〈

|SVV |2
〉

 (5)

The following equation gives the mutual relations and transformations between co-
variance matrices and coherency matrices:

[T] = [UP][C][UP]
†, [C] = [UP]

†[T][UP] (6)
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where

[UP] =
1√
2

1 0 1
1 0 −1
0

√
2 0

 (7)

As a summary, the mutual transformation of various polarization matrices can be
visualized as shown in Figure 1.
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2.2. A Novel Polarimetric Decomposition Model

Applying model-based polarimetric decomposition algorithms to detect ships from
sea clutter has been less studied, and existing model-based polarimetric decomposition
algorithms focus on interpreting terrestrial vegetation and cities. Inspired by the Lasso
rule of feature selection, we attempt to select the principal features applicable to ship
detection from six kinds of conventional polarimetric decomposition methods introduced
above. After statistical analysis, we find that the results of the four features extracted are
basically consistent with those of all features utilized in the experiments, and then a novel
polarimetric decomposition model is proposed, which is suitable for ship detection.

2.2.1. Lasso

Lasso, short for Least Absolute Shrinkage and Selection Operator, was first proposed
by Robert Tibshiran in 1996 [33]. It is a linear regression method using L1-regularization.
When L1 regularization is adopted, the weights of some less important features will be
zero, thus achieving sparse feature and feature selection.

For data
(

Xi, yi

)
, i = 1, 2, . . . N, Xi =

(
xi1, . . . xip

)T are the predictor variables, and yi

are the responses, ∑i xij/N = 0, ∑i x2
ij/N = 1.

Letting
∧
β =

( ∧
β1, . . .

∧
βp

)T
, the Lasso estimate

(
α,

∧
β

)
is defined by

(
∧
α,

∧
β

)
= argmin

N
∑

i=1

(
yi − α − ∑

j
β jxij

)2

subject to ∑
j

∣∣β j
∣∣ ≤ t

(8)

Here t ≥ 0 is a tuning parameter which can control the shrinkage applied to the

estimates. Let t0 = ∑
∣∣∣∣ ∧β◦

j

∣∣∣∣. Values of t < t0 will cause shrinkage of the solutions towards
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zero, and some coefficients may be exactly zero [33]. Figure 2 is the estimation picture for
the Lasso. It is clear from Figure 2 that Lasso can produce coefficients equal to zero.

∑N
i=1

(
yi − ∑

j
β jxij

)2

=

(
β −

∧
β◦
)T

XTX
(

β −
∧
β◦
)

(9)
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The solid curves indicate the elliptical contours of this function; the rotated square
indicates the constraint region. The Lasso solution is the first place that the contours touch
the square. In Figure 2, this will occur at a corner, corresponding to a zero coefficient [33].

2.2.2. Optimal Polarization Features Selection

In this paper, six kinds of polarimetric decomposition methods, including FDD in
1998, Y4O in 2005, An decomposition in 2010, G4U in 2013, Cui decomposition in 2014, and
6SD in 2018 were used to extract 23-dimensional polarization features. The parameters
extracted using different polarimetric decomposition methods are listed in Table 1. Then,
the optimal polarization features selection was performed using the Lasso method. Table 2
shows the ranking of the 23 features in terms of importance. After the selection analysis,
four better polarization features, i.e., Odd-FDD, Dbl-FDD, Vol-An, and Od-6SD were
obtained. The specific data and experimental comparison results are presented in the
experimental section.

Table 1. Parameters extracted using different polarization decomposition methods.

Decomposition
Methods Decomposition Parameters Description

FDD Odd-FDD, Dbl-FDD,
Vol-FDD

Freeman-Duren decomposition in 1998:
surface scattering component,

double-bounce scattering component, and
volume scattering component

Y4O Odd-Y4O, Dbl-Y4O,
Vol-Y4O, Hlx-Y4O

Yamaguchi decomposition in 2005: surface
scattering component, double-bounce

scattering component, volume scattering
component, and helix scattering

component

An decomposition Odd-An, Dbl-An, Vol-An

An decomposition in 2010: surface
scattering component, double-bounce

component, and volume scattering
component
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Table 1. Cont.

Decomposition
Methods Decomposition Parameters Description

G4U Odd-G4U, Dbl-G4U,
Vol-G4U, Hlx-G4U

G4U decomposition in 2013: surface
scattering component, double-bounce

scattering component, volume scattering
component, and helix scattering

component

Cui decomposition Odd-Cui, Dbl-Cui, Vol-Cui

Cui decomposition in 2014: surface
scattering component, double-bounce

scattering component, and volume
scattering component

6SD Odd-6SD, Dbl-6SD, Vol-6SD,
Hlx-6SD, Od-6SD, Cd-6SD

6SD decomposition in 2018: surface
scattering component, double-bounce

scattering component, volume scattering
component, helix scattering component,

oriented dipole scattering component, and
compound dipole scattering component

Table 2. The rank of the importance of 23 features.

Features Ranking

Odd-FDD 1
Dbl-FDD 2
Vol-An 3
Od-6SD 4
Vol-FDD 5
Odd-Y4O 6
Cd-6SD 7
Vol-G4U 8
Vol-6SD 9
Vol-Y4O 10
Dbl-Cui 11
Odd-An 12
Hlx-6SD 13
Vol-Cui 14
Dbl-6SD 15
Dbl-G4U 16
Odd-G4U 17

Dbl-An 18
Dbl-Y4O 19
Hlx-Y4O 20
Hlx-G4U 21
Odd-Cui 22
Odd-6SD 23

2.2.3. A Four-Component Decomposition Model for Ship Detection

The proposed four-component decomposition model comprises the Odd, Dbl, Vol,
and Od components. Next, we analyze these four scattering components.

Each component can be represented by a composite scattering matrix as follows:

(1) Odd:

[S]total
s =

1
2

[
1 0
0 1

]
, kP =

1√
2

 1
0
0


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[T]s =

1 0 0
0 0 0
0 0 0

⇒ [T]s =

1 β∗ 0
β |β|2 0
0 0 0

 (10)

(2) Dbl:

[S]total
d =

1
2

[
1 0
0 −1

]
, kP =

1√
2

 0
1
0



[T]d =

0 0 0
0 1 0
0 0 0

⇒ [T]d =

|α|2 α 0
α∗ 1 0
0 0 0

 (11)

(3) Vol:

There are various volume scattering models proposed. We adopt the volume scattering
model proposed by An et al., which gives the maximum entropy.

[T]vol =
1
3

1 0 0
0 1 0
0 0 1

 (12)

(4) Od:

The Od component describes the composite scattering structure consisting of even-
bounce and odd-bounce reflectors. There are many upright metal parts on the ship deck,
similar to a steel frame structure (even-bounce reflector), and these can form a composite
scattering structure with the deck (odd-bounce reflector). As analyzed in [26], these
complex scatterings can be represented by a ±45◦ oriented dipole component complex
scattering matrix.

The scattering characteristics of an oriented dipole depend significantly on the target
orientation with respect to the polarization coordinate system. Suppose we have two
dipoles which are oriented at 45◦ and −45◦ against each other, as illustrated in Figure 3.
The corresponding scattering submatrices are given in the following equations:

[S]45◦
dipole =

[
1 1
1 1

]
, [S]−45◦

dipole =

[
1 −1
−1 1

]
(13)
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Figure 3. ±45◦ oriented dipole.

By combining the scattering matrix of an odd-bounce reflector with the scattering
matrix of a ±45◦ oriented dihedral, a composite-oriented dipole scattering matrix is
formed [26]:
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ℜ(T13) > 0

[S]45◦
dipole = 1

2

[
1 1
1 1

]
, kP = 1√

2

1
0
1


[T]45◦

dipole = 1
2

1 0 1
0 0 0
1 0 1


(14)

ℜ(T13) < 0

[S]−45◦
dipole = 1

2

[
1 −1
−1 1

]
, kP = 1√

2

 1
0
−1


[T]−45◦

dipole = 1
2

 1 0 −1
0 0 0
−1 0 1


(15)

2.2.4. The Procedure of The Proposed Four-Component Decomposition Model

T = fs

1 β∗ 0
β |β|2 0
0 0 0

+ fd

|α|2 α 0
α∗ 1 0
0 0 0

+ Pv
3

1 0 0
0 1 0
0 0 1

+ fod

 1 0 ±1
0 0 0
±1 0 1


= Ps

1+|β|2

1 β∗ 0
β |β|2 0
0 0 0

+ Pd
1+|α|2

|α|2 α 0
α∗ 1 0
0 0 0

+ Pv
3

1 0 0
0 1 0
0 0 1

+ Pod
2

 1 0 ±1
0 0 0
±1 0 1

 (16)

The flowchart of the proposed decomposition is shown in Figure 4. Ps denotes the
power of Odd component; Pd indicates the power of Dbl component; Pv denotes the power
of Vol component; and Pod indicates the power of Od component. The superscript indicates
the element of the coherence matrix after rotation. The details will be illustrated as follows.

T
′
11 = Ps

1+|β|2
+ Pd

1+|α|2
|α|2 + Pv

3 + Pod
2

T
′
12 = Ps

1+|β|2
β∗ + Pd

1+|α|2
α

T
′
13 = Pod

2
T

′
22 = Ps

1+|β|2
|β|2 + Pd

1+|α|2
+ Pv

3

T
′
33 = Pv

3 + Pod
2

(17)

According to [26], we can directly obtain the power of the Od

Pod = 2|ℜ(T13)| (18)

where ℜ denotes real part.
We solve the remaining unknowns according to the solution method in [21]. Pv is

determined by the smaller of T
′
11 and T

′
33

Pv = min
(

3T
′
11, 3T

′
33

)
(19)

where min(·) denotes the smaller one.
Hence, the first operation is to check whether T

′
11 is less than T

′
33 or not. If T

′
11 is less

than or equal to T
′
33, both Ps and β are zero, and the power of double-bounce scattering is

expressed as
Pd = T

′
22 + T

′
33 − 2T

′
11 − 2

∣∣∣ℜ(T
′
13

)∣∣∣ (20)
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If T
′
11 is greater than T

′
33, after the subtraction of volume scattering, x11 and x22 are

represented as follows:

x11 = T
′
11 − T

′
33 −

∣∣∣ℜ(T
′
13

)∣∣∣, x22 = T
′
22 − T

′
33 −

∣∣∣ℜ(T
′
13

)∣∣∣ (21)

The second operation is to check whether
∣∣∣T′

12

∣∣∣2 −
∣∣∣ℜ(T

′
13

)∣∣∣(T
′
11 + T

′
22 − 2T

′
33

)
+∣∣∣ℜ(T

′
13

)∣∣∣2 is greater than the product of x11 and x22 or not.

Under the condition of
∣∣∣T′

12

∣∣∣2 − ∣∣∣ℜ(T
′
13

)∣∣∣(T
′
11 + T

′
22 − 2T

′
33

)
+
∣∣∣ℜ(T

′
13

)∣∣∣2 > x11x22, if
x11 is greater than x22, the remaining unknown part is surface scattering, and

α = 0, β∗ =
T

′
12∣∣T′
12

∣∣
√

x22

x11
, Ps = x11 + x22, Pd = 0, Pod = 2

∣∣∣ℜ(T
′
13

)∣∣∣ (22)

Otherwise, the remaining unknown part is double-bounce scattering, and

α =
T

′
12∣∣T′
12

∣∣
√

x11

x22
, β = 0, Ps = 0, Pd = x11 + x22, Pod = 2

∣∣∣ℜ(T
′
13

)∣∣∣ (23)
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Similarly, if
∣∣∣T′

12

∣∣∣2 − ∣∣∣ℜ(T
′
13

)∣∣∣(T
′
11 + T

′
22 − 2T

′
33

)
+
∣∣∣ℜ(T

′
13

)∣∣∣2 ≤ x11x22, it is necessary
to check whether x11 is greater than x22 or not. If x11 is greater than x22, α is set to zero.
Otherwise, β is set to zero. Ps, Pd, Pod, α, and β are shown as follows:

if (x11 > x22) β∗ =
T

′
12

x11
, Ps = x11 +

∣∣∣T′
12

∣∣∣2
x11

, Pd = x22 −

∣∣∣T′
12

∣∣∣2
x11

, Pod = 2
∣∣∣ℜ(T

′
13

)∣∣∣ (24)

else α =
T

′
12

x22
, Ps = x11 −

∣∣∣T′
12

∣∣∣2
x22

, Pd = x22 +

∣∣∣T′
12

∣∣∣2
x22

, Pod = 2
∣∣∣ℜ(T

′
13

)∣∣∣ (25)

The proposed decomposition model satisfies the following equation:

Span = Ps + Pd + Pv + Pod (26)

where Ps ≥ 0, Pd ≥ 0, Pv ≥ 0, Pod ≥ 0.

2.3. Pocket Perceptron Learning Algorithm (PPLA)

In real scenarios, PPLA is generally used to address linearly inseparable problems. The
essence of PPLA is to identify mistakes and make them right. The algorithm is presented in
Table 3.

Table 3. PPLA.

(1) Input the fully polarimetric sample data set X = (x1, x2 · · · xi · · · xn). The sample data have
9 features, denoted by vector xi, xi = (xi1, xi2, xi3, xi4, xi5, xi6, xi7, xi8, xi9)

T.
Label set (y1, y2, y3 · · · yn), yi ∈ {0, 1}. Note that y = 1 here denotes target, y = 0 denotes clutter.
The maximum number of iterations is n_max.
(2) Initial weight w and bias b are selected randomly. Registers w poc and b poc store the optimal
solution in the current training times.
(3) For xi, compute sign(w · xi + b), if sign(w · xi + b) ̸= yi, then correct w. If the new w makes
fewer mistakes than before, w = w + yi · xi, until all training examples are correctly classified or
the maximum number of iterations is reached.
(4) Output w poc and b poc.

2.4. Support Vector Machine (SVM)

SVM is a classifier algorithm in machine learning. It separates two or more classes of
data by an optimal or best hyperplane.

In SVM, the input is the fully polarimetric sample data set X = (x1, x2 · · · xi · · · xn),
which is the same as in PPLA. Label yi ∈ {0, 1}, i = 1, 2, · · · , n. The sample data have 9
features, denoted by vector xi, xi = (xi1, xi2, xi3, xi4, xi5, xi6, xi7, xi8, xi9)

T. By using SVM, the
hyperplane w · xi + b = 0 and classification decision function sign(w · xi + b) are obtained.

3. Results
3.1. Simulated Data Generation

It is well known that the core of ship detection lies in the ship-sea difference. Consid-
ering the difference in the scattering mechanisms between the ship and sea, we utilize the
product models and the Monte Carlo method in the literature [34] to generate simulated
data. In low-resolution cases, it is difficult to detect targets and clutter with low TCR due
to the similar intensity. In high-resolution cases, clutter and targets are generally easier to
separate, and detection may occur even with very low TCR.

In light of the literature [35,36], three common statistical models are used with the
polarimetric covariance matrix ΣC. Targets are generated from the covariance matrix ΣT .
The statistical model of targets is the Wishart or G0-distribution. Polarimetric covariance
matrices were drawn from RADARSAT-2 data [35,36]. Training samples N and test samples
testN are 10 000 respectively. The parameter settings are shown in Table 4.
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Table 4. Parameter settings of simulated data.

Simulated Data Distribution Shape Parameters

Clutter
Wishart

K-distribution
G0-distribution

ΣC
10
10

Ship targets
(Low-resolution)

Wishart
G0-distribution

(ΣT − ΣC)/tr(ΣT − ΣC)× TCR+ΣC
2

Ship targets
(High-resolution)

Wishart
G0-distribution

(ΣT − ΣC)/tr(ΣT − ΣC)× TCR
2

In the experiments, L was the multilook number and was set to 4. When the statistical
model of clutter was K-distribution or G0-distribution, the shape parameter was 10. When
the statistical model of ship targets was G0-distribution, the shape parameter was 2.

In low-resolution cases, the TCR is

TCR =tr(ΣT − ΣC)/tr(ΣC) (27)

where tr(ΣT) denotes the power in the low-resolution cases, tr(ΣC) denotes the clutter
power, and the TCR is 0.5.

In high-resolution cases, the TCR is defined as

TCR =tr(Σt)/tr(ΣC) (28)

where tr(Σt) denotes the power of the pure targets, and the TCR is still 0.5.

3.2. Measured Data Description

The first fully polarized scene is the North Sea region acquired by RS-2 in November
2013 [35]. The dataset format is of the SLC form, covering a square of 25 × 25 km. A slant
range resolution is 5.2 m and azimuth resolution is 7.6 m. There are eleven ships in the
scene, as shown in Figure 5a. The yellow rectangle represents a large ship, while the yellow
circle represents a small ship. The wind speed is about 16 m/s, signifying the sea state is
high [35].
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The second measured scene is the Kojimawan area in Japan acquired by AIRSAR on
4 October 2000. The scene we used is in the L-band and presents 21 ships, as indicated
in Figure 5b. The wind speed is about 12.5 m/s, the sea state is moderate-to-high [37].
Please visit https://vertex.daac.asf.alaska.edu/ (accessed on 4 November 2023) for more
information.

https://vertex.daac.asf.alaska.edu/
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3.3. Discussion on The Results of Simulated Experiments

The receiver operating characteristic (ROC) curves of detectors in different scenes are
presented in Figures 6–9. “Pd” is the probability of detection and “Pfa” means the PFA. In
“CWTW”, “C” stands for the clutter, “T” stands for targets, and “W” stands for Wishart
distributed. “CWTW” denotes both targets and clutter are Wishart distributed. In “CKTG”,
“K” represents K-distributed, and “G” represents G0-distributed. “CKTG” denotes that the
clutter is K-distributed and the targets are G0-distributed. The other two are the same, and
will not be repeated here.
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Figure 6. ROC curves with CWTW. (a) ROC curves of different decomposition methods using PPLA
(low-resolution); (b) ROC curves of different decomposition methods using PPLA (high-resolution);
(c) ROC curves of different decomposition methods using SVM (low-resolution); (d) ROC curves of
different decomposition methods using SVM (high-resolution).

As shown in Figure 6, in the CWTW scenes, each polarization scattering decomposition
model can obtain excellent detection results and the proposed four-component decomposi-
tion achieves the best performance. Figure 7 shows the ROC curves in the CWTG case. In
both CWTW and CWTG, the clutter is homogeneous, and only the targets obey a different
distribution. Figures 8 and 9 are the ROC curves in CKTG and CGTG scenes, respectively.
In complex sea environments, the clutter deviates from the Wishart distribution. These
two scenes simulate target detection under complex conditions. It can be observed that
the probability of detection in CKTG and CGTG scenes is lower than that in CWTW and
CWTG scenes.

In order to analyze the relationship between the power proportion of each decomposi-
tion component and PPLA weight, the experiments were carried out on the simulated data
in scene CKTG. The visualization decomposition results are presented in Figures 10 and 11.
Scattering powers are color-coded, with red representing Pd, green representing Pv, and
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blue representing Ps. Figure 10a shows the Pseudo-Color image of targets; Figure 11a shows
the Pseudo-Color image of clutter; Figures 10c and 11c intuitively show the decomposition
result of scattering power Pod. In Figures 10 and 11, as can be seen, the distribution of clutter
and targets is different, which means we can perform the component’s power comparison
and weight analysis.
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Figure 11. Pseudo-Color image of decomposing clutter in scene CKTG. (a) Pseudo-Color image
of decomposing clutter; (b) The RGB color-codes: blue: Odd, green: Vol, red: Dbl; (c) Scattering
power Pod.

Figure 12 reveals the relationship between the normalized relative ratio of targets and
the normalized PPLA weight in the simulation data. The specific values are listed in Table 5.
It can be seen from Figure 12 and Table 5 that the larger the relative ratio of targets, the
greater the weight of PPLA.

Table 5. The percentage and PPLA weight of each component’s power in simulated data.

Scattering Power Pv Ps Pd Pod

Targets decomposition percentage 11.9393% 66.6104% 11.9939% 9.4564%

Clutter decomposition percentage 3.3121% 88.9883% 2.5796% 5.1200%

Relative ratio of targets
(normalization) 0.7322 0 1 0.2816

PPLA weight (normalization) 0.6850 0 1 0.0375
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3.4. Discussion on The Results of Measured Experiments
3.4.1. Validation on RS-2 Dataset

The ROC curves of different decomposition methods are shown in Figure 13.
Tables 6 and 7 independently present the AUC of PPLA and the AUC of SVM. The results
are consistent with those of the simulated experiments. The proposed four-component de-
composition method achieves the best performance. PPLA and SVM have the similar trends.
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Table 7. AUC of SVM.

SVM AUC

new method 0.9319

G4U 0.9185

6SD 0.9055

An 0.8895

Y4O 0.8871

FDD 0.8822

Cui 0.8332

3.4.2. Validation on AIRSAR Dataset

ROC curves in the selected AIRSAR image are shown in Figure 14. Tables 8 and 9
independently show the AUC of PPLA and the AUC of SVM. There is little difference
between the model-based approaches in the ROC curves owing to the high TCR of the
measured data. The results indicate that the proposed method can work effectively and is
applicable to AIRSAR Dataset.
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Table 8. AUC of PPLA.

PPLA AUC

new method 0.9985

An 0.9985

G4U 0.9982

6SD 0.9981

Y4O 0.9978

FDD 0.9976

Cui 0.9972
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Table 9. AUC of SVM.

SVM AUC

new method 0.9977

An 0.9976

Cui 0.9973

G4U 0.9970

FDD 0.9965

Y4O 0.9965

6SD 0.9951

Figures 15 and 16 visually show the decomposition results of our decomposition model
in RS-2 and AIRSAR respectively. Please enlarge the images to see the targets clearly. The
scattering powers are color-coded as blue for Ps, green for Pv, and red for Pd. As indicated
in Figures 15b and 16b, the water body appears blue. This demonstrates that water body
represents well-expected surface scattering phenomena in the proposed decomposition
method. Furthermore, in Figure 15b, the power Pd of the double-bounce scattering is
particularly strong in areas near the ships. However, in Figure 16b, the double-bounce
scattering power Pd is particularly strong in clutter areas. To find out why the proposed
decomposition model can work effectively in the actual scene, we decompose the coherency
matrices of targets and clutter.
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Figure 16. Decomposition results of the proposed decomposition model in the AIRSAR image.
(a) Selected AIRSAR image; (b) The RGB color-codes: blue: Odd, green: Vol, red: Dbl; (c) Scattering
power Pod.

Figure 17 displays the relationship between the normalized relative ratio of targets
and the normalized PPLA weight in measured data. The specific values are listed in
Tables 10 and 11. It is not difficult to see from Figure 17 that the larger the relative ratio
of targets, the greater the weight of PPLA. It can be seen clearly in Table 10 that the third
row is the normalized ratio of targets over clutter and Pd is dominant. Correspondingly,
the PPLA weight of Pd is the largest. This means that the measured results are in accord
with the results of simulated data. As shown in Table 11, Pod is dominant and the PPLA
weight of Pod is the largest. This is because simulated data are generated based on RS-2
and the AIRSAR image is different from the RS-2 image. In Figure 16c, the importance of
the scattering Pod is demonstrated and the effectiveness of our decomposition method is
further validated.
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Table 10. The percentage and PPLA weight of each component’s power in measured data (RS-2).

Scattering Power Pv Ps Pd Pod

Targets decomposition percentage 8.2121% 45.1291% 35.7865% 10.8723%

Clutter decomposition percentage 4.2888% 82.5320% 4.1453% 9.0339%

Relative ratio of targets
(normalization) 0.1692 0 1 0.0812

PPLA weight (normalization) 0.0878 0 1 0.0374

Table 11. The percentage and PPLA weight of each component’s power in measured data (AIRSAR).

Scattering Power Pv Ps Pd Pod

Targets decomposition percentage 24.4080% 30.5609% 32.6345% 12.3966%

Clutter decomposition percentage 18.1150% 36.4008% 36.4129% 9.0713%

Relative ratio of targets
(normalization) 0.9636 0 0.1074 1

PPLA weight (normalization) 0.2809 0 0.0408 1

In summary, the results of the proposed four-component decomposition method
are consistent with the actual scattering mechanisms. The proposed four-component
decomposition model can be applied to real applications.

4. Discussion

In this paper, a novel four-component decomposition method applicable to ship
detection is proposed. In order to evaluate the detection performance of the proposed
method, we conduct experiments on RS-2 data and AIRSAR data.

The results of simulated experiments show that no matter how the detection back-
ground changes, the proposed four-component decomposition can always achieve the
best performance in the low-resolution case. It should be noted, in the high-resolution
cases, the proposed decomposition method can also work well and does not achieve worse
performance than other methods. For each simulated scene, the results from PPLA and
SVM follow similar trends. Meanwhile, the proposed decomposition method is consistent
with the real scattering mechanisms as well as the physical meaning of power. In addition,
we also find that the larger the relative ratio of targets, the greater the weight of PPLA. This
is why our four-component decomposition model can work effectively.

5. Conclusions

This paper intends to explore whether a model-based polarimetric decomposition
method exists that can work effectively under different detection backgrounds. Firstly, the
Lasso technique was adopted to select four types of features from 23-dimensional features
which were composed of six polarimetric decomposition methods. Then, a four-component
decomposition model was proposed based on the obtained feature components, i.e., surface
scattering component (Odd), double-bounce scattering component (Dbl), volume scattering
component (Vol), and ±45◦ oriented dipole component (Od). Additionally, PPLA and SVM
were applied to solve the linear inseparable problems. Lastly, by using both simulated data
and measured data, we compared the proposed four-component decomposition method
with six kinds of conventional decomposition methods such as FDD, Y4O, G4U, and so
on. From a comparison of the experimental results, it is evident that the proposed method
is suitable for ship detection in different complex scenes. In the case of low resolution,
the proposed method works better than other decomposition methods. In high-resolution
cases, the proposed method does not achieve worse performance than other decomposition
methods used in this paper. In addition, the proposed four-component decomposition
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model is consistent with the actual scattering mechanism and can be applied to real
applications with potentially great benefits.

This study provides a confirmation of the applicability of machine learning to the
model-based POLSAR decomposition topics. In the future, the next focus will investigate
interpretable deep learning technology applicable to ship detection in POLSAR imagery.
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