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Abstract: Indoor mobile robots can be localized by using scene classification methods. Recently, two-
dimensional (2D) LiDAR has achieved good results in semantic classification with target categories
such as room and corridor. However, it is difficult to achieve the classification of different rooms
owing to the lack of feature extraction methods in complex environments. To address this issue, a
scene classification method based on a multi-scale convolutional neural network (CNN) with long
short-term memory (LSTM) and a whale optimization algorithm (WOA) is proposed. Firstly, the
distance data obtained from the original LiDAR are converted into a data sequence. Secondly, a
scene classification method integrating multi-scale CNN and LSTM is constructed. Finally, WOA is
used to tune critical training parameters and optimize network performance. The actual scene data
containing eight rooms are collected to conduct ablation experiments, highlighting the performance
with the proposed algorithm with 98.87% classification accuracy. Furthermore, experiments with
the FR079 public dataset are conducted to demonstrate that compared with advanced algorithms,
the classification accuracy of the proposed algorithm achieves the highest of 94.35%. The proposed
method can provide technical support for the precise positioning of robots.

Keywords: scene classification; SLAM; LiDAR; CNN; LSTM; WOA

1. Introduction

With the development of artificial intelligence, robots have evolved to possess compre-
hensive functionalities, expanded applications and adaptability to complex environments.
Robots are utilized in industries, agriculture, household tasks and other fields. In terms of
mobility, robots can be categorized into two main types: fixed robots and mobile robots.
A fixed robot is typically mounted on a stationary base and its movement depends on
joints. On the other hand, a mobile robot can navigate in unrestricted directions, and its
ability of real-time locating during task performance becomes imperative. Robot position-
ing techniques include relative methods based on odometry and inertial navigation, and
absolute methods such as navigation beacons, graphic matching, global scene features,
Global Positioning System (GPS) and probabilistic positioning.

Based on the sensor type utilized, scene classification methods are typically cate-
gorized into two types: visual-based methods and laser-based methods. Visual-based
methods generally use deep learning for scene recognition through object detection and
the construction of semantic maps. With the development of target detection and semantic
segmentation methods such as Region with Convolutional Neural Network (R-CNN), Fast
R-CNN, Faster R-CNN, You Only Look Once (YOLO) and Single Shot MultiBox Detector
(SSD) [1–5], visual-based methods have made significant progress. Sünderhauf proposed
the integration of an SSD target detection method and unsupervised three-dimensional
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(3D) segmentation algorithm and applied it in RGB-D Simultaneous Localization and Map-
ping (SLAM) [6], establishing an instance-level, object-oriented semantic octree map [7].
Sharma proposed a novel SLAM [8]. By combining geometry-based techniques with object
detection, indoor scenes were represented as graphs of objects. Other methods focus on
direct scene classification. Ni proposed an improved Faster R-CNN and residual attention
module to classify five outdoor scenes, and the accuracy could reach 94.76% [9]. Li achieved
an accuracy of 56.2% on the SUN RGB-D dataset by using Multi Attending Path Neural
Network (MAPNet) [10], surpassing Song’s algorithm [11]. Recently, Mosella-Montoro and
Zhou used a graph convolution neural network for scene classification [12,13]. These meth-
ods primarily rely on local semantic cues. However, insensitive computation is required in
the process of image recognition for these methods.

On the other hand, laser-based methods are constantly being studied. Since 3D laser
LiDAR captures rich spatial information [14], 3D scene classification is often utilized. Chen
proposed LiDAR-based Semantic SLAM, which adds semantic constraints to improve the
robustness and accuracy of localization [15]. The semantic information in the scanned data
is effectively extracted through neural network, and the tags are generated to obtain the
semantic map. Compared with 3D LiDAR, 2D LiDAR is more frequently used in indoor
scenes. Kosnar developed a shape-matching method based on 2D range data, suitable for
position recognition in robot mapping environments [16]. Recently, machine learning has
been employed in 2D laser scene classification. Mozos used the range data and extracted
the features, such as the average and standard deviation of the beam length, to distinguish
doorways, corridors and rooms with an AdaBoost algorithm [17]. Sousa recognized the
rooms and corridors by using an SVM algorithm to recognize rooms and a single corri-
dor, achieving an accuracy of 80% [18]. Park proposed a method of location classification
using range scanning, and used 2D-PCA to extract features from a 2D diagonal distance
histogram [19]. Kaleci proposed a probabilistic method based on laser distance, classifying
indoor environments as rooms, corridors and doors. This method employs clustering of raw
2D laser measurements to distinguish structures, and uses K-means and LVQ methods to
classify robot positions [20]. Shi presented an approach to classify the environment around
a robot based on laser range and bearing. The perceived information together with a partial
understanding of the geometric structure of the environment were then applied to accumu-
latively build a labeled semantic grid map [21]. Kaleci introduced a rule-based doorway
detection algorithm which combines K-means clustering and template matching classifi-
cation methods. It results in a semantic classification approach for indoor environments
using 2D range information [22]. These methods accomplish detection by using designed
features and range data, yet they lack the capability to extract features automatically.

As computational power continues to evolve, deep learning has become a valuable
tool in the realm of classifying scenes using 2D laser. Kaleci proposed a point-based deep
learning architecture called 2DLaserNet, which uses the ordered relationships between
successive points in the point cloud generated from 2D laser readings to learn the geometric
characteristics corresponding to the laser scans of rooms, corridors and doorways [23]. Yu
used a convolutional neural network to solve the kidnapped robot problem. The laser
data were converted into an RGB image and an occupancy grid map, which were then
stacked into a multi-channel image. Moreover, the position information was added into
the neural network input, and the convolutional neural network model was designed
to regress the robot attitude [24]. Goeddel demonstrated the effectiveness of CNN in
learning semantic place labels from 2D range data [25]. By increasing the diversity of
training data, CNN can be applied to different environments. Nikdel presented a system
to describe the navigational cues around a robot using a combination of 2D LiDAR data
and occupancy grid maps. The CNN was trained to predict the closed rooms, open rooms
and intersections around the robot. A tracking module aggregated the predictions to locate
and classify the navigational cues with enhanced accuracy [26]. Zheng proposed a novel
approach to obtain semantic labels of 2D LiDAR room maps by combining the distance
transform watershed-based pre-segmentation and a skillfully designed fast and efficient
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neural network LiDAR information sampling classification [27]. Turgut and Kaleci used
MLP to semantically classify different rooms, corridors and doors [28]. Liao proposed
an end-to-end learning approach for place classification [29]. With the deep architecture,
features were found automatically and classification accuracy was improved.

In summary, current research on the scene classification of robots primarily emphasizes
multi-dimensional data. However, in practical applications, indoor robots commonly
employ cost-effective sensors such as cameras and 2D LiDAR. Since visual-based methods
require intensive calculations and are susceptible to lighting conditions and viewing angles,
their applicable scenarios are constrained. On the contrary, 2D LiDAR offers reliable data
at a relatively low cost, making it a favored choice for indoor robots. Although there are
numerous reports on the classification of rooms and corridors based on 2D LiDAR, they
primarily focus on the classification between categories rather than distinguishing between
rooms. Therefore, this paper introduces a global scene feature localization method based
on 2D LiDAR and CNN for scene classification. Without providing the precise coordinates
of the robot position [30], this method classifies the scene itself where the robot is located.

Our contributions are as follows:

(1) This paper proposes a network capable of indoor scene recognition using 2D LiDAR.
It is composed of a multi-scale CNN and LSTM network, which can effectively classify
distance features and resolve the long-term dependence issue of neural networks.

(2) A WOA algorithm is used to automatically optimize the initial learning rate, the
regularization parameters and the parameters of the LSTM hidden layer of the neural
network. The algorithm significantly reduces the time spent on manual parameter
tuning, and achieves promising results in scene classification.

The rest of this paper is organized as follows: Section 2 introduces the network
structure of the proposed method. Section 3 introduces the datasets and describes the
evaluation indexes, followed by ablation experiments and a performance comparison with
other methods. Section 4 summarizes the conclusions.

2. Scene Recognition Method Based on CNN for 2D LiDAR
2.1. LiDAR Data Preprocessing

The 2D LiDAR rotates 360 degrees to acquire a single frame of laser data, capturing
information of the surrounding environment. Figure 1 illustrates LiDAR angle range with a
field of view of 270 degrees. Point clouds are represented using polar coordinates, consisting
of range and angle information. Depending on the environmental characteristics, these
laser point clouds exhibit different arrangements. In this paper, we transform the range ρ

and the corresponding serial number in polar coordinates into Cartesian coordinates, thus
converting the laser data into a data sequence of distance information with serial numbers.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 20 
 

 

2

π

3

π2

3

π

6

π

11

6

π

0

4

3

π

5

6

π

3

2

π

7

6

π

π

5

3

π

θ

ρ

o

( , )M ρ θ

x

 

（ ， ）  M  

Angle

Range

O  

（ ， ） M N 

Range

SequenceO  

(a) (b) (c) 

Figure 1. Coordinate system transformation: (a) polar coordinate system; (b) rectangular coordinate 

system; (c) range sequence coordinate system. 

Figure 2a,b are the laser data of the 1st and 150th frames of Room 1, while Figure 3a,b 

are the corresponding laser data of Room 2. It is evident that the laser data between dif-

ferent frames in the same room are similar, while the difference in laser data between 

different rooms is significant. Therefore, after collecting sufficient laser data, the deep 

learning method is employed to extract different features for room classification. 

  

(a) (b) 

Figure 2. Data sequence of different frames in Room 1: (a) the 1st frame; (b) the 150th frame. 

  

(a) (b) 

Figure 3. Data sequence of different frames in Room 2: (a) the 1st frame; (b) the 150th frame. 

2.2. Network with CNN and LTSM 

In this paper, a network integrating CNN and LSTM is proposed. CNN only captures 

spatial information and LSTM further extracts the implicit spatial–temporal features from 

the time series data. The algorithm flowchart is shown in Figure 4. Firstly, features of the 

laser data of different rooms are extracted by CNN. Then, multiple features extracted by 

Figure 1. Coordinate system transformation: (a) polar coordinate system; (b) rectangular coordinate
system; (c) range sequence coordinate system.



Remote Sens. 2024, 16, 174 4 of 19

Figure 2a,b are the laser data of the 1st and 150th frames of Room 1, while Figure 3a,b
are the corresponding laser data of Room 2. It is evident that the laser data between
different frames in the same room are similar, while the difference in laser data between
different rooms is significant. Therefore, after collecting sufficient laser data, the deep
learning method is employed to extract different features for room classification.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 20 
 

 

2

π

3

π2

3

π

6

π

11

6

π

0

4

3

π

5

6

π

3

2

π

7

6

π

π

5

3

π

θ

ρ

o

( , )M ρ θ

x

 

（ ， ）  M  

Angle

Range

O  

（ ， ） M N 

Range

SequenceO  

(a) (b) (c) 

Figure 1. Coordinate system transformation: (a) polar coordinate system; (b) rectangular coordinate 

system; (c) range sequence coordinate system. 

Figure 2a,b are the laser data of the 1st and 150th frames of Room 1, while Figure 3a,b 

are the corresponding laser data of Room 2. It is evident that the laser data between dif-

ferent frames in the same room are similar, while the difference in laser data between 

different rooms is significant. Therefore, after collecting sufficient laser data, the deep 

learning method is employed to extract different features for room classification. 

  

(a) (b) 

Figure 2. Data sequence of different frames in Room 1: (a) the 1st frame; (b) the 150th frame. 

  

(a) (b) 

Figure 3. Data sequence of different frames in Room 2: (a) the 1st frame; (b) the 150th frame. 

2.2. Network with CNN and LTSM 

In this paper, a network integrating CNN and LSTM is proposed. CNN only captures 

spatial information and LSTM further extracts the implicit spatial–temporal features from 

the time series data. The algorithm flowchart is shown in Figure 4. Firstly, features of the 

laser data of different rooms are extracted by CNN. Then, multiple features extracted by 

Figure 2. Data sequence of different frames in Room 1: (a) the 1st frame; (b) the 150th frame.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 20 
 

 

2

π

3

π2

3

π

6

π

11

6

π

0

4

3

π

5

6

π

3

2

π

7

6

π

π

5

3

π

θ

ρ

o

( , )M ρ θ

x

 

（ ， ）  M  

Angle

Range

O  

（ ， ） M N 

Range

SequenceO  

(a) (b) (c) 

Figure 1. Coordinate system transformation: (a) polar coordinate system; (b) rectangular coordinate 

system; (c) range sequence coordinate system. 

Figure 2a,b are the laser data of the 1st and 150th frames of Room 1, while Figure 3a,b 

are the corresponding laser data of Room 2. It is evident that the laser data between dif-

ferent frames in the same room are similar, while the difference in laser data between 

different rooms is significant. Therefore, after collecting sufficient laser data, the deep 

learning method is employed to extract different features for room classification. 

  

(a) (b) 

Figure 2. Data sequence of different frames in Room 1: (a) the 1st frame; (b) the 150th frame. 

  

(a) (b) 

Figure 3. Data sequence of different frames in Room 2: (a) the 1st frame; (b) the 150th frame. 

2.2. Network with CNN and LTSM 

In this paper, a network integrating CNN and LSTM is proposed. CNN only captures 

spatial information and LSTM further extracts the implicit spatial–temporal features from 

the time series data. The algorithm flowchart is shown in Figure 4. Firstly, features of the 

laser data of different rooms are extracted by CNN. Then, multiple features extracted by 

Figure 3. Data sequence of different frames in Room 2: (a) the 1st frame; (b) the 150th frame.

2.2. Network with CNN and LTSM

In this paper, a network integrating CNN and LSTM is proposed. CNN only captures
spatial information and LSTM further extracts the implicit spatial–temporal features from
the time series data. The algorithm flowchart is shown in Figure 4. Firstly, features of the
laser data of different rooms are extracted by CNN. Then, multiple features extracted by
CNN are flattened and fed into the LSTM network. Finally, the full connection and softmax
are used for room recognition.

To optimize the network, manual parameter tuning is necessary but time-consuming.
Therefore, a WOA intelligent optimization algorithm is employed for autonomous search-
ing of the optimal value.

2.2.1. Multi-Scale CNN Network

A single frame of laser data depends on the minimum angle resolution of LiDAR.
The angular resolution of the Slamtec rplidar A2 LiDAR employed is 0.225 degrees. The
minimum size of the obstacle is proportional to the distance from the obstacle. For instance,
considering a distance of 5 m to the obstacle, the minimum detectable size of the obstacle is
1.96 cm. To reduce the amount of calculation, data compression is performed. Direct data
association exists between the front and back frames of the laser. Several frames of data in
Room 4 are extracted for interception and splicing, as depicted in Figure 5. It is evident
that there are variations in the laser distributions collected by robots in different locations.
Their features can be extracted by CNN.
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Some CNN networks have demonstrated outstanding performances in recognition
tasks. For example, LeNet5, a handwritten font recognition model, is one of the earliest
classic CNN networks [31]. Alexnet is the first large-scale CNN network that performs well
in ImageNet classification [32]. Inception V1 (GoogleNet) is a deep neural network model
based on the Inception module launched by Google, which increases the network depth
and width [33]. Visual Geometry Group (VGG) has excellent performance in multiple
transfer learning tasks [34]. Residual Neural Network (ResNet), which breaks network
depth constraints, is a classic neural network for visual classification [35].

In this paper, a multi-scale CNN network is proposed to improve the accuracy of
scene feature extraction. The dual-scale CNN framework is illustrated in Figure 6. It can
extract detailed features of different scales and obtain a larger receptive field, allowing
more valuable information to be preserved.
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Figure 6. The dual-scale CNN.

2.2.2. LSTM Algorithm

Although the multi-scale CNN can extract the spatial features, it tends to overlook the
temporal ones. Therefore, the LSTM network is employed [36]. LSTM is a temporal recurrent
network, which is used to solve the long-term dependence problem of neural networks. The
synergy of multi-scale CNN with LSTM enhances the network’s overall accuracy.

The internal structure of LSTM is illustrated in Figure 7. The network comprises three
inputs and two outputs. xt represents the input value of the network at the current time,
ct−1 denotes the cell state at the previous time and ht−1 is the output value of the LSTM
network at the previous time. ct is the cell state at the current time, and ht is the output
value of the LSTM network at the current time.
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The control unit consists of three gates: the forget gate, the input gate and the output
gate. The forget gate ft determines whether ct−1 can be retained to ct. The input gate it
determines whether xt can be input into ct, where c̃t, as a temporary cell state unit, controls
the cell unit updates. The output gate ot controls whether ct is passed to ht.

The expressions for the forget gate, the input gate and the output gate are as follows:

ft = σ(W f xt + U f ht−1 + b f ) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

c̃t = tanh(Wcxt + Ucht−1 + bc) (3)

ot = σ(Woxt + Uoht−1 + bo) (4)

where Wf, Wi and Wo represent the weight vectors from the input layer to the input gate, the
forget gate and the output gate, respectively. Uf, Ui and Uo represent the weight vector from
the hidden layer to the input gate, the forget gate and the output gate, respectively. bf, bi and
bo represent bias vectors from the input layer to the input gate, forget gate and output gate,
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respectively. σ(.) refers to the sigmoid activation function, and tanh refers to the hyperbolic
tangent activation function, representing the multiplication of vector elements.

In order to calculate the predicted value yt and generate the complete input for the
next time slice, we need to calculate the output ht of the hidden node. ht is obtained
from the output gate ot and unit state ct, where ot is calculated in the same way as ft and
it. In conventional applications, the final predicted value Pt is obtained from ht through
full connection.

ct = ft ⊙ ct−1 + it ⊙ c̃t (5)

it = σ(Wixt + Uiht−1 + bi) (6)

LSTM regulates the transmission of historical information through gate functions and
possesses capabilities in processing and predicting time series data. In theory, a longer
stride in CNN can extract more information. However, when the stride becomes excessively
long, long-distance memory loss and gradient vanishing may occur. By combining CNN
and LSTM, it is possible to effectively extract sequence features and preserve extended and
valuable memory information, thereby addressing the issue of gradient vanishing.

2.2.3. WOA Algorithm

Parameter tuning of deep learning is time-consuming, and the use of intelligent op-
timization algorithms can address this issue through autonomous learning. Due to the
attributes of a fast rate of convergence, robust global search ability and ease of implementa-
tion [37], WOA is selected in this paper to automatically search for optimal parameters.

WOA optimizes the search process by simulating humpback whale hunting behavior,
including searching, surrounding and pursuing prey. The initial position of the whale is

X = (x1, x2, . . . , xn) (7)

The position of each whale represents a feasible solution, and WOA progressively
converges towards the optimal solution by continuously searching and updating their
positions. The WOA algorithm includes three mathematical models: encircling prey,
bubble hunting and searching prey. In the process of encircling prey, since the algorithm
cannot yet identify the optimal position, the WOA algorithm assumes that the current best
candidate position is the target prey position. The whale group encircles the prey from
this assumed position, and continuously updates to explore various positions around the
optimal solution.

D⃗ = |C⃗ · X⃗∗(t)− X⃗(t)| (8)

X⃗(t + 1) = X⃗∗(t)− A⃗ · D⃗ (9)

where t represents the current iteration, A⃗ and C⃗ are coefficient vectors, X∗ is the position
vector of the best solution obtained thus far, X⃗ is the position vector, | | denotes the
absolute value and represents element-by-element multiplication. It is worth mentioning
that X∗ should be updated during each iteration if a better solution exists.

The vectors A⃗ and C⃗ are calculated as follows:

A⃗ = 2⃗a · r⃗ − a⃗ (10)

C⃗ = 2 · r⃗ (11)

where a⃗ iterates throughout the exploration and development phase, linearly decreasing
from 2 to 0, and r⃗ is a random vector in [0, 1].

Shrinking encircling mechanism: This behavior is achieved by decreasing the value of
a⃗. Note that the fluctuation range of A⃗ is also narrowed as a⃗ decreases. In other words, A⃗
is a random value in the interval of [−a, a], where a decreases from 2 to 0 over the course
of iterations. By setting a random value for A⃗ in the range of [−1, 1], the new position of
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a search agent whale can be defined anywhere between the original position of the agent
and the position of the current best agent.

Spiral updating position: The distance between the whale’s coordinates (X, Y) and the
prey’s coordinates (X*, Y*) is calculated. Then, a spiral equation is constructed between the
whale and the prey to mimic the spiral motion of a humpback whale as follows:

X⃗(t + 1) = D⃗′ · ebl · cos(2πl) + X⃗∗(t) (12)

D⃗′ = |X⃗∗(t)− X⃗(t)| (13)

where D⃗′ is the distance between the ith whale and the prey, b is a constant defining the
logarithmic spiral shape and l is a random number in the range of [−1, 1].

In the prey search phase, whales randomly select the location of a single whale as a
reference to update their next locations, and search for the next prey globally.

In the exploration phase, the method based on A⃗ vector variation is also used to search
for prey. Because humpback whales search randomly based on their positions relative to
each other, a random value A⃗ can be used with an absolute value greater than 1 to force
the search agent to diverge from a reference whale. In contrast to the development phase,
the location of the search agent is updated based on a randomly selected search agent. The
mathematical model is expressed as follows:

D⃗ = |C⃗ ·
−−−→
Xrand − X⃗| (14)

X⃗(t + 1) =
−−−→
Xrand − A⃗ · D⃗ (15)

where
−−−→
Xrand is a random position vector (a random whale) chosen from the current population.

Using the WOA algorithm to train the initial learning rate, the regularization param-
eters and the number of LSTMs enable autonomous parameter learning, resulting in an
enhanced classification accuracy.

3. Results

This article validated the algorithm using data collected from the experiment and
public datasets. Firstly, 2D laser data from multiple rooms were collected using a self-
developed robot mobile platform. The algorithm proposed is used for room classification,
and the effectiveness of the algorithm is verified through metrics including accuracy and
recall. Secondly, to demonstrate the superiority of the proposed algorithm, a comparative
assessment of the classification performance with other algorithms is conducted using a
public dataset.

3.1. Results on Laboratory Datasets

The self-developed indoor mobile robot experimental platform is depicted in Figure 8.
It is equipped with a 2D LiDAR (RPLIDAR A2), six ultrasonic sensors and an IMU, capable
of mapping and autonomous navigation.

The mobile robot platform was used to collect the data of eight rooms on the first
floor of Yingcai building in Changzhou Campus of Hohai University. The distribution of
obstacles in the laboratory were irregular. Figure 9 shows the 80th frames of the 2D LiDAR
data in Rooms 1 to 8, revealing distinct contour profiles for each room. Corresponding
room mappings generated using cartographer are displayed in Figure 10 for reference. The
dataset collected by the robot contains a total of 8256 frames, including 2300, 1965, 590, 431,
526, 443, 1026 and 975 frames of Rooms 1 to 8, respectively.
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In the above dataset, 70% of the frames were randomly selected as the training set,
while 20% were designated as the validation set and the remaining 10% were allocated as
the test set. The experiments were conducted on a computer running matlab2022, with a
configuration of i7-10875H CPU and 16 GB Random Access Memory (RAM).
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3.1.1. Evaluation Indexes

As shown in Figure 11, four networks were constructed to classify the eight rooms.
Network 1 merely employs CNN1, Network 2 integrates both CNN1 and CNN2, Network
3 utilizes CNN1 in conjunction with LSTM and Network 4 incorporates CNN1, CNN2,
and LSTM. It is worth noting that since the outputs of the CNN1 and CNN2 networks are
directly added together, it is necessary to ensure that the size of output data is consistent,
that is, edge supplement is required during the convolution process.

Accuracy, precision, F1 and recall are used for the evaluation. The parameters used from
the confusion matrix include True Positive (TP), False Negative (FN), False Positive (FP) and
True Negative (TN).

Accuracy refers to the proportion of correct predictions in the total sample, expressed
as follows:

Accuracy =
TP + TN

TP + TN + FP + TN
(16)
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Precision is a measure of result reliability, indicated by how many positive samples are
correct in the predicted results:

Precision =
TP

TP + FP
(17)

Recall is a measure of the number of genuinely relevant results returned, indicated by
how many positive samples are correctly detected in the predicted results.

Recall =
TP

TP + FN
(18)

F1 comprehensively considers the two indicators of precision and recall:

F1 = 2 × Precision × Recall
Precision + Recall

(19)

In multi-classification, the F1 values of all categories are calculated, and their average
is called Macro-F1:

Macro − F1 =

n
∑
1
(F1)n

n
(20)
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3.1.2. Ablation Experiments

Ablation experiments were conducted to assess the performances of the networks
with different combinations of CNNs and LSTM. Networks with each combination were
trained five times, and the average of the five networks for each combination is displayed
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in Table 1. The accuracies of the four algorithms are listed in Table 1. The test results show
that the classification accuracy of a single CNN network is 92.44%. Compared with a single
CNN network, due to the different feature extraction capabilities provided by different
CNN networks, the accuracy of the multi-scale CNN network with CNN1 and CNN2 is
improved to 95.56%. Owing to the advantages of LSTM in global feature extraction, the
combination of CNN and LSTM yields an even better result of a 5.86% increase in accuracy,
which captures sequence features and filters out invalid features. By integrating multi-scale
CNN with LSTM, the classification accuracy achieved is 98.91% due to the collaborative
synergy between these two algorithms.

Table 1. Results of different algorithms.

CNN1 CNN1 + CNN2 CNN1 + LSTM CNN1 + CNN2 + LSTM

Accuracy (%) 92.44 95.56 98.30 98.91
Macro-F1 0.9102 0.9525 0.9804 0.9841

Ttotal/s 114.00 147.00 117.00 152.40
Tprediction/ms 0.1036 0.1196 0.1078 0.1236

Ttotal represents the total training, validation and prediction time of the network,
and Tprediction represents the prediction time of a single frame. As shown in Table 1, both
Ttotal and the Tprediction show an increasing trend with CNN1, CNN1 + LSTM, CNN1 +
CNN2 and CNN1 + CNN2 + LSTM, and the addition of CNN2 increased more time.
However, in terms of accuracy, the improvement brought about by LSTM surpasses that
of CNN2, emphasizing the crucial role of LSTM in the network. In addition, for the real-
time performance of the robot, the CNN1 + CNN2 + LSTM network with the highest
classification accuracy has a Ttotal of 152.40 s and a Tprediction of 0.1236 ms, which can fulfill
the requirements of the robot.

As shown in Figure 12a,b, the recall, accuracy and precision of the model increase as the
network incorporates more modules. In order to comprehensively evaluate the precision
and recall, an F1 curve was used. As shown in Figure 12c, the F1 curve also demonstrates a
similar synergistic effect of multiple modules, where the network CNN1 + CNN2 + LSTM
exhibits evident advantages. The minimum value of F1 is 0.9647 and the maximum is
0.9975, which proves the effectiveness of the network in accurately identifying rooms. As
shown in Table 1 and Figure 12d, the Macro-F1 is also benefited by the combined synergy
of the three modules.

The recognition result of Room 6 is the best due to its distinctive characteristics
compared to the other rooms. Considering the overall classification results of the eight
rooms, it is evident that the proposed network possesses a notable classification capability.
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3.1.3. Experiments of WOA Algorithm

To enhance the classification effectiveness, the combination of multi-scale CNN and
LSTM is selected. However, during the network training, the initial learning rate, regular-
ization coefficient and the number of LSTM networks require continuous optimization. To
diminish manual debugging tasks, this paper adopts the WOA algorithm for autonomous
tuning of these three types of parameters.

WOA optimization is a process that gradually approaches the optimal position through
autonomous learning and tuning. The evaluation index of iterative training accuracy (ITC)
reflects accuracy variations within each iteration during the training, thereby representing
the optimization effectiveness of WOA. The ITC formula is as follows:

ITCi = 1-(Accuracytrain)i (21)

where i is the iteration number, and Accuracytrain is the training accuracy achieved in each
iteration. The formula indicates the disparity between the results of each iteration and the
optimal position.

The relationship between ITC and iteration number for the WOA algorithm is depicted
in Figure 13. The WOA algorithm progressively approaches the optimal solution by
iteratively updating the initial learning rate, the regularization coefficient and the number
of LSTM networks, and the accuracy of the training set of this algorithm reaches 100% after
three iterations, meaning the optimal solution has been attained.
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The network with the best recognition effect in Section 3.1.2, which combines CNN1,
CNN2 and LSTM, is selected and further optimized by the WOA algorithm. The network
performance is presented in Table 2. Through continuous autonomous learning, the ac-
curacy of scene classification is improved from 98.91% to 99.76%, an increase of 0.86%.
Macro-F1 is improved from 0.9841 to 0.9967, an increase of 1.28%. The precision and recall
of each room are also improved, as displayed in Figure 14.

Table 2. Network performance.

Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8

Accuracy (%) 98.87
Precision (%) 98.85 99.15 98.86 97.64 96.79 99.25 98.37 97.66

Recall (%) 99.42 98.64 97.74 96.12 95.57 99.25 97.73 100.00
F1 0.9899 0.9855 0.9915 0.9842 0.9688 0.9888 0.9951 0.9966

Macro-F1 0.9876
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The parameters obtained after WOA iteration are as follows: the initial learning rate
is 0.0126, the L2 regularization is 0.0013 and the LSTM number is 44. The optimized
parameters obtained by manual adjustment are different: the initial learning rate is 0.001,
the L2 regularization is 0.0003 and the number of LSTMs is 24. The application of WOA
significantly reduces the time required for manual tuning. Additionally, it elevates the
recognition accuracy and yields a positive impact on scene recognition.

3.2. Results on Public Dataset

The FR079 public dataset, collected from Building 079 at the University of Freiburg, is
employed to assess the proposed network [38]. The dataset contains 3420 frames of LiDAR
data, and the map is constructed with an RBPF SLAM algorithm, as shown in Figure 15.
It includes a total of 11 rooms and 1 corridor. Room 11 contains the most extensive data
with 656 frames, while Room 1 and Room 7 contain the least data with 120 frames. Given
the relatively limited data within the FR079 dataset compared to ours, three convolutional
layers are added to the proposed network.
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3.2.1. Experiments Validation

Before applying WOA optimization, a multi-scale CNN and LSTM fused algorithm is used
to classify the 12 rooms in the FR079 dataset. The initial learning rate is 0.001, L2 regularization
is 0.0003 and the LSTM number is 64. The classification results are shown in Table 3.

Table 3. Network performance parameters.

Room 1 Room 2 Room 3 Room 4 Room 5 Room 6

Accuracy (%) 93.27
Precision (%) 80.00 100.00 92.31 83.87 93.05 95.65

Recall (%) 100.00 84.62 85.71 86.67 91.30 95.65
F1 0.8889 0.9167 0.8889 0.8525 0.9217 0.9565

Macro-F1 0.9080

Room 7 Room 8 Room 9 Room 10 Room 11 Room 12

Accuracy (%) 93.27
Precision (%) 84.62 81.82 93.02 94.74 95.45 97.44

Recall (%) 91.67 69.23 97.50 90.00 94.42 100.00
F1 0.8800 0.7500 0.9521 0.9231 0.9493 0.9870

Macro-F1 0.9080

As shown in Table 3, the multi-scale CNN and LSTM fusion algorithm shows a
favorable classification effect on the FR079 dataset, with a prediction accuracy of 93.27%,
which can meet the classification requirements of the robot. The Macro-F1 reaches 0.9080,
proving that the network has a good performance in comprehensive ability.

In order to further improve the accuracy of classification, the WOA algorithm was
used to optimize this network, obtaining a updated initial learning rate of 2.99 × 10−4, L2
regularization of 2.85 × 10−4 and an LSTM number of 118, which improves the accuracy to
94.35%. These parameters are also different from the previously manually set parameters.
Therefore, it is verified that the WOA algorithm combined with the proposed network is
suitable for the FRO79 dataset, which not only ensures the high classification accuracy, but
also reduces the time for manual parameter tuning.

The relationship between the ITC of the WOA algorithm and the number of iterations
is shown in Figure 16. The WOA algorithm gradually optimizes the network through
iteration; after seven iterations, the network achieves the highest accuracy, and the ITC is
close to 0.

Table 4 and Figure 17 presents the classification results of the FR079 dataset. After
applying WOA optimization, the accuracy, recall rate and F1 of the network are improved.
The accuracy is improved by 1.16% from 93.27% to 94.35%, and Macro-F1 is improved by
2.56% from 0.9080 to 0.9312, demonstrating the applicability of WOA to the FR079 dataset
on parameter tuning and performance enhancement.
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Table 4. WOA optimized network performance parameters.

Room 1 Room 2 Room 3 Room 4 Room 5 Room 6

Accuracy (%) 94.35
Precision (%) 91.67 86.84 100.00 94.57 93.06 91.04

Recall (%) 91.67 85.71 93.48 96.67 97.10 87.14
F1 0.9167 0.8627 0.9500 0.9560 0.9504 0.8905

Macro-F1 0.9312

Room 7 Room 8 Room 9 Room 10 Room 11 Room 12

Accuracy (%) 94.35
Precision (%) 90.91 100.00 91.60 91.94 96.86 97.93

Recall (%) 83.33 89.74 97.56 96.61 94.87 99.47
F1 0.8696 0.9459 0.9449 0.9421 0.9585 0.9869

Macro-F1 0.9312
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3.2.2. Comparison of Advanced Algorithms

At present, the classification research of 2D LiDAR semantic maps primarily focuses
on classification between categories, such as using AdaBoost to classify rooms, corridors
and doors [17], and using deep neural networks to classify corridors, offices, meeting
rooms and other rooms [29]. In this paper, classification is refined further. Rather than
room category classification, individual rooms with their own serial number are classified
to solve the problem of robot localization failure and kidnapping. In contrast, the proposed
algorithm has the notable advantage of higher accuracy, at the cost of slightly increased
model complexity.
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In order to test the performance of the proposed algorithm, it is compared with K-
means and MLP algorithms [28]. As for the K-means, when K = 40 and K = 100, the accuracy
rates are below 50%, which fails to meet the recognition requirements of the robot. The
recognition accuracy rate of the MLP algorithm is 71.44%, which still does not suffice for
meeting robot recognition needs or complete the functions of human–computer interaction
or kidnapping recovery. The algorithm proposed in this paper can reach 94.35% in accuracy,
more suitable for room classification by robots. On the other hand, compared with the
advanced methods without the WOA algorithm for optimization, the training parameters
and layers numbers of the network need to be set manually. Another advantage of the
proposed algorithm is that it does not require manual parameter adjustment to train the
network and can automatically obtain the network with the best accuracy. Yet it increases
the complexity of the model, as it takes time for continuous network optimization. As
can be seen from Table 5, the proposed algorithm takes the longest time of 0.2386 ms for a
single prediction, but it is still acceptable for applications of robots’ scene classifications.

Table 5. Algorithm accuracy comparison in dataset.

K-Means, K = 40
[20]

K-Means, K = 100
[20] MLP [28] Proposed Method

Accuracy (%) 43.37 45.71 71.44 94.35
Tprediction/ms 0.0879 0.1167 0.1991 0.2386

4. Conclusions

In this paper, we propose an intelligent optimization method using 2D LiDAR and
a CNN network for robot scene recognition. Our method utilizes multi-scale CNN and
LSTM to construct a network, and optimizes its parameters using WOA. Firstly, the ablation
experiments of networks constructed by different combinations of CNN1, CNN2 and LSTM
are conducted with the datasets of eight real-world laboratories. The proposed multi-scale
CNN and LSTM networks achieve the best performance. Then, for the FR079 public dataset,
the proposed algorithm is compared with other existing advanced algorithms, and the
accuracy of the proposed is higher than others. In addition, the ablation experiments of
WOA are carried out with both the laboratory and public datasets, verifying that WOA
can automatically optimize the network parameters. Experiments show that the proposed
method is suitable for indoor robot scene classification using 2D LiDAR.

In the future, the algorithm can be applied to the real-time indoor autonomous nav-
igation of robots, and for indoor robot positioning or repositioning after crash recovery.
Compared with room classification methods based on vision, it has two advantages: the
first is that minimal data are required, which can reduce the demand for storage units, and
the second is that laser data are not affected by lighting conditions or specific requirement
for environmental brightness. However, it also has some limitations. In scenes with high
similarity, there is a risk of misclassification, particularly in completely consistent office
scenes, where additional features may need to be incorporated manually. Thus, we will
further utilize the fusion of LiDAR and image data to improve the classification accuracy
of symmetrical scenes.
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