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Abstract: In urban settings, trees and greenery play a vital role in environmental well-being and
community vitality. This study explores the impact of Miami-Dade County’s tree-planting initiative
on urban greenness and considers the influence of climate dynamics. Using Landsat data from 2006 to
2019, we find stable overall greenness, with 5.64% of the Census blocks exhibiting significant changes.
Seasonal analysis reveals winter as prominent, with 61.47% of Census blocks showing increased
greenness. Temperature and precipitation, especially post-2010, correlate with greenness changes.
Despite a reported increase in tree cover from 14% to 20%, our findings show only 5–6% of Census
blocks with statistically significant changes, highlighting the complexity of achieving substantial
improvements in green canopy coverage. The study raises questions about the efficacy of large-scale
tree-planting initiatives in densely urbanized areas when human factors are not well understood.
Implications for urban planning stress the importance of preserving green spaces and informed
decision-making for enhancing vegetation cover in Miami-Dade County, emphasizing the need to
consider local conditions, seasonal variations, policies, and human factors in urban greening efforts.

Keywords: Miami-Dade County; Normalized Difference Vegetation Index (NDVI); urban greenness;
spatial and seasonal analysis; climate variability

1. Introduction

The importance of trees and vegetation in urban areas cannot be overstated. They filter
the air we breathe, provide shade to reduce the urban heat island effect, and are associated
with positive mental and physical health [1–7]. The presence of trees can also contribute
to a calming and restorative environment, reduced stress, and overall well-being [5–10].
Increased vegetation in urban areas can encourage physical activity by providing shade
for outdoor activities such as walking, jogging, and biking, especially in warm climates,
which further promotes a healthy lifestyle and reduces the risks of chronic diseases [11].
As cities across the globe have launched tree-planting initiatives, such as the Million Trees
programs in Belfast, Los Angeles, Miami, and New York City and the EU commitment to
plant at least 30 billion trees by 2030, it is important to assess the impacts of such initiatives
in increasing greenness.

Numerous studies have explored the relationship between greenness and human
health. Prior research has demonstrated that higher levels of vegetative greenness are linked
to a lower BMI, decreased risk of being overweight or obese, reduced cardiometabolic
conditions, and lower incidence of cardiovascular disease [12–15]. In our own work, we
have linked higher levels of greenness, compared to those living in areas with lower mean
greenness, at a very localized level, specifically the Census block where the individual
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resides, to lower risk for diabetes, acute myocardial infarction, ischemic heart disease,
heart failure, and atrial fibrillation, as well as Alzheimer’s disease and depression [8,10,15].
In light of these compelling findings, fostering higher levels of greenness through tree-
planting initiatives emerges as a crucial strategy not only for environmental conservation
but also for promoting public health and well-being.

Developed by the Miami-Dade Community Image Advisory Board and launched in
April 2011, the so-called “Million Trees Miami” campaign sought to achieve a 30% tree
canopy cover for Miami-Dade County. The initial goal was based on the belief that “a
healthy and sustainable urban forest provides significant social, economic, and environ-
mental benefits to communities” [16]. Despite it not yet reaching the one million trees goal,
increases in the tree cover of Miami-Dade County have been reported to increase from 14%
to 20% [17,18]. As the campaign advanced through the Neat Streets Miami program into an
independent Million Trees Miami initiative under the auspices of the Miami-Dade Parks,
Recreation and Open Spaces department, goals have broadened to include restoration
of the deteriorating urban forest in Miami-Dade County by addressing the impacts of
hurricanes, development, and tree removal [19]. The primary objective of this study is
to assess the effectiveness of the Miami-Dade tree-planting initiative in increasing urban
canopy by conducting an analysis of the changes in greenness across Miami-Dade County.
Secondarily, the paper seeks to explore how environmental factors such as rainfall and
temperature may have contributed to these changes.

Previous investigations into changes over time in vegetative greenness in urban and
suburban areas have relied largely on remotely sensed imagery, which can be collected
frequently and with consistent methods across multiple time periods, allowing for compar-
isons over time [20–26]. Remote sensing data, particularly using the Normalized Difference
Vegetation Index (NDVI), offer valuable insights into vegetation density and greenness
by analyzing spectral reflectance. Validity studies of NDVI have demonstrated that mean
NDVI at the neighborhood level has been shown to be an accurate measure of neighbor-
hood greenness [27–29], with studies in large urban/metropolitan areas suggesting that
the highest mean NDVI values are associated with parks and urban canopy and the lowest
with commercial and industrial uses [28,29].

Overall, urban greenness studies using remotely sensed imagery have become more
common and are increasingly important, especially considering the ongoing global trend
of urbanization [30–32]. Previous studies examining NDVI in urban environments through
remote sensing imagery have consistently shown its sensitivity to different vegetation types
and their abundance [31]. Additionally, researchers have highlighted that mean NDVI
values exhibit higher sensitivity to tree canopies and shrubs compared to grass coverage [33].
Moreover, these studies have established NDVI as a reliable metric for tracking trends in
urban green space changes, provided there is a significant temporal dataset available [33].
To assess the impact of the Million Trees Miami Initiative on increasing NDVI in Miami-
Dade County, this study examined changes in greenness from 2006, 5 years before tree
planting began, to 2019, 8 years after the bulk of tree planting was completed.

To fully assess change in greenness relative to planting and annual growth, it is
important to consider the context of Miami-Dade County’s warm and tropical to subtropical
climate, which is characterized by hot and rainy summers, followed by warm and dry
winters. According to the 2021 USDA Plant Hardiness Zone Map, Miami falls within zone
10b. This particular zone corresponds to an average annual minimum temperature range of
approximately 1.7–4.4 ◦C (https://planthardiness.ars.usda.gov/, accessed on 15 September
2023). Many native and exotic plants in Miami’s urban and suburban areas are tropical
or subtropical and thus are not cold-tolerant [34,35]. To determine the role of climate, we
consider the role that precipitation and minimum winter temperatures may have played in
changes in Miami-Dade County’s vegetation cover over time. The precipitation amount
is key to vegetation growth, with decreased precipitation leading to decreased vegetation
cover, while increased precipitation can promote growth [36]. As such, it is critical to
identify the impact of changing climatic conditions on vegetation to attempt to separate the
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impact of Miami-Dade County’s tree-planting initiative from the possible effects of climate
on changes in greenness.

This study aims to achieve its objectives through the examination of the temporal
evolution of greenness in Miami-Dade County by analyzing NDVI scores computed from
Landsat imagery. Landsat data were selected for this study because it is collected every
16 days, is available for the entire period of study, and has a 30 × 30 m resolution. We
collected data beginning in 2006, 5 years prior to the launch of Million Trees Miami in
2011, to establish baseline conditions. Data were obtained through 2019, 8 years after
the completion of the intensive tree-planting phase, to allow for analysis of medium-
term impact. While the project was named “Million Trees”, the actual number of trees
planted, to date, is expected to be substantially lower. Three of the authors (SCB, JL, and
JS) reviewed the website for the initiative in 2016 which at the time provided a number
below 250,000 trees planted. No number of planted trees is given on the website in 2023
(https://www.miamidade.gov/global/recreation/milliontrees/home.page, accessed on 17
September 2023).

Based on the period of time of our study analysis, we anticipate that greenness will
exhibit an upward trend over time, influenced by both the maturation of existing trees and
active tree planting efforts. In an effort to distinguish between the impact of tree planting
and changes in climatic conditions over time, our secondary aim is to investigate the
relationship between observed variations in greenness and seasonal climatic fluctuations in
minimum winter temperatures and precipitation.

2. Methods
2.1. Unit of Analysis

Drawing on a Landsat dataset from a larger study (NHLBI Grant 5R01HL148880), our
analysis was conducted at the level of the Census block, which provides a fine-grained
understanding of how localized variations in vegetation and environmental conditions
impact the overall urban landscape. Census blocks, delineated by the U.S. Census Bureau
every 10 years, are statistical areas defined by visible and nonvisible boundaries, including
roads, streams, and administrative divisions. They serve as the foundational building
blocks for all geographic boundaries tabulated by the Census Bureau, ranging from city-
like blocks in urban areas to large and irregular blocks in suburban and rural regions,
providing comprehensive, wall-to-wall coverage across the United States and territories for
collecting basic demographic data [37].

As noted, our own research has substantiated the considerable significance of green-
ness at the Census block on the incidence and/or prevalence of 13 different chronic diseases
cross-sectionally and 8 longitudinally. Through cross-sectional analysis, prior research has
established that Medicare beneficiaries living in Census blocks that are one standard devia-
tion above the mean for greenness (as compared to blocks one standard deviation below
the mean in greenness) experienced significant reductions in various chronic disease rates.
For instance, rates of diabetes were lowered by 14%, hypertension by 13%, hyperlipidemia
by 10%, Alzheimer’s disease by 18%, and depression by 28% [8,10,38]. This underscores
the relevance and utility of Census blocks as the chosen unit of analysis, as it allows us to
capture nuanced variations in greenness that are pertinent to important health outcomes.

2.2. Study Area and Data Sources

The focus of this research is to assess the changes in greenness in Miami-Dade County,
which includes all Census blocks located to the east of the Urban Development Boundary
(UDB). The UDB of Miami-Dade County was established to restrict development from
expansion into agricultural and environmentally sensitive lands. The area east of this
boundary, obtained from Miami-Dade’s open data website (https://gis-mdc.opendata.
arcgis.com/, accessed on 20 July 2023), defines the geographic area available for urban
development during the study period.

https://www.miamidade.gov/global/recreation/milliontrees/home.page
https://gis-mdc.opendata.arcgis.com/
https://gis-mdc.opendata.arcgis.com/
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By deliberately excluding the Everglades and agricultural areas from the study, we can
focus this study solely on vegetation within the developed areas of Miami-Dade County.
This strategic focus aligns with our interest in human health, as these urban and suburban
zones are where people predominantly reside. The total number of Census blocks included
to the east of the UDB was 34,123. For enhanced visual clarity, refer to Figure 1 that
delineates the study area in Miami-Dade County.
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NDVI is an index that is used to assess the density of healthy green vegetation in a
given geographical area. It is derived using remotely sensed data, typically from satellites,
which measure the amount of reflected and absorbed light from the Earth’s surface. Green
vegetation absorbs red light and reflects near-infrared (NIR) light. NDVI is the ratio of
the difference between NIR and red bands, with these bands measuring the reflectance of
light in these specified wavelengths, divided by the sum of the NIR and red bands. The
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resulting value ranges from −1 to 1, with higher values indicating a greater density of
healthy vegetation. The formula is expressed as follows:

NDVI = (NIR − Red)/(NIR + Red)

We utilized all available Landsat images (Path 015 Row 042) between 2006 and 2019,
resulting in 450 scenes, consisting of 81 images for Landsat 5, 244 for Landsat 7, and
125 for Landsat 8. The data were downloaded from the United States Geological Survey
(USGS) website at https://espa.cr.usgs.gov/, accessed on 15 September 2023 and were
from Collection #2, Level 1. Collection 2, Level 1 Landsat data include a USGS-calculated,
pre-made NDVI imagery layer for each Landsat scene. We removed all areas of open water,
cloud cover, and cloud shadows from each Landsat NDVI image to increase the validity
(i.e., linked to greenness) of NDVI scores. Importantly, we refrained from applying any
corrections between the different Landsat satellites, based on prior research demonstrating
minimal discrepancies in NDVI values among Landsat 7 and Landsat 8 satellites in Miami-
Dade County (R2 = 0.935, RMSE = 0.066) [39]. Similarly, because Landsat 5 and Landsat 7
have nearly identical red (a difference of 0.01 µm) and completely identical near-infrared
band wavelengths, we refrained from applying any corrections. Other studies comparing
Landsat satellites have also concluded that Landsat 7 and Landsat 8 imagery can be used
as complementary data due to a high linear correlation coefficient (R2 > 0.96) [40].

2.3. Image Processing and Composite Creation

To create a detailed picture of land cover, we compiled the Landsat scenes into four
seasonal composite images for each year throughout the study period. To achieve this, the
meteorological demarcations of seasons were used to sort images. Meteorological seasons
are based on the annual temperature cycle [41]. The winter season includes the coldest
three months of the year in the Northern Hemisphere (December, January, and February),
while the summer season covers the hottest three months (June, July, and August). The
transition months of March, April, and May make up the spring season; and September,
October, and November comprise the fall season.

Landsat images captured in the same season were aggregated using a median value op-
erator for each pixel to ensure relatively cloud-free composite images; this process accounts
for missing pixel values caused by cloud and cloud shadow interference by integrating data
from multiple images to construct a unified and accurate image of Miami for that season.
The seasonal composite images were combined using ArcGIS Pro software (version 3.0.3) to
create a single multidimensional raster, allowing for analysis of spatiotemporal data using
the “Zonal Statistics as Table” tool in ArcGIS Pro. Statistical summaries were calculated
for each seasonal composite raster in each Census block, with each pixel included if its
centroid fell within the corresponding Census block’s geographical boundary. An example
of NDVI values for each of the four seasons can be seen in Supplementary Figure S1.

2.4. Mann–Kendall Tests for Greenness Trends

To identify significant changes in greenness throughout the study period, we analyzed
the NDVI data over time using Mann–Kendall tests. This non-parametric test was used
to detect monotonic trends in greenness over time within the study area. The initial test
employed was the seasonal Mann–Kendall test (SK test) applied to the entire study area.
This decision was motivated by the dataset’s inherent seasonal fluctuations, rendering
the SK test more suitable than the traditional Mann–Kendall test. Unlike its conventional
counterpart, the SK test assesses the Mann–Kendall trend within each season before aggre-
gating the outcomes. This extensively utilized non-parametric trend analysis, common in
vegetation studies [42–44], evaluates the presence of a consistent and monotonic temporal
trend using Kendall’s correlation coefficient Tau.

To gauge the statistical significance of these trends, we utilized the Kendall
R-programming package [45] to calculate the probability of encountering a random trend
within each Census block. Our significance threshold was established at an alpha level of

https://espa.cr.usgs.gov/
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0.05 and separate SK tests for each Census block were executed within the study area to
identify any potential greenness changes at our selected unit of analysis.

We conducted standard Mann–Kendall tests in two distinctive manners. Initially, we
carried out this test for the entire study area of Miami-Dade County across all seasons.
Subsequently, we applied the standard Mann-Kendall test separately to each Census block
across all four seasons. This dual approach enabled us to uncover greenness changes across
all seasons across the study area and then the changes in greenness for each Census within
the entire study area. Incorporating both the SK tests and the standard Mann–Kendall tests
allowed us to reveal variations in greenness changes across the entire study duration, while
also facilitating the detection of seasonal fluctuations. A full diagram outlining the general
steps to obtain these results from the NDVI data can be found in Supplementary Figure S2.

2.5. Climatic Variables

To explore the potential impact of climatic conditions over time on greenness, we
obtained daily precipitation and daily minimum temperature data from the Florida State
University Climate Center (https://climatecenter.fsu.edu/, accessed on 2 August 2023),
which provides meteorological data from weather stations across Florida. We utilized data
from the weather station at Miami International Airport from 2006 to 2019. To capture any
prolonged temperature trends, we extended our temperature dataset to encompass the
30-year period preceding the conclusion of our study, years 1989 to 2019. This extension
conforms with the recommendation of the World Meteorological Organization, which
advises acquiring a historical record spanning at least three decades for studies focused on
climate change dynamics [46,47].

2.6. Lagged Effect of Precipitation on Vegetation

To account for the delayed impact of vegetation’s response to precipitation, a lagged
approach was applied to the monthly season categorizations of precipitation data, introduc-
ing a one-month lag, a choice supported by previous research [48,49]. Consequently, the
precipitation data for winter, for example, encompassed the months of November, Decem-
ber, and January [50,51]. For a comprehensive analysis, we graphically presented both the
absolute minimum temperature recorded during each season in Figure 2 and the average
daily minimum temperature within each season in Figure 3. Subsequently, we conducted
separate simple linear regression analyses on the absolute minimum temperature dataset
and the average daily minimum temperature for each season. These analyses aimed to
determine the presence of any significant changes throughout the study period. These
analyses are particularly suitable for our aim to determine if linear relationships exist over
time. The dependent variable in the GLM was the climatic variables, and the independent
variable was time (in years).
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Figure 3. The mean minimum temperature for each season across the 30 years (1990–2020). The line
of best fit is in blue and 95% confidence intervals are displayed as dark grey areas around the line of
best fit.

3. Results
3.1. Greenness Changes in Miami-Dade County

Figure 4 presents the NDVI score averaged across Miami-Dade County across the
entire study period, and it highlights the absence of statistically significant variations in
greenness (Tau = 0.026, p-value = 0.903). However, when examining changes in greenness
at the scale of Census blocks, the SK tests revealed that 2308 blocks (6.76% of the study area)
exhibited statistically significant changes out of the total 34,123 Census blocks analyzed
over the 13-year period (see Figure 5). Among those Census blocks showing significant
changes, roughly 83.41% displayed an increase in greenness (equivalent to 5.64% of the
study area), while the remaining 16.59% experienced a decrease (equivalent to 1.12% of the
study area). It is worth noting that the proportion of Census blocks exhibiting statistically
significant increases at approximately 6% is very close to our significance threshold (alpha)
of 0.05. Therefore, it is possible that this level of significant change in these Census blocks
may be attributed to random error. This finding about the small number of Census blocks
that showed significant increases at approximately 6% is consistent with the findings for
the larger geographic area of Miami-Dade County for which there were no statistically
significant increases in NDVI scores (i.e., greenness) across the study period. Examining
the overarching pattern of greenness throughout the study period (as depicted in Figure 5),
and comparing it to Figure 4, it would appear that if any NDVI increase took place, it may
have occurred from 2012 to 2016, years in which tree planting was taking place. Following
this period, mean NDVI values appeared to have flattened out and then slightly decreased.
However, as noted, the approximately 6% of Census blocks exhibiting significant NDVI
increases over the entire study period, 2006–2019, may be attributed to chance.
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Figure 5. Census Blocks with significant changes in greenness from 2006 to 2019, as indicated by the
seasonal Mann–Kendall test. The Tau (τ) value represents the magnitude and direction of greenness
changes, with a minus sign in red areas indicating a statistically significant negative change (decrease)
in greenness and a positive sign in green areas indicating a statistically significant positive change
(increase) in greenness.

3.2. Spatial and Seasonal Patterns of Greenness Changes

We proposed a priori to conduct secondary seasonal analyses to determine how the
seasons may have contributed to the overall findings presented earlier. When we explored
NDVI patterns by season and examined Figure 6 over time, we observed that fall appears to
show the highest NDVI values across the years, followed by summer and winter. In contrast,
spring appeared to exhibit lower NDVI values. While these values do fluctuate over the
study period, Figure 6 suggests that there appear to be some increases in NDVI values
until around 2015, followed by a possible slight decrease until 2019. Notably, summer is
an exception, as its NDVI values appear to consistently rise (non-significantly) across the
entire duration of the study. The results of the standard Mann–Kendall tests separately
for each individual season are presented in Table 1. Additionally, the locations of Census
Blocks with significant changes for each season are shown in Figure 7. When evaluating
change by season, winter, summer, and fall had significant increases in greenness, but not
spring. Winter had a slope of 0.009, a statistically significant Kendall’s Tau value of 0.462,
and a p-value of 0.032. Spring had a slope of 0.005, a Kendall’s Tau value of 0.394, and a
p-value of 0.086. Summer had a slope of 0.006, a statistically significant Kendall’s Tau value
of 0.576, and a p-value of 0.011. Lastly, the fall season had a slope of 0.008, a statistically
significant Kendall’s Tau value of 0.606, and a p-value of 0.007.
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Table 1. Number and percentage of Census blocks with significant greenness changes.

Period
Number of Census Blocks
with Significant Change

in Greenness
Percent of Total

% of the Significant
Changes Were Positive

(Tau > 0.0)

% of the Significant
Changes Were

Negative (Tau < 0.0)

Total 34,123 - - -
Winter 20,976 61.47% 99.46% 0.54%
Spring 6406 18.77% 99.47% 0.53%

Summer 8407 24.64% 99.43% 0.57%
Fall 5990 17.55% 99.02% 0.98%
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magnitude and direction of greenness changes, with a negative sign in red indicating a statistically sig-
nificant negative change (decrease) in greenness and a positive sign in green indicating a statistically
significant positive change (increase) in greenness.

As represented in Figure 7 and presented in Table 1, significant changes were observed
in most Census blocks only for winter, with 61.47% of Census blocks exhibiting a statistically
significant increase in greenness over the study period. Conversely, the fall season displayed
the least pronounced proportion of Census blocks with statistically significant increases,
with only 17.55% of Census blocks revealing a statistically significant increase in greenness.
Across all seasons, the vast majority of significant changes in greenness were positive
(comprising more than 99% for each season), indicating that among those Census blocks
with statistically significant seasonal changes, nearly all the within-season changes were in
the direction of increased greenness.

3.3. Visual Comparison of Greenness Changes

To illustrate the changes in greenness, two locations within Miami-Dade with sta-
tistically significant changes in vegetation are presented (Figures 8 and 9). Initially, both
locations had moderate NDVI values (approximately 0.50 NDVI). However, over time,
one location experienced a statistically significant increase in vegetation, while the other
displayed a statistically significant decrease. Using Google Earth, Figure 8 illustrates in-
creased vegetation in one location that may be attributed to the maturation of existing
trees and tree plantings. This Census block exhibited statistically significant increases
across the spring, fall, and winter seasons. In contrast, Figure 9 shows a location that
demonstrated statistically significant reductions in vegetation during the fall and spring
seasons, mainly due to the conversion of open fields and farmlands into residential areas.
Notably, discrepancies in image acquisition timing between Google Earth and Landsat
imagery should be acknowledged, as the former does not precisely align with the latter’s
start and end dates.

1 
 

 

Figure 8. Illustration of a statistically significant increase in greenness within a Census block (in
red) across the study period. The NDVI measured 0.383 in 2006 (upper photograph) and showed an
increase to 0.483 (lower photograph) by 2019.
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1 
 

 

Figure 9. Illustration of a statistically significant decrease in greenness within a Census block (in
red). The NDVI recorded a value of 0.464 (upper photograph) in 2006, which declined to 0.267 (lower
photograph) by 2020. It is worth noting that due to discrepancies in image acquisition timing, the
Google Earth imagery does not perfectly align with the start and end dates of the Landsat imagery
due to a lack of available images for 2019 at this location.

3.4. Climatic Variables: Minimum Temperature

The analysis of changes in temperature over time used generalized linear models (see
Table 2). Within each season, the absolute minimum temperature (Figure 2) revealed no
statistically significant changes. In contrast, the mean minimum temperature (Figure 3)
revealed a statistically significant increase over time in temperature for the summer season
(p < 0.05). Although the winter season did not exhibit a statistically significant increase in
mean minimum temperature, an extremely low value was observed in 2010. The exclusion
of this outlier data point from 2010 resulted in a statistically significant increase in the mean
minimum temperature over time for winter, particularly in the last 10 years, as depicted in
Figure 10 (generalized linear model: R2 = 0.1186, p = 0.035).

Table 2. Linear model results for climatic data.

Variable Season R R Square Adjusted R
Square

Residual
Standard Error p-Value

Absolute
minimum

temperature

Winter 0.170 0.029 −0.004 9.112 0.359
Spring 0.224 0.050 0.018 9.012 0.225

Summer 0.093 0.009 −0.026 9.208 0.620
Fall 0.005 0.000 −0.034 9.247 0.981

Mean
minimum

temperature

Winter 0.226 0.051 0.018 9.009 0.222
Spring 0.247 0.061 0.028 8.962 0.181

Summer 0.436 0.190 0.163 8.321 0.014
Fall 0.348 0.121 0.091 8.670 0.055

Rainfall

Winter 0.416 0.173 0.110 4.220 0.123
Spring 0.038 0.001 −0.075 4.638 0.893

Summer 0.192 0.037 −0.037 4.555 0.493
Fall 0.060 0.004 −0.073 4.633 0.831
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Figure 10. The mean minimum temperature for winter across 30 years (2020–1990). Within this graph,
the 2010 outlier was removed, as indicated by the “x” marking the location of the outlier. The line of
best fit is in blue and 95% confidence intervals are displayed as dark grey areas around the line of
best fit.

3.5. Climatic Variables: Precipitation Variability

Precipitation levels in Miami throughout the study period, presented in Figure 11 and
Table 2, showed no statistically significant changes over time for any of the four seasons
(winter p-value = 0.123, spring p-value = 0.893, summer p-value = 0.493, fall p-value = 0.831).
Figure 11 shows that there is increasing variability in precipitation totals after 2010, found
across all seasons. Sudden fluctuations in rainfall patterns, even when the overall amount of
rainfall remains relatively stable, can significantly impact the productivity of vegetation and
thereby the greenery within a specific region [52,53]. This effect becomes especially evident
during the dry season, as an increase in rainfall during this period can lead to increased
vegetation growth [54]. To assess whether this observation is statistically supported,
we divided the precipitation data into two sets: pre-2010 and post-2010. We calculated
the variance for each season in both time periods and conducted a Shapiro–Wilk test to
evaluate normality. Because normality was found for both pre- and post-2010 samples, we
proceeded with an F-test to determine if the differences in variance before and after 2010
were statistically significant.
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The outcomes of the F-test (see Table 3), with respect to variance equality, indicate
discernible distinctions in precipitation variability within seasons across time. Specifically,
for the fall and winter seasons, while the p-values were close to 0.05, the variance differences
(pre- vs. post-2010) did not reach statistical significance (fall p = 0.072, winter p = 0.07). Con-
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versely, for the spring and summer seasons, we observed significant variance differences
(spring p = 0.024, summer p = 0.048), suggesting a statistically significant increase in pre-
cipitation variability following 2010. Furthermore, we conducted normality tests utilizing
the Shapiro–Wilk method to assess data distribution. Both the fall and summer seasons
exhibited normally distributed precipitation data for both the pre-2010 and post-2010 peri-
ods. In contrast, the spring season displayed a statistically significant variance difference
accompanied by non-normal distribution in the post-2010 period. Similarly, the winter
season exhibited a non-normal distribution in the pre-2010 period, which transitioned to a
normal distribution after 2010. Finally, Figure 12 illustrates the annual deviation from the
mean rainfall (1687 mm) in Miami-Dade County during the years of the study period. The
deviation highlights certain years experiencing more or less rainfall than the average, with
no discernible pattern in the overall amount of rainfall.

Table 3. Comparative analysis of seasonal precipitation variability in Miami: pre-2010 vs. post-2010.

Season Variance
Pre-2010

Variance
Post-2010

Variance
Difference F Test p-Value Shapiro–Wilks

Pre-2010 p-Value
Shapiro–Wilks

Post-2010 p-Value

Fall 5589.686 31,799.880 26,210.190 0.072 0.258 0.795
Spring 3402.591 32,505.830 29,103.240 0.024 0.209 0.020

Summer 5462.845 37,622.470 32,159.630 0.048 0.959 0.201
Winter 1814.336 10,429.760 8615.420 0.070 0.046 0.103
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4. Discussion
4.1. Overview of Findings

The objective of this study was to investigate changes in greenness (i.e., vegetation
amount/density) across Miami-Dade County over a 13-year period (2006–2019) and to
evaluate how these changes align with the objectives of the Million Trees Miami project
(2011–ongoing). Demonstrating a lack of impact by the tree-planting initiative on the
overall greenery for the whole of Miami-Dade County, there was no statistically significant
change in NDVI/greenness scores across the study period. Consistent with these overall
findings, only 6.76% of the studied Census blocks displayed statistically significant changes,
over 99% of which were in the direction of increased greenness. Additionally, the study
aimed to ascertain whether alterations in spatial and temporal greenery patterns were
associated with shifts in climate patterns. Winter, summer, and fall showed statistically
significant increases in greenness, with winter having the highest proportion of Census
blocks with significant changes (61.47%), over 99% of which were in the positive direction.
It is important to note that Million Trees Miami is the name of the tree-planting campaign,
but Miami-Dade County seems to have planted only about one-fourth of that amount as of
2016, when three of the authors (SCB, JL, and JS) reviewed the website for the initiative in
2016. No number of planted trees is given on the website in 2023.
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4.2. Prior Greenness Studies in Miami-Dade County

Our study builds upon a foundation of prior research conducted in Miami, allowing
us to contextualize and compare our findings with previous work in the area. Notably,
previous studies have focused on assessing tree cover in Miami-Dade County. For instance,
as of 2020, research indicated that the tree canopy in Miami-Dade County’s urban areas
stood at 20.1%, notably lower than the national average of 28.8%, but higher than the initial
14% cover at the start of the Miami tree-planting initiative [17,18].

Furthermore, earlier research delved into tree cover changes from 2003 to 2009, re-
vealing a concerning 1.7% decrease in tree cover for Miami over this 6-year period [18].
Additionally, a more recent investigation explored variations in Miami-Dade’s tree canopy
from 2016 to 2020, ultimately finding no significant alteration in the overall tree canopy
percentage within the county during this 4-year period [55]. These findings offer a temporal
perspective on Miami’s greenery, contributing to our understanding of trends leading up
to and following our study period.

In addition to these broader trends, our study delves into the spatial variation of green-
ery changes within Miami-Dade County. Fine-scale potential changes, such as clearing,
planting, pruning, and urban developments, play a significant role in shaping the local
green landscape. Our focus on spatial distribution enables us to identify hotspots, offering
a more nuanced understanding of the dynamics at play within the county.

4.3. Extent of Changes in Greenness

The results of the seasonal Mann–Kendall test, depicted in Figure 4, indicate that
approximately 6% of the total examined Census blocks in this study exhibited statistically
significant increases in greenery across the entire 2006–2019 period, suggesting a relatively
stable level of greenery throughout Miami-Dade County. This is consistent with the findings
of the overall changes in greenery across all of Miami-Dade County during the study period.
However, when we analyzed greenness changes within each of the four meteorological
seasons, a notable proportion of significant changes became evident. Specifically, during the
winter season, a total of 20,976 Census blocks (equivalent to 61.47% of the total) exhibited
statistically significant changes in greenness (Table 1), 99.46% of which were positive
indicating a statistically significant increase in greenness. The results for the remaining
three seasons were also significant but at much lower rates of change, with summer having
8407 Census blocks or 24.64% of the total, spring with 6406 Census blocks or 18.77%
of the total, and fall with 5990 Census blocks or 17.55% of the total having significant
greenness changes. Notably, all seasons had over 99% of these changes being positive
changes. These results highlight the season-specific variations in greenness changes, with
winter displaying the highest proportion of statistically significant positive changes. This
observation emphasizes that, within this region, winter has shown a conspicuous increase
in greenness across a substantial portion of the landscape. Since these significant changes
in greenness primarily occur during a single season and are not apparent in the overall
landscape trends, it suggests that factors other than a general increase in canopy cover are
likely responsible for these changes. If increasing canopy was the driving force, we would
anticipate consistent upward trends in greenness across all seasons.

4.4. Million Trees Miami Initiative Evaluation

Considering the findings presented in this study, it is important to consider the role
of the so-called “Million Trees Miami” planting initiative and its potential impact on the
observed increase in greenness. While the reality of this initiative was about one-fourth
of the intended goal of one million trees, we should still expect to see canopy coverage
increase as a result of this program. Therefore, it was unexpected that our findings revealed
that greenness across the whole county for the 13 years of the study period did not show
statistically significant increases. In fact, across the study period, only 6% of Census blocks
showed statistically significant increases in greenness—which could occur at random when
using a p-value of <0.05. It is therefore concerning that the planting of trees in Miami-Dade
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County has not shown substantial improvements in greenness, even 8 years after the first
trees were planted.

The current analysis covers the years 2006 to 2019, while the bulk of the planting
initiative occurred between 2011 and 2016. It is therefore possible that the saplings planted
during this period may not have reached a stage of maturity that significantly contributes
to the observed changes in greenness. Considering the typical growth rates of trees,
particularly in the context of urban environments, the saplings planted as part of the
initiative are unlikely to have reached a stage where they can substantially impact the
overall greenness within the studied timeframe. Many factors, including species selection,
local conditions, and maintenance practices, influence the growth and establishment of
newly planted trees. These saplings need time to establish their root systems, develop
foliage, and contribute significantly to the overall greenness of their location. As such, while
the “Million Trees Miami” project may hold the potential to significantly impact the urban
canopy in the long term, the observed changes in greenness, found predominantly within
the winter season only, across the study period are much more likely to be influenced by a
combination of factors linked to changing dynamics of this season, such as lower overnight
minimum temperatures and changes in the distribution of precipitation. If the changes
in greenness were a result of increased tree canopies and tree counts, we would expect
to see a much more consistent increase in greenness year-round, not just in winter. It is
possible that in addition to planting trees, it may be necessary to protect mature trees more
aggressively. In addition, as a counter to the tree-planting initiatives, there is still significant
development in the region, such that some areas may be experiencing tree removals, tree
pruning, and other human-induced reductions in the canopy. For Miami-Dade County, the
results of this study demonstrate that, in the short term, planting trees is insufficient to
increase greenness as measured by NDVI.

4.5. Limitations

These results suggest the value of monitoring vegetation changes in Miami-Dade
County to assess challenges posed by urbanization, climate variability, and other human
factors related to meeting urban planning goals. This study uses limited data sources
and may have excluded important variables that could influence the observed results.
Further research is needed to validate the findings and explore potential explanations for
the observed trends. Additionally, the lack of explicit details regarding the locations or
quantities of tree plantings under the Million Trees Miami project poses a challenge in
directly assessing its impacts. Furthermore, the omission of an examination of vegetation
types represents a notable gap in our analysis.

Our use of the Census block as the unit of analysis facilitated the assessment of
greenness variability at very high resolution. In contrast, our climate data are derived
from climate stations and therefore lack a comparable spatial scale. While we can discuss
broad-scale climate changes for the entire region (Figures 2, 3, 10 and 11), establishing
statistical linkages proves challenging due to these significantly different spatial scales.
Nevertheless, as we delve into potential climatic drivers of change, such as slightly wetter
winters and warmer minimum temperatures likely associated with increased greenery
during the same season, it is important to note that significant spatial variation persists
across the study area, highlighting other potential drivers of change, including tree planting
and other human-related factors. An in-depth analysis would be required to establish
potential causal relationships.

4.6. Conclusions and Future Research

The findings from this study offer valuable insights into the dynamics of vegetation
in Miami-Dade County, especially within the context of recent climate fluctuations. These
insights are crucial for assessing the impacts of urban greening initiatives and for informing
future policies and urban planning efforts. The knowledge gained from this study can
inform urban planning and policymaking decisions in Miami-Dade County in several



Remote Sens. 2024, 16, 157 16 of 18

ways. Strategies and interventions based on the insights obtained include the importance
of preserving existing green spaces and in particular preserving canopy from mature trees,
timing, and designing greening initiatives based on seasonal patterns, promoting tree
preservation efforts, and incorporating green infrastructure into urban development plans.
By integrating these findings into decision-making processes, Miami-Dade County can
enhance its vegetation cover, promote the health and well-being of its residents, and create
more sustainable and resilient urban environments.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs16010157/s1, Figure S1: Examples of composite NDVI
images representing each season throughout the entire study area in 2018; Figure S2: Flow diagram
of the methodology for detecting significant trends in greenness across the entire time series and
individual seasons.
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