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S.1 Individual tree delineation algorithm 
 
In this section, we present and validate the individual tree detection (ITD) algorithm that was developed 
in Jiang (2019) and used in our manuscript. We also compare Jiang (2019) ITD results to alternative ITD 
algorithms that are commonly used in the field. The code for our ITD algorithm is available on GitHub. The 
Github repository includes an 'examples' folder that contains an R tutorial to run the ITD code in Google 
Colab (Jiang 2023): 

https://github.com/ruizhuj/Individual_Tree_Delineation_in_Broadleaf_forest 

S.1.1 Refining the watershed-ITD algorithm for broadleaved species 

Individual tree delineation using Light Detection and Ranging (LiDAR) data represents a significant 
advancement in forest inventory and management  (Popescu, Wynne et al. 2002; Wang, Gong et al. 2004; 
Dalponte, Orka et al. 2014; Ma, Chen et al. 2022). The process uses laser scanning data to identify and 
delineate individual trees within a forest stand over large scales.  

One of the most common ITD algorithm is marker-controlled watershed delineation based on a Canopy 
Height Model (CHM) raster layer. This method works well when the tree crowns have a regular shape 
(Kwak, Lee et al. 2007; Madhuri Kalapala 2012; Soille 2013; Amiri 2014; Ayrey, Fraver et al. 2017).  In the 
marker-controlled watershed approach, the CHM is usually created by taking the maximum height of 
height-normalized LiDAR points with cells of 1 meter or smaller resolution. This method is highly accurate 
in coniferous forests, where tree crowns have a conical shape and treetop is located at the center of the 
crown (Ke and Quackenbush 2011). However, in broadleaf-dominated forests, such as the Eucalyptus 
forests in our case study, the irregularity of tree crowns makes identifying and detecting treetops more 
challenging.  

In this study, we develop a more robust watershed ITD method for overstorey broadleaf species by 
refining three key aspect of the algorithm: i) choosing a more suitable target raster, ii) improving treetop 
detection, and iii) identifying crown edges and forest gaps. 

i) Choosing a more suitable target raster 

Changing the target raster layer from a CHM to the high point densities model (DHP) has been shown to 
improve the accuracy of ITD algorithms for broadleaved species (Rahman, Gorte et al. 2009). The DHP 
method relies on the assumption that the LiDAR point density of an overstorey tree crown is greatest at 
the center the crown and diminishes towards its edges (Rahman and Gorte 2008; Rahman, Gorte et al. 
2009). The method used by Rahman, Gorte et al. (2009) was simply to select points above a fixed reference 
height to distinguish the overstorey tree crowns from the understorey vegetation and ground surface. 
However, filtering based on a fixed reference height can be problematic if the forest structure vary in 
space (Rahman and Gorte 2009). To enhance the method's accuracy, a potential strategy would thus be 
to allow the reference height to vary with overstorey height and forest type. One promising approach is 
to base the reference height on the height-to-live-crown base (HCB), defined as height below which trees 
have no crown and above which they have a crown. We would classify LiDAR points below the HCB as 
belonging to the understorey and points above it as belonging to the overstorey. Height-to-live-crown 



base can be predicted from total tree height (HT) (Ritchie and Hann 1987; Nutto, Spathelf et al. 2006; Rijal, 
Weiskittel et al. 2012; Sharma, Vacek et al. 2017) because of the strong relationship between these 
features (e.g., R2 of 0.79 in conifers and 0.80 in broadleaf trees in (Rijal, Weiskittel et al. 2012)). In practice, 
we would use field data to calibrate a HCB = f(HT) model. As CHM is available for the entire landscape it 
is logical to substitute HT for CHM for the predictions of canopy surface of HCB.  

ii) Improving treetop detection 

The success of watershed delineation of overstorey trees relies on accurate tree-top detection (Wang, 
Gong et al. 2004). When tree-top detection is poor, over-segmentation can occur (i.e., an individual tree 
will be mistakenly divided into multiple trees), an issue that can be particularly acute for trees with large 
crowns. Accurate tree-top marker control prevents severe over-segmentation problems in the traditional 
watershed algorithm (Wang, Gong et al. 2004). A common technique for identifying treetops uses a local 
maximum filter to identify the peaks of tree crowns with a moving window size (commonly 3×3, 5×5, or 
7×7 pixels) that can also depend on crown size (Wulder, Niemann et al. 2000; Persson, Holmgren et al. 
2002; Popescu, Wynne et al. 2002; Popescu and Wynne 2004). The local maximum method makes the 
assumption that the peak of the tree-crown is located at or very close to the treetop (Brandtberg and 
Walter 1998). An image-smoothing targeted raster layer can help to reduce the noise effect (Dralle and 
Rudemo 1996). 

iii) Identifying crown edges and forest gaps 

Accurate crown edge detection reduces the identification of pseudo tree-tops (i.e., situations where we 
have a local height maximum on the crown edge or close to a forest gap) (Wang, Gong et al. 2004) and 
prevents multiple trees being merged together incorrectly (Brandtberg and Walter 1998). Canopy height 
models usually exhibit spatial variation in heights (Xu, Iuricich et al. 2023). Topographic analysis tools, such 
as slope, aspect and slope of aspect (SOA) can be used to analyze CHM (Wu, Yu et al. 2016). Slope of 
aspect of CHM represents the rate of change of aspect of a crown; therefore, the maximum value of SOA 
of CHM is located along the crown edge (“gully”) or treetop (“ridge”). Therefore, high values of SOA of 
CHM combined with the negative terrain surface of CHM indicate crown edges. Forest gaps can also be 
detected from the negative terrain surface using neighborhood analysis tools (such as the focal statistic 
tool in ArcGIS) to identify surfaces that are relatively lower within a larger identified neighborhood. 

Incorporating all the above steps, we developed a ITD algorithm using a watershed segmentation method 
targeting a raster layer that combines the canopy height model (CHM) and the densities of high points 
model (DHP) at a fine spatial resolution of 0.5 meters (CHM×DHP). We first used the HCB = f(HT) 
relationship to classify LiDAR points into dominant overstorey trees and understorey trees. We then 
removed the LiDAR points belonging to the understorey. Canopy gaps were detected by using a focal 
statistic tool to identify CHM surfaces that are relatively lower within a larger identified neighborhood. 
The LiDAR points of vegetation located in canopy gaps were also removed. We then created DHP only 
based on LiDAR points of dominant overstorey canopies. Treetop detection with a local maximum filter 
was based on the developed raster layer CHM×DHP. Crown edge detection used the successive 
application of terrain surface analysis tools and neighborhood tools, including slope of CHM, aspect of 
CHM, SOA of CHM, and focal statistic tool. High values of SOA of CHM combined with the relatively lower 



canopy height surface within a specified neighborhood were used to identify crown edges. We used a 
window size of 5 meters for the focal statistic tool to identify crown edges and a window size of 20 meters 
to identify canopy gaps. This produced a top-edge-enhanced raster layer of CHM×DHP for use in 
watershed segmentation. The ITD workflow is summarized below: 

1. Create a 50 cm resolution canopy height model (CHM). 
2. Create a height to crown base model (HCBM) based on a crown based height – top height relationship 

calibrated from field data (Figure S1). 
3. Identify canopy gaps. 
4. Filter out the understorey and midstorey points (i.e., points that are below the HCBM), retaining only 

overstorey LiDAR points. 
5. Filter points located in canopy gaps. 
6. Create a density of high points model (DHP) using overstorey crowns points. 
7. Detect treetops based on a targeted raster layer of CHM×DHP. 
8. Perform marker-control watershed delineation on a top-edge-enhanced CHM×DHP layer, calculated 

as: (CHM×DHP) × (1.2 × treetops) + (CHM×DHP) × (1 - gaps) × (1 - edges) × (1 - treetops). See Figure 
S2 

 
Figure S1: The linear model and R2 of HCB-HT relationship calibrated from field data. 
 



 
Figure S2: workflow for generating the top-edge-enhanced raster layer of CHM×DHP. 

Table S1: The confusion matrix of ITD outputs and equations for each validation metrics. True condition is 
based on directly observed data from stem-mapped plots and predicted condition is from LiDAR-derived 
ITD analyses. 

 

S1.2 Individual tree detection validation 

We validated our method by comparing our ITD predictions with field measurement data. We first 
established three 1-ha plots in mountain ash forest to validate our ITD algorithm. In each plot, all dominant 
overstorey trees were mapped, identified to species, and measured for DBH, total height (HT), height to 
the base of the live crown (HCB), and mean crown width (CW). We estimated mean crown width as the 
mean distance from the tree bole to the northern, southern, western, and eastern edge of the tree crown. 
Within each plot in an area of approximately 2000 m2 (20 × 100m), mid- and understorey trees with 
DBH>10cm were mapped and we measured their stem and crown attributes. These three plots were 
located in forest with distinct growth stages (1939 regrowth, 1977 regrowth, and multi-cohort stand). In 
total, 873 trees were measured, including 309 dominant overstorey trees, 422 mid- and understorey trees, 
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= ITD correctly 
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= TP/CP = TP/ (TP + FP) 
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True negative 
(TN)=0 

Omission rate (OR) = 
FN/CP = FN/ (TP + FN) 

True negative rate (TPR) 
or Specificity 
=TN/CN=TN/(TN+FP) 



and 142 suppressed canopy or dead trees. The dominant overstorey species was Eucalyptus regnans and 
the most common mid- and understorey species were Acacia dealbata and A. frigescens, respectively. 

The ground truth validation was carried out using the coordinates of live overstory trees within three 1-
ha stem mapped plots. Four validation indicators were calculated to evaluate the ITD method compared 
to the ground truthing: overall accuracy (ACC), sensitivity (true positive rate, TPR), commission rate (CR) 
and omission rate (OR) (Sačkov, Hlásny et al. 2017). True Positives (TP) represents the proportion of 
crowns accurately identified by the ITD method; False Negatives (FN) is the proportion of treetops missed 
by the ITD method, or treetops of crowns that were erroneously merged with adjacent crowns; False 
Positives (FP) is the proportion of crowns that were over-segmented by the ITD method or crowns 
containing two or more true crowns. The equations for these validation metrics are shown in Table S1. 
For crowns that were correctly segmented (True positive), we also estimated the R2 between LiDAR-
derived crown width and the crown widths measured in the field to evaluate the ability of our ITD 
approach to accurately delineate individual crowns and their sizes. The LiDAR-derived crown width was 
estimated based on the projection area of each delineated polygon for each overstorey tree crown by ITD. 

The ITD approach that we developed for this study was able to correctly detect individual trees in different 
growth stages of the mountain ash forest (Table S3, Figure S3), although the accuracy varied among 
growth stages. Our algorithm was most accurate in the 1939 regrowth and multi-cohort stands that were 
dominated by 1939 regrowth mountain ash trees (ACC = 0.8 in both plots). The dominant overstorey 
crowns identified by ITD in these plots had an 86% chance of being the true crowns and an 8% chance to 
being over-segmented (i.e., a single tree crown being classified as two or more individual crowns by ITD). 
The ITD algorithm had a 13% chance of missing a true crown. In 1977 regrowth forest (i.e., 38-years old), 
the ITD algorithm was much less effective (ACC = 45%). Only 53% crowns were correctly detected and 47% 
of crowns were merged with their neighbors or being missed. Figure S3 shows the outcomes of our ITD 
method for stem mapping, indicating whether each detection was correct or incorrect. Missed field 
crowns in the 1939 regrowth and multi-cohort stands were most likely suppressed overstorey trees, while 
missed field crowns in the 1977 regrowth forest were located in “canopy gaps” identified by our ITD 
method. For detected trees, we found a linear relationship between the LiDAR-derived crown width and 
the crown widths measured in the field (R2 = 0.64; relative error of 18%; see Figure S4). The relationship 
followed the 1:1 line (intercept not significantly different from zero, slope not significantly different from 
one), indicating no detected bias in LiDAR reconstructed crown widths.  

 

 

 

 

 

 



Table S2: Accuracy of individual tree delineation results for each plot. 
  

Plot1 Plot2 Plot3 
  1939 regrowth 1977 regrowth mul -cohort 
Number of trees  

Field measurement 65 207 37 
TRUE Posi ve (TP) ITD correctly detect 56 109 32 

FALSE Nega ve (FN) 
Missed field treetops 3 7 5 
Merged field treetops 6 91 0 

FALSE Posi ve (FP) 
ITD >2 crowns 3 33 0 
ITD over-segmented 2 0 3 

Model Valida on  
Accuracy (ACC)  0.800 0.454 0.800  
Sensi vity (TPR) 0.862 0.527 0.865 

 Omission Rate (OR) 0.138 0.473 0.135 
 Commission Rate (CR) 0.082 0.232 0.086 

 

  

 

Figure S3: Stem-mapped plots for valida on of 
individual tree delinea on (ITD) of tree crowns in a) 
1939 mountain ash forest; b) 1977 regrowth 
mountain ash forest; and c) mul -cohort forest. Each 
panel shows individual trees that were correctly and 
incorrectly classified using our ITD algorithm.  
Validation metrics for each plot are shown in Table 
S2. 



 
Figure S4: The relationship between field-measured crown width and crown width extracted from LiDAR. 
The relative error of the relationship (coefficient of variation) was around 18%. 

 

S1.3 Comparison with existing ITD methods 

In addition to the watershed delineation method, a few studies using raster-based ITD methods, such as 
layer stacking and localized contour, have shown a high level of accuracy for individual tree delineation. 
Layer stacking is a method which slices the entire forest point cloud at 1-m height intervals and isolates 
trees in each layer. Merging the results from all layers produces representative tree profiles (Ayrey, Fraver 
et al. 2017; Ma, Chen et al. 2022). Layer stacking has high accuracy for detecting the location of individual 
trees. Ayrey et al. (2017) was able to identify 75% of trees correctly detected in pure deciduous stands; 
however, layer stacking tends to underestimate crown size which could be problematic in our study. 
Localized contour seeks to capture the topological structure of the canopy and quantifies the topological 
relationships of tree crowns using a graph theory-based localized contour tree method which can be used 
to segment individual tree crowns in a manner analogous to detecting hills on a topographic map (Wu, Yu 
et al. 2016). This approach essentially creates crown contours based on the CHM. In coniferous forests, 
the overall accuracy of the localized contour ITD method reached 75 to 94% (Wu, Yu et al. 2016). The lidR 
package in R (https://r-lidar.github.io/lidRbook/itd-its.html#itd) also incorporates innovative methods 
such as Local Maximum Filter (LMF) and Dalponte and Coomes' region-growing algorithm (Dalponte and 
Coomes 2016; Roussel, Auty et al. 2020). The LMF recognizes local maxima in CHM as treetops, providing 
a basis for initial tree detection. The LMF supports the use of both fixed and variable window sizes, 
allowing for flexible and adaptive tree detection. Subsequently, the Dalponte et al. (2016) algorithm 
utilizes a region-growing strategy that progressively delineates individual tree crowns from a given 'seed' 
point, which is typically the local maximum determined by the LMF. 

To test the performance of our approach, we compared it to traditional watershed-ITD (Madhuri Kalapala 
2012; Amiri 2014), layer stacking (Ayrey et al., 2017), localized contour (Wu, Yu et al. 2016) and LidR 



methods. We used these approaches to delineate the crowns in one-hectare stem-mapped plot located 
in 1939 regrowth mountain ash stand. Four validation indicators (overall accuracy (ACC), sensitivity (true 
positive rate, TPR), commission rate (CR) and omission rate (OR)) were calculated and used to compare 
the model performance with our refined watershed-ITD approach. We also compared the crown shape 
and size delineated from these four methods. 

The comparison of the developed algorithms with layer-stacking, localized contour, and marker-control 
watershed segmentation are summarized in Table S3 and Figure S5. The highest accuracy of treetop 
detection was layer-stacking method (ACC=90%). Trees detected by layer-stacking had a 92% chance of 
being the true crowns. No crown was over-segmented by layer-stacking. When compared to our ITD 
algorithm (top-edge enhanced watershed delineation), layer stacking correctly identifed 9.6% more trees. 
Traditional marker-control watershed segmentation, localized contour and LidR method both performed 
badly in our stem mapping plots. Traditional marker-control watershed segmentation method trends to 
have highest rate to over-segment trees among four methods. The overall accuracy of localized contour 
was the lowest among all four methods (ACC=46%). Crowns delineated by lidR were merged highest 
number of crowns with their neighbors (19/65 = 29.2%). This suggests that a direct application of the 
region-growing method on the CHM of broadleaf forests may not yield optimal segmentation outcomes. 
 
In terms of characterizing crown shape, layer stacking tended to underestimate crown size, because it 
excluded layers that were farthest from the tree center. Crown shapes delineated by localized contour 
were also smaller than the actual tree crown shapes, due to the fact that only closed contour lines were 
considered in this method. Traditional marker-control watershed segmentation algorithms often 
mistakenly merged smaller trees within or around the crowns of primary trees, and so it tended to 
overestimate crown size. Although the overall accuracy of our ITD algorithm was slightly less than for 
layer-stacking, it delineated tree crowns precisely along the crown edge, which provided more accurate 
information of the size off tree crowns.  
 
 
 
 
 
 
 
 
 
 
 
 

 



Table S3: Accuracy of individual tree delineation results for each method. 

  Traditional Watershed Layer stacking local contour LidR 
ITD in this 
study 

 Number of trees 

TRUE Positive (TP) 
Field measurement 65 65 65 65 65 
ITD correctly detect 52 60 38 46 56 

FALSE Negative (FN) 
Missed field treetops 0 1 9 0 3 
Merged field treetops 13 4 18 19 6 

FALSE Positive (FP) 
ITD >2 crowns 6 2 9 12 3 
ITD over-segmented 25 0 9 6 2 

 Model Validation 
 Accuracy (ACC)  0.54 0.90 0.46 0.55  0.80 
 Sensitivity (TPR) 0.80 0.93 0.59 0.71  0.86 
 Omission Rate (OR) 0.20 0.01 0.42 0.29 0.14 
 Commission Rate (CR) 0.37 0.03 0.32 0.28 0.08 

Figure S5: Stem-mapped plots for plot1-1939 regrowth forest of delineated tree crowns using: a) 
traditional marker-control watershed segmentation method; b) layer-stacking method; c) localized 
contour method; and d) lidR method. Each panel shows individual trees that were correctly and incorrectly 
classified using our ITD algorithm. 
 



S.2 Workflow on binary classification of old-growth forests 

In this section, we describe the workflow used to reconstruct the presence of old-growth forests from 
aerial LiDAR. We also discuss the uncertainties associated with each step of our workflow.  We recognize 
that the uncertainties associated with each step can interact in complex ways, which is why we also 
validated the modelled old growth map using an independent dataset, as explained in the manuscript. 
The classification of old-growth forests from aerial LiDAR data followed six steps: 

Step 1) Light Detection And Ranging (LiDAR) acquisition. The aerial LiDAR data was collected in 2015-2016 
by RPS Group and provided to the Victorian Government Department of Environment, Energy, and 
Climate Action, (DEECA). The average LiDAR point density within the 337,548 ha surveyed was around 28 
points / m2 (Trouvé, Jiang et al. 2023). Figure S6 shows a map of the LiDAR surveyed area in the Central 
Highlands of Victoria. The root mean squared error in raw LiDAR point height was around 10 cm. The 
digital elevation and canopy height model production method can also result in uncertainty in the 
predicted canopy height and shape reliability (degree of fidelity in the spatial pattern uncertainty) that 
can affect later steps in the workflow. This step has a small impact on the total uncertainty of the 
workflow. 

Step 2) We delineated individual tree crown by using an individual tree detection (ITD) algorithm on the 
LiDAR data (Figure S7) (Jiang 2019). Details for our ITD algorithm are available in section S1 of this 
Supplementary Materials. Following this step, we have a list with the estimated location, tree height, and 
crown width of the 22 million trees detected in the LiDAR footprint (Trouvé, Jiang et al. 2023). In the 
Central Highlands region, we can summarize the uncertainties associated with the ITD algorithm as 
follows: 

- In 1939 regrowth and multi-cohort stands dominated by 1939 regrowth trees (76 years old trees), 
the overall accuracy of the algorithm was 80% (Jiang 2019). The dominant overstorey crowns 
identified by ITD in these plots had an 86% chance of being the true crowns and an 8% chance to 
being over-segmented (i.e., a single tree crown being classified as two or more individual crowns 
by the ITD). The ITD algorithm had a 13% chance of missing a true crown. Missed crowns in the 
1939 regrowth and multi-cohort stands were most often suppressed overstorey trees. Missing 
suppressed trees is unlikely to impact the classification of old-growth forests as these forests are 
primarily classified based on the presence of large trees; however, it could potentially affect other 
aspects of the data (e.g., estimating basal area or biomass per hectare based on the identified 
trees, but these objectives are out of scope for this study).  

- The ITD algorithm was much less effective in younger stands due to overlapping crowns. For 
example, in 1977 regrowth forest (i.e., 38 years old trees), the overall accuracy was only 45% 
(Jiang 2019). Only 53% crowns were correctly detected and 47% of crowns were merged with 
their neighbors or missed. Low accuracy in identifying individual trees in young regrowth is also 
unlikely to impact old-growth forests classification as old-growth forests are primarily classified 
based on the presence of large trees. 

- For detected trees, there was a good linear relationship between the LiDAR-derived crown width 
and the crown widths measured in the field (R2 = 0.64; with no detected bias; see Figure S4). The 



highlights the relative accuracy of the crown dimensions generated by the ITD algorithm, which is 
important for developing estimates of the DBH associated with each individual tree. 

Step 3) We used a diameter at breast height (DBH, in cm) vs. crown width (in m) allometry to reconstruct 
the DBH of each detected tree. The allometry was calibrated from LiDAR detected crown width and DBH 
field measurements. Our dataset included DBH field data from 158 individual trees (89 from stem mapping 
plots and 69 from large old tree plots) (Jiang 2019). We matched the DBH of each tree with its LiDAR crown 
width as reconstructed by our ITD algorithm. The allometric relationship was calibrated using a generalized 
linear model with a log-link and Gamma distribution to account for the heteroscedasticity in the data. The 
DBH-crown allometry follows: 

DBH = e1.899 crown-width1.188 

The equation is illustrated in Figure S8. As can be seen in Figure S8, there is some residual uncertainty in 
the individual DBH predicted by the DBH-crown allometry. The relative error (i.e., coefficient of variation) 
for the residuals of the DBH-crown width model was 30%. 

Step 4) We grouped detected trees by cohorts of similar DBH using finite mixture models (Fedrigo, Stewart 
et al. 2018). For each hectare, we fitted four models containing a mixture of one to four normal 
distributions. The best model, in terms of leave-one-out cross-validation, determines the number of 
cohorts present in each hectare. At the end of this step, we had an estimate of the number of LiDAR 
detected trees per ha, the number of cohorts per ha, the mean tree size and standard deviation of each 
cohort as well as the proportion of trees and crown cover in each cohort. 

There are three potential sources of uncertainty in the finite mixture modelling step: 1) the spatial 
aggregation on a per ha basis; 2) model selection (i.e., how many cohorts are present in the pixel); and 3) 
parameter uncertainty in the selected model. There is a bias-variance trade-off concerning the spatial 
aggregation: larger pixels contain more delineated trees than smaller pixels which facilitate the finite 
mixture modelling (distributions); however, larger pixels also make it more likely to meet heterogeneous 
forest types and confound the spatial and vertical components of forest structure diversity. For example, 
in our workflow, boundaries of previous logging coupes are often classified as multi-cohorts (which should 
indicate vertical structural diversity) due to the presence of both large and small trees in the same pixel. 
In reality, boundaries of logging coupes represent the juxtaposition of two separate mono-cohort stands 
(spatial structural diversity). Concerning model selection, while the multi-cohort nature of some stands is 
evident and can be easily picked up at this step (e.g., in Figure S9), if cohorts overlap in term of tree size 
it can be difficult to determine the number of cohorts present in the stand. Following a principle of 
parsimony, when two models have similar goodness-of-fits, we selected the simplest model (e.g., if the 
models with one and two cohorts have similar fits, we select the model with one cohort). The selected 
model also reports uncertainties in terms of model parameters: mean DBH of each cohort (represented 
by the colored vertical bands in Figure S9) and proportion of trees contained in each cohort.  

Additionally, since the finite mixture modelling aggregates the tree data by cohort, it can potentially 
smooth out some of the errors that arose in steps 1 to 3. 



Step 5) We estimated the age of each cohort based on cohort size and cohort growth rate calibrated for 
the area. We used the HWPLOT database (Trouvé, Nitschke et al. 2017), which is a network of silvicultural 
experiments spread through Victoria, to estimate DBH growth from 213 control (i.e., unthinned) plots. 
The growth of trees was well correlated with the annual heat moisture index (AHMI = (T + 10) / (P / 1000), 
where T is mean annual temperature in °C and P is annual precipitation in mm / year), which is a measure 
of aridity (Nitschke, Nichols et al. 2017). We used a double logistic regression to represent the asymmetric 
niche response (Huisman, Olff et al. 1993) of cohort growth rate (ΔDBH, in cm / year) to AHMI. The cohort 
growth equation, which is illustrated in the top row of Figure S10, follows:  

ΔDBH = 0.697 + 1.138 + (0.853 - 1.138) / (1 + (AHMI / 11.954)^30) - (1.138 + (0.697 - 1.138) / (1 + (AHMI / 20)^10)) 

The model had a relative error of 15%. This growth rate error can propagate to the estimate of stand age 
of the pixel. While age estimates based on the size of an individual tree are notoriously inaccurate, the 
cohort modelling approach done in step 4 mitigates part of the issue because the mean growth of a cohort 
is much less variable than the growth of individual trees within the same cohort and increases the signal-
to-noise ratio of the data. 

Step 6) We used a rule-based classification key to estimate the presence of old-growth forests in each 
pixel. The rule-based classification key follows the current definition of old-growth forest in Victoria which 
is based on the Woodgate definition (Woodgate 1994; Woodgate, Peel et al. 1996). Under the current 
regulation, a stand is classified as old growth if it established prior to 1900, has less than 10% crown cover 
of regrowth forest (i.e., trees that established after 1900), and the influence of past disturbances (fire and 
logging) is no longer discernible. We estimated regrowth cover based on the mixture modelling and age 
reconstruction outputs. Wildfire and logging disturbances were identified from the FIRE_HISTORY 
(medium to high severity fires), FIRE_SEV09_POLY (fire severity classes 1 and 2 for crown burn and crown 
scorch), and LASTLOG25 GIS layers downloaded from https://data.vic.gov.au. We then used the combined 
spatial layers of the cohort mapping, regrowth cover, and disturbance to classify the entire landscape into 
one of four simplified growth stage classes (see Table 1 in the manuscript and Figure S11).  

The rule-based classification can potentially amplify some of the errors coming from the previous steps. 
For example, in single cohort stands, stands estimated to have recruited in 1899 are considered old 
growth, while stands estimated to have recruited in 1901 are not. For multicohort stands that have at 
least one pre-1900 cohort, having a regrowth crown cover of 11% (rather than say 9%) disqualifies the 
stand from being considered old growth. When stands are close to the recruitment date and regrowth 
percentage thresholds, small errors can make the difference between being classified as old growth or 
not. Filtering for disturbances can also add some noise to the definition of old-growth forests as the 
mapping of fire footprint and fire severity is not always accurate. 

In the manuscript, we took three additional steps to address the uncertainties that can accumulate in our 
workflow: 1) we validated the binary old growth map using 49 independent field plots; 2) We used Monte 
Carlo simulations to propagate uncertainties in steps 2 to 5 (ITD, crown-DBH allometry, finite mixture 
modelling, and growth rate equation for age reconstruction) and quantify the impact of the technical 
aspect of the work on the extent of old-growth forests the landscape; 3) We ran a sensitivity analysis to 
determine the impact of each rule-based classification filter on the extent of old growth in the region. 



 

Figure S6: Location of the Central Highlands of Victoria in Australia (left panels) with a close up of the 
surveyed LiDAR area (right panel). 
 

 

Figure S7: Example of individual tree delineation in a 1939 regrowth plots Central Highlands of Victoria 
overlayed on the canopy height model (CHM, in meters). See Table S2 and Figure S3 for a more 
comprehensive analysis of the algorithm’s accuracy. 



 

Figure S8: Relationship between DBH and LiDAR crown width in the Central Highlands area. Dots are raw 
data points, the solid blue line represents mean predictions, dark shaded area represents the 95% credible 
intervals (i.e., uncertainty in model parameters), and the light shaded area represents the 95% prediction 
intervals (i.e., includes parameter and sampling uncertainties). 

 

 

Figure S9: Finite mixture modelling of cohort size. In this specific 1-hectare plot, we identified three 
distinct cohorts (70 ± 8, 152 ± 11, and 300 ± 21 cm). 



 

 

Figure S10: Top. Cohort DBH growth as a function of annual heat moisture index. Dots are observed data 
points, the solid blue line represents mean predictions, dark shaded area represents the 95% credible 
intervals (i.e., uncertainty in model parameters), and the light shaded area represents the 95% prediction 
intervals (i.e., includes parameter and sampling uncertainties from the log-normal likelihood). The dataset 
used for calibrating this function is described in (Trouvé, Nitschke et al. 2017). Bottom. Frequency 
histograms of girth at breast height for even-aged stands of Eucalyptus regnans of different ages. Redrawn 
from Ashton (1976). In Ashton’s paper, DBH = Age^1.02, which can be approximated as a mean DBH 
growth of 1 to 1.1 cm per year. Ashton’s growth rates are consistent with the growth rates predicted in 
the top row (in our calibration dataset, Eucalyptus regnans covered a range of AHMI between 12 and 18). 

 



 

Figure S11: Map of simplified growth stage for the Central Highlands area (this corresponds to Figure 3 in 
the manuscript). 45.9% of the forest was classified as regrowth, 37.3% as multi-aged, 14.0% as pre-1920, 
and 2.7% as old growth.   

 

 

 

 

 

 

 

 

 

 



S.3 Assessing uncertainty in old growth extent associated with the technical aspect of our workflow 

This section details our approach for evaluating uncertainty in our estimate of old growth extent. We used 
Monte Carlo simulations to propagate uncertainty through the different technical steps of our workflow 
(Figure S12). 

 

Figure S12: Conceptual diagram of uncertainty propagation using Monte Carlo simulations. 

Simple random sampling. Because of computational constraints, we could not run the Monte Carlo 
analysis on the entire map. Instead, we ran the uncertainty analysis on a simple random sample of 2,000 
ha (i.e., pixels) in the landscape. The sample size of 2,000 ha was chosen as a trade-off between Binomial 
sampling uncertainty1, the number of Monte Carlo replicates that we would be able to run, and 
computational feasibility. 

 
1 The standard error formula for Binomial sampling uncertainty is SE = sqrt(p * (1 - p) / n)). With p = 2.7% 
and n = 2,000 samples, SE = 0.36%, which gives a 95% confidence interval range (i.e., ± 2 SE range) of 
around 1.5% on the proportion of old growth extent due to sampling. 



The Monte Carlo analysis focused on propagating uncertainty in the main steps of our workflow: the ITD 
step, the diameter reconstruction step, the cohort identification step, and the age reconstruction step 
(see Figure 1 in the manuscript and Figure S12). The procedure was repeated 100 times. At the end of 
each run, we applied the current rule-based classification of old growth and computed old growth extent. 
This gave us a potential distribution of old growth extent, which represents the uncertainty associated 
with the technical aspects of our workflow and which we summarized by computing the mean and 95% 
quantile range of the distribution. 

ITD error propagation: the refined watershed ITD algorithm that we used is deterministic. This means 
that rerunning the algorithm multiple times gives the same output, which can be problematic for Monte 
Carlo error propagation. However, we can use post-processing and data imputation methods, calibrated 
on the ITD accuracy in the validation sample, to inform error propagation in the ITD step. The ITD outputs 
has three categories of errors: trees can be missing, undersegmented, and oversegmented. The validation 
sample can inform us about how frequent these errors happen, and the relative size of trees affected by 
each of these errors. Each replication of this step creates a virtual tree list for each ha by randomly 
changing the deterministic tree list delineated by the ITD. 

Missing trees are trees that were present in the field but that were not detected by the ITD. The 
correction for missing trees is to add trees to the virtual tree list. Typically, these trees are smaller 
than average (see Figure S13a). According to our pooled validation samples (1939 and multi-
cohort, which is our main target for old growth), 88 trees were detected by the ITD and 8 were 
missing. We simulated the number of missing trees per ha by randomly drawing from a Poisson 
distribution with mean set at 8/88 times the number of ITD-detected trees in each hectare. We 
then added these missing trees to our virtual tree list for each ha. For each ha, we predicted a 
count of missing trees by sampling from a Poisson distribution with mean 8/88 times the number 
of ITD detected trees in the ha to add to our virtual tree list per ha. We used resampling methods 
to impute the crown width of these missing trees. The crown width was randomly selected from 
the trees already present in the plot, with the probability for each tree to be selected taken from 
a softmax transformation of relative crown width (RCW) with a coefficient of -3: exp(-3 * RCW) / 
sum(exp(-3 * RCW)), as calibrated from the validation sample (see Figure S13a). 

Oversegmented trees. Oversegmented trees are large trees that have been wrongly split into 
smaller trees by the ITD. The correction for oversegmented trees is to merge the ITD crown area 
for the oversegmented tree with the crown area of a neighbor ITD detected tree. Next, we 
estimate the increased crown width of the neighbor tree as if it were circular. The potential 
number of oversegmented trees per ha was sampled from a Poisson distribution with mean 5 / 
88 times the number of ITD detected tree in each ha. We then sampled which ITD detected trees 
were oversegmented (typically these were smaller trees; which was modelled using a softmax of 
RCW with a coefficient of -10; see Figure S13b). We then randomly attributed the extra crown 
area to one of the other ITD detected tree (with a probability of being sampled a softmax function 
of RCW with a coefficient of 1; see Figure S13c). 



 Undersegmented trees. Undersegmented trees (also called merged trees) happen when the ITD 
algorithm merges several trees into one larger tree. The correction for undersegmented trees is 
to replace it with two smaller trees while preserving the total crown area. The potential number 
of undersegmented trees per ha was sampled from a Poisson distribution with mean 3 / 88 times 
the number of ITD detected tree in each ha. We then randomly selected which trees might have 
been undersegmented. In our validation sample, we find no association between RCW and the 
probability of being undersegmented (Figure S13d). Therefore, we used a uniform distribution to 
select which tree (if any) was undersegmented. Undersegmented trees are split into two 
individuals. We assume that each individual has half the crown area of the initial tree. We then 
calculate the crown width for these new trees by assuming a circular crown shape. 

Figure S13: Different ITD 
classification errors as a 
function of relative crown 
width. a. Small trees (as 
measured in the field) 
were more likely to have 
been missed by the ITD 
algorithm (slope of -3). b. 
Small trees (as detected by 
the ITD) were also more 
likely to have been 
oversegmented (slope of -
10). c. The neighbor of 
oversegmented trees 
were slightly larger than 
average (slope of 1). d. The 
probability of being 
undersegmented was 

independent of tree size (slope not significantly different from zero). Ticks show the validation data. The 
solid blue line is a logistic regression fit to the data. The shaded area is the 95% confidence intervals 
associated with the logistic regression fit. These modelled probabilities can be used to inform the relative 
size of trees affected by each error type.  

At the end of the ITD error propagation step, each 1-ha pixels has been duplicated 100 times with 100 
slightly different number of trees per ha and crown width distribution. While we imputed missed, 
oversegmented, and undersegmented trees, we did not propagate uncertainty in the ITD detected crown 
width, even though they varied slightly from the field measurements (see Figure S4). This is because our 
crown-DBH allometry was based on LiDAR-detected crown width, not field measurements. 

Crown-DBH allometry error propagation. The crown DBH allometry is used to reconstruct the DBH of 
trees from the virtual list of reconstructed ITD crown width. In the crown-DBH allometry, there are two 



types of uncertainty: parameter uncertainty (shown as dark shading in Figure S8) and residual uncertainty 
(represented by light shading in Figure S8, equal to 30% relative uncertainty). To address parameter 
uncertainty, each Monte Carlo run randomly selects a pair of potential parameter values from the 
variance-covariance of parameter estimates in the crown-DBH allometry model. To address residual 
uncertainty, we added IID tree-level residuals (on the multiplicative scale and sampled from a lognormal 
distribution with sigma = 0.26, i.e, 30% relative uncertainty) to reflect the fact that the individual DBH 
varies from the mean prediction. 

Finite mixture modelling error propagation. We fitted finite mixture models to each potential DBH 
distribution per pixel, determining the number of cohorts per ha and a mean DBH per cohort, along with 
error estimates of mean DBH per cohort. To propagate uncertainty, we sampled the DBH of each cohort 
from a normal distribution with a mean centered on the estimated mean DBH and a standard deviation 
based on the estimated standard error. At the end of this stage, each pixel has 100 unique combinations 
of cohort structures (i.e., number of cohorts per ha, mean tree size of each cohort). 

Growth rate error propagation. We use a growth rate equation to reconstruct the age of each cohort. 
Similar to the crown allometry equation, the growth rate equation has two types of uncertainty: 
parameter uncertainty (shown as dark shading in Figure S10, top row) and residual uncertainty 
(represented by light shading in Figure S10). To address parameter uncertainty, each Monte Carlo run 
randomly selects a joint distribution of potential parameter values from the variance-covariance of 
parameter estimates in the growth rate equation. To address residual uncertainty, we added IID tree-level 
residuals (on the multiplicative scale and sampled from a lognormal distribution with sigma = 0.14, i.e, 
15% relative uncertainty) to reflect the fact that growth rates per pixel can vary from the mean prediction. 

Compute summary statistics of old growth extent. The Monte Carlo procedure detailed above was 
repeated 100 times. At the end of each run, we computed the proportion of old growth extent in our 
sample according to the current old growth definition. This gave us a distribution of old growth extent, 
which we then summarized by computing the mean and 95% quantile range of the distribution. In this 
uncertainty propagation and under the current old growth definition, an average of 3.13% of the forest 
was considered old growth. The standard deviation of the estimate was 0.78% with a 95% quantile range 
of 1.7 to 4.8%. However, this only represents our modelling process uncertainty. We also need to account 
for the sampling error in our analysis (i.e., the fact that we didn’t run the error propagation for all the 
pixels in the landscape to reduce computational complexity). Based on 2,000 sampled pixels and a mean 
of 3.13%, the Binomial sampling standard error is 0.39%. We used the root sum square method to add 
the sampling error to the modelling error, resulting in a total standard error of 0.88%. This gives us an 
uncertainty range (mean ±2 SE) of 1.4% to 4.9%, which is what we report in the manuscript. 

  



S.4 Partitioning of number of cohorts per hectares by Ecological Vegetation classes (EVC) 

A breakdown of number of cohorts per ha per EVC in the Central Highlands of Victoria is shown in Table 
S4. 

Table S4: Partitioning of number of cohorts per hectares for the eight most common Ecological Vegetation 
Classes (EVC1) in the Central Highlands region of Victoria, Australia evaluated in this study.  

  Number of cohorts per ha   
EVC (ha) 1 2 3 4 Total (ha) Total (%) 
EVC 29: damp forest 56,845 34,617 6,899 272 98,633 29.2 
EVC 30: wet forest 68,590 24,288 4,759 242 97,879 29.0 
EVC 39: montane Wet Forest 24,412 11,956 3,313 126 39,807 11.8 
EVC 23: herb-rich foothill forest 13,873 8,766 1,082 38 23,759 7.0 
EVC 45: Shrubby Foothill Forest  7,686 8,699 1,911 77 18,373 5.4 
EVC 18: riparian forest 11,161 4,375 688 23 16,247 4.8 
EVC 38: montane damp forest 10,923 4,233 778 23 15,957 4.7 
EVC 31: cool temperate rainforest 8,166 2,144 366 5 10,681 3.2 
Others EVCs 8,808 6,263 1,115 26 16,212 4.8 
Total (ha) 210,464 105,341 20,911 832 337,548  
Total (%) 62.4 31.2 6.2 0.2  100.0 

1 EVC 29 is Damp Forest (open forest dominated by a mixture of E. obliqua, E. cypellocarpa, and E. radiata), EVC 30 is Wet Forest 
(tall open forest dominated by E. regnans), EVC 39 is Montane Wet Forest (tall open forest above 1000 m asl. dominated by E. 
delegatensis, E. regnans, or E. nitens), EVC 23 is Herb-Rich Foothill Forest (medium open forest dominated by a mixture of E. 
radiata, E. obliqua, and E. cypellocarpa with a high cover of grass on the ground), EVC 45 is Shrubby Foothill Forest (medium 
eucalypt forest dominated by a mixture of E. obliqua, E. sieberi, and E. radiata), EVC 18 is Riparian Forest (tall forest along river 
banks dominated by E. viminalis and E. obliqua), EVC 38 is Montane Damp Forest (open forest above 800 m asl. dominated by a 
mixture of E. obliqua, E. cypellocarpa, and E. radiata) and EVC 31 is Cool Temperate Rainforest (closed forest dominated by 
Nothofagus cunninghamii, Atherosperma moschatum, and Acacia spp., with occasional emergent eucalypts (cool temperate 
mixed forest)).  
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