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Abstract: The increasing frequency and magnitude of landslides underscore the growing importance
of landslide prediction in light of factors like climate change. Traditional methods, including physics-
based methods and empirical methods, are beset by high costs and a reliance on expert knowledge.
With the advancement of remote sensing and machine learning, data-driven methods have emerged as
the mainstream in landslide prediction. Despite their strong generalization capabilities and efficiency,
data-driven methods suffer from the loss of semantic information during training due to their reliance
on a ‘sequence’ modeling method for landslide scenarios, which impacts their predictive accuracy.
An innovative method for landslide prediction is proposed in this paper. In this paper, we propose
an innovative landslide prediction method. This method designs the NADE ontology as the schema
layer and constructs the data layer of the knowledge graph, utilizing tile lists, landslide inventory,
and environmental data to enhance the representation of complex landslide scenarios. Furthermore,
the transformation of the landslide prediction task into a link prediction task is carried out, and a
knowledge graph embedding model is trained to achieve landslide predictions. Experimental results
demonstrate that the method improves the F1 score by 5% in scenarios with complete datasets and
17% in scenarios with sparse datasets compared to data-driven methods. Additionally, the application
of the knowledge graph embedding model is utilized to generate susceptibility maps, and an analysis
of the effectiveness of entity embeddings is conducted, highlighting the potential of knowledge graph
embeddings in disaster management.

Keywords: landslide prediction; knowledge graph; ontology; remote sensing application

1. Introduction

In recent years, the frequency and magnitude of landslide disasters have been on
the rise, attributable to factors including climate change, human activities, and geological
processes. These developments pose a substantial threat to human lives and property
safety [1–3]. Consequently, the timely and effective prediction of landslide occurrence times,
locations, and scales is of paramount significance in mitigating the losses stemming from
landslide disasters. Traditional landslide prediction methods encompass physics-based
methods and empirical methods. However, these methods have various issues, including
high demands for data accuracy and model builder expertise [4–6], expensive modeling
and computational costs [7,8], and a significant reliance on expert experience [9–13]. These
issues collectively result in lower efficiency in landslide prediction.

With the development of remote sensing and artificial intelligence technologies, data-
driven methods have gradually become the mainstream for predicting landslides. Data-
driven methods typically select landslide conditioning factors (LCFs) that affect landslide
occurrence as input variables. They use known landslide occurrences or non-occurrences
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as labels to train models capable of landslide prediction. These data-driven methods can
adaptively adjust model parameters using substantial historical data, resulting in improved
model generalization and robustness. In contrast to empirical methods, data-driven meth-
ods can efficiently handle data with multiple attributes, such as geology, landform, and
climate. These datasets are often high-dimensional, but data-driven methods can process
them more swiftly, thereby enhancing the landslide prediction efficiency. Commonly used
data-driven methods today include support vector machines (SVMs), artificial neural net-
works (ANNs), and random forest (RF). These methods have been successfully applied in
various landslide cases with promising results [14–16]. Nevertheless, data-driven landslide
prediction methods also have their limitations.

An important challenge lies in the oversimplification of landslide scenarios by data-
driven methods. The occurrence of landslides is a multifaceted process shaped by the
interplay of various geographical elements. For instance, geological formations, soil com-
positions, and vegetation cover within distinct geographical settings may collectively affect
landslide occurrence. These effects can manifest in explicit or implicit ways. Explicit rela-
tions are those that can be distinctly articulated, such as the greater likelihood of landslides
in areas with steep slopes or the influence of topography on the flow and distribution
of precipitation. Implicit relations, conversely, pertain to connections that defy precise
definition. Take, for example, the impact of certain human activities on landslide risk.
While both human activities and landslides can be documented, elucidating the precise
mechanisms through which human activities influence landslides remains challenging.

We describe these interactions in the geographic environment, whether explicit or
implicit, as ‘semantic information in the geographic environment’. Explicit relations are
challenging for data-driven methods to express because, when predicting landslides, data-
driven methods typically use grid cells as prediction units [4,17]. They rely on generating a
landslide dataset with a ‘sequence’ structure for each grid cell to train the model and predict
landslides, treating each piece of data as an independent sample. Modeling landslide
scenarios based on this ‘sequence’ structure makes it difficult to capture the relation between
different grid cells. On the other hand, data-driven methods have difficulty in capturing
implicit relations in semantic information. For the same reason, this is because the sequence
structure in the data-driven method cannot learn the relations between sequences during
the training process. The data-driven method loses semantic information during modeling
and training, which reduces the accuracy of landslide prediction. In short, this simplified
modeling method cannot adequately represent the complexity of landslide scenarios, which
in turn has an impact on the accurate prediction of landslides.

To address this issue, we propose the modeling of landslide scenarios based on a
knowledge graph [18–21]. The “graph” structure within the knowledge graph can more
directly represent the explicit relations between each LCF. It is also more conducive to
uncovering the implicit relations between grid cells and LCFs, allowing us to discover
spatial patterns in the landslide process. Figure 1 illustrates the contrast between the
data-driven method and the knowledge graph method for modeling landslide scenarios. It
is evident from the figure that modeling landslide scenarios using the “graph” structure
outperforms the “sequence” structure, particularly in capturing semantic information.

Furthermore, we advocate performing landslide prediction based on knowledge graph
embedding (KGE) [1,2,19]. KGE assigns semantic interpretations to the vectors of entities
and relations within the knowledge graph by learning semantic associations in the vector
space. This means that similar entities and relations are also similar in the vector space. In
some applications, knowledge graph embedding (KGE) has demonstrated the ability to
capture complex semantic relationships [22,23] and improve performance under conditions
of data scarcity [24,25]. For landslide prediction, compared to data-driven methods, KGE
can automatically learn the influence of local context factors (LCFs) in the vector space
based on entities and relations. KGE effectively maps multi-source data into a vector space,
enhancing its capability to capture the implicit relations between LCFs. Additionally, in
cases of sparse datasets, KGE can infer relations and patterns within the limited data, thus
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filling in gaps and improving the accuracy of landslide prediction methods. Consequently,
it contributes to the enhancement of the precision and generalization ability of landslide
prediction methods.

Figure 1. Contrasting the modeling of landslide scenarios with the data-driven method and the
knowledge graph method. The data-driven method represents LCFs as sequences, simplifying the
relation between grid cells and LCFs. In contrast, the knowledge graph method represents LCFs and
grid cells using a graph structure, which is better suited for exploring the relation between grid cells
and LCFs.

In this study, we present a comprehensive approach to construct a knowledge graph
tailored for landslide prediction, effectively transforming this task into a graph-based link
prediction problem using KGE techniques. The paper is structured as follows: Section 2
introduces the study area and data sources. Section 3 details the entire process of land-
slide prediction using knowledge graph techniques, encompassing data preprocessing,
knowledge graph creation, and the application of KGE for prediction. Section 4 offers a
comparative analysis with a generic landslide prediction model and showcases our pre-
diction results. Section 5 delves into the strengths and limitations of employing KGE in
landslide prediction. Finally, Section 6 concludes the paper, summarizing our findings
and contributions.

2. Study Area and Data

Xiji County is situated in the southern part of Guyuan City, within the Ningxia
Province, China. It is positioned between longitude 105°20′–106°04′E and latitude
35°35′–36°14′N and is geographically proximate to the western foothills of the Liupan
Mountains. Xiji County is situated in the Loess Plateau, characterized by an arid hilly
landscape. The terrain encompasses Hulu River plains, loess hills and gullies, and soil and
rocky mountains. The elevation gradually increases from south to north, spanning from
1688 to 2633 meters. The susceptibility to loess landslides in Xiji County is attributed to its
rugged terrain and narrow ridges. The combination of these geographical factors creates
conditions conducive to landslide occurrences, making the region a suitable area for the
validation of landslide prediction methods. To support our study, we gathered 741 land-
slide records from the Ningxia Remote Sensing Survey and Mapping Institute, forming
the basis for constructing the knowledge graph. The study area’s details are depicted in
Figure 2.
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Figure 2. Overview of the study area located in Xiji County, Ningxia Province, China; 741 landslide
records were selected to produce landslide inventory.

The environmental data obtained from the study area consist of seven categories:
geology, landform, soil, climate, vegetation, transportation systems, and population. These
data sources are multi-sourced. We supplemented the non-public data, provided by the
Ningxia Remote Sensing Survey and Mapping Institute, with terrain, precipitation, and
road data from various public datasets. Each data category comprises multiple LCFs, and
all LCFs from the environmental data are recorded in the schema layer of the knowledge
graph. Table 1 displays the LCFs within each environmental data category, and Table 2
provides detailed information about each category of environmental data. It is worth noting
that the time span of these data coincides with the time range of the landslide records.

Table 1. LCF statistics for different environmental data categories.

Category LCF

Geology

Sedimentary stratum thickness; sedimentary stratum unit sym-
bol; sedimentary mineral species; sedimentary biota assemblage;
sedimentary rock structure; metamorphic rock texture; meta-
morphic rock name; metamorphic rock color; protolith; geo-
logical contact; fault property; fault structural type; occurrence
type; occurrence dip angle; occurrence strike; fossil-bearing
lithostratigraphic horizon; fossil category; total drilling depth;
drilling type

Landform Aspect; elevation; slope; surface roughness; curvature; hydrol-
ogy; body of water; land use and land cover (LULC)

Soil Soil texture; soil type
Climate Precipitation

Vegetation Normalized difference vegetation index (NDVI)
Transportation Road type

Population Population distribution
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Table 2. Sources and details of the environment data.

Category Name Format Source

Geology Basic geological data Vector polygon and vector point Ningxia Remote Sensing Survey and
Mapping Institute

Landform

DEM terrain data 30 m raster data Shuttle radar topography mission
DEM [26,27]

Hydrological data Vector polygon and vector line OSM hydrological data [28], Ningxia Remote
Sensing Survey and Mapping Institute

LULC data Vector polygon Ningxia Remote Sensing Survey and
Mapping Institute

Soil Soil data 1 km raster data Resource and environment science and data
center [29]

Climate Normalized precipitation 30 m raster data Ningxia Remote Sensing Survey and
Mapping Institute

Vegetation NDVI data 1 m raster data data Ningxia Remote Sensing Survey and
Mapping Institute

Transportation Road data Vector line OSM highway data [30]

Population Population distribution data CSV Ningxia Remote Sensing Survey and
Mapping Institute

3. Methodology

The knowledge graph-based landslide prediction method comprises three stages,
as shown in Figure 3. Initially, data from various sources are gathered and subjected to
preprocessing to create a data collection consisting of a tile list, landslide inventory, and
environmental data, all in a standardized format. The tile list is a record of coordinates
covering the study area, where each tile functions as a grid cell for landslide prediction. The
landslide inventory includes details of past landslide events in the study area, encompass-
ing factors like location, magnitude, landslide type, and the resulting impact. This inventory
forms the foundation for landslide susceptibility and risk assessment [4,31,32]. Next, the
data in this uniform format are transformed into a collection of triples, an example of which
is illustrated in Figure 4. A triple is the fundamental unit of the knowledge graph, denoted
by (h, r, t), where h represents the head entity, t represents the tail entity, and r signifies
the relation between them. These triples are then used to construct the knowledge graph
according to the designed schema. Finally, the knowledge graph undergoes embedded
representation learning, while the landslide prediction task is redefined as a graph-based
prediction task, enabling the assessment of susceptibility within the study area through
link prediction.

3.1. Preprocessing

The purpose of preprocessing is to standardize the format of heterogeneous data from
various sources and to create a collection of tile coordinates for the study area. Using
tiles as the mapping unit for landslide prediction offers the advantage of adaptability to
various geographic scales and efficient processing. During the preprocessing stage, a tile
collection is created based on the specified tile level. Specifically, the study area’s location is
represented in tile coordinates following the Web Mercator rule [33]. The conversion rules
between real latitude and longitude coordinates and tile coordinates are as follows:

x =
lon + 180

360
× 2z (1)

y = (1 −
ln(tan(lat × π

180 ) +
1

cos(lat× π
180 )

)

π
)× 2z−1 (2)
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where lon and lat denote the input longitude and latitude coordinates, respectively. The
transformed horizontal and vertical coordinates of the tile are denoted by x and y, while
z denotes the zoom level of the tile. Each tile corresponds to a specific set of longitude
and latitude coordinates, and the quantity of coordinates varies depending on the zoom
level. Notably, higher zoom levels lead to tiles with fewer coordinates, enhancing spatial
accuracy at the expense of increased computational complexity. In this paper, we select
zoom level 18, as illustrated in Figure 5, to strike a balance between spatial accuracy and
computational complexity. With level 18, the study area comprises a total of 205,330 tiles.

Figure 3. Workflow for landslide task based on knowledge graph representation learning. The “?” in
the figure represents the attributes of the edges that need to be predicted in link prediction.
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Figure 4. An example illustrating the transformation of tile list, environmental data, and landslide
inventory into triples. In this example, a factor triple describing the location of the hidden fault is
generated based on the latitude and longitude set contained in the environmental attribute “Hidden
Fault” and the coordinates of the tile in which this set is located. A record triple is generated based
on the latitude and longitude coordinates of the landslide location.

Then, the format of the heterogeneous data from multiple sources is harmonized, and
an indexed list of data attribute values and tiles is generated. The data structure primarily
comprises vector points (e.g., landslide records), vector lines (e.g., hydrological data), vector
surfaces (e.g., geological data), raster data at various scales (e.g., terrain data), and CSV
files (e.g., population distribution data). Initially, the geographic coordinate systems of
these data are standardized. Subsequently, we extract the corresponding attribute values
from each tile. For discrete attribute values (e.g., fault types with a limited number of
values like normal fault, reverse fault, strike-slip fault, and hidden fault), it is relatively
straightforward to create an index list for each tile based on these attribute values. However,
for continuous attribute values (e.g., elevation, which is continuous), we first discretize
the attribute values by assessing the data and selecting the appropriate scale, and then
generate an indexed list for each tile using these discretized values of the attribute.

Figure 5. Differences in the tiles at various zoom levels: (a) the changes in tile distribution across
zoom levels, with higher levels indicating increased spatial precision; (b) tile sizes at different zoom
levels. Higher tile levels enhance spatial accuracy but also raise computational complexity.
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3.2. Knowledge Graph Construction
3.2.1. Schema Layer

The schema layer defines the structure and specifications of the concepts within the
knowledge graph. It serves as a metadata model for describing the relations between
entities in the knowledge graph, including their attributes. The schema layer establishes a
unified semantic framework for the data in the knowledge graph. This framework enhances
the organization, query capabilities, interpretability, and aids in reasoning computations.
In this paper, the schema layer for describing disaster scenarios is composed of a basic
vocabulary and an ontology that defines concepts related to disasters, as shown in Figure 6.

Figure 6. Components of the schema layer, including basic vocabulary and NADE ontology. Basic
vocabulary includes vocabularies of RDF, RDFS, GeoSPARQL, and NADE consists of NADE-Core,
NADE-Environment, and NADE-Task.

We utilize the resource description framework (RDF) [34] and resource description
framework schema (RDFS) [35] vocabularies to establish the foundational terminology
within the knowledge graph. RDF is a standard designed for representing relations among
resources in the semantic web. RDFS, an extension of RDF, is responsible for defining
more intricate hierarchies between resources. RDF/RDFS encapsulates knowledge within
triples, each composed of subject, predicate, and object. In RDF/RDFS triples, the subject
corresponds to the head entity within the knowledge graph triple, the object corresponds
to the tail entity, and the predicate signifies the relation, as illustrated in Figure 7.

Figure 7. Correspondence between triple in RDF/RDFS and triple in knowledge graph.

The RDF/RDFS vocabularies employed in this paper primarily encompass: rdf:type,
rdf:subject, rdf:predicate, rdf:object, rdfs:Class, and rdfs:subClassOf. To enhance the clarity
of our proposed approach, we omitted the resource prefixes and retained only the relation
prefixes in this paper. The utilization of RDF/RDFS vocabularies offers a fundamental
and standardized method for data description. Additionally, the schema layer constructed
using RDF/RDFS enables more effective comprehension and processing of heterogeneous
disaster data from various sources.

Furthermore, we utilize the GeoSPARQL glossary [36,37] to define the fundamental
spatial information vocabulary for disaster scenarios. The GeoSPARQL glossary encom-
passes a comprehensive set of terms designed for representing geospatial information.
These terms facilitate the description of various spatial aspects, including geographical
coordinates, types of geographic elements (e.g., points, lines, and polygon), and geospatial
relations (e.g., intersects, overlaps, disjoint, etc.) within disaster records, disaster-related
tasks, and LCFs in the study area. GeoSPARQL offers a standardized approach for integrat-
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ing and sharing geospatial data. Utilizing the GeoSPARQL terminology ensures a consistent
interpretation and utilization of disaster data from diverse heterogeneous sources.

Ontology [38] is a formal knowledge representation for describing concepts, entities,
attributes, and relations within a domain. The goal of ontology is to capture consensus and
semantics within a domain, enabling different systems to share and comprehend domain-
specific knowledge. Leveraging the expressive advantages of ontology, we designed and
implemented the natural disaster emergency ontology (NADE ontology). NADE is capable
of representing the semantics among landslide data while also supporting extensions to
other disaster domains. Given the characteristics of disaster-related data, we subdivided
the NADE ontology into three parts: NADE-Core, which delineates the fundamental
concepts of disasters; NADE-Environment, which describes the disaster environment; and
NADE-Task, which outlines the disaster tasks. For each term in the NADE ontology, we
referenced relevant disaster emergency standards and existing disaster ontology definitions
when formulating their definitions. Additionally, we considered the practical aspects of
disaster emergency task handling.

NADE-Core establishes the essential vocabulary for describing disasters and forms
the foundation of the NADE ontology. For instance, at any stage of a disaster, fundamental
attributes such as the disaster type, its current phase, the affected objects, and the resulting
impacts must be described. NADE-Environment defines the concept of the environment
within a disaster scenario. Environmental changes are often the root causes of disasters,
and social environmental factors directly influence the extent of damage caused. Providing
a unified description of the environment in a disaster scenario helps identify patterns in
disaster occurrences within a specific region. NADE-Task specifies the indicators of a
disaster task, encompassing elements such as risk, hazard, impact, severity, likelihood,
susceptibility, exposure, vulnerability, and their relations. Figure 8 illustrates the core
vocabulary and primary relations defined by the NADE ontology.

3.2.2. Data Layer

The data layer converts the data generated in the preprocessing stage into triples.
These triples include tile triples, record triples, and factor triples. Tile triples describe the
positional relation between tiles, for example: ((831,878, 410,956), nade:hasAdjacentTile,
(831,878, 410,957)). Record triples are generated by combining tile entities and land-
slide record entities. Each landslide record entity represents information about landslide
events in the study area, for example: (disaster_record_6b65e22d, nade:hasDisasterType,
landslide). With the integration of the GeoSPARQL ontology from the schema layer, record
triples can provide detailed spatial information about landslide events, for example: (disas-
ter_record_6b65e22d_geom, rdf:type, point). Factor triples are created by combining tile
entities and environment entities, offering descriptions of the environmental properties in
each tile in the study area, for example, for discrete factor values, generate triple((831,878,
410,956), nade:hasFactorPropertyType, hidden_fault). For continuous factor values, scale
them into discrete categories, and then generate triples, for example, ((831,878, 410,956),
nade:hasFactorPropertyType, altitude_range_3). When combined with the NADE ontology
in the schema layer, the tile triples, record triples, and factor triples illustrate the rela-
tions among multiple sources of heterogeneous data within the disaster scenario, which is
essential for effective landslide hazard modeling in the study area.

In the prediction phase, the entities and relations to be forecasted within the knowledge
graph are also represented as triples in the data layer. For instance, consider the triple
(disaster_task_e3a9851a, nade:hasLevel2, susceptibility), where ‘disaster_task_e3a9851a’
denotes the landslide tasks to be predicted, ‘susceptibility’ denotes the susceptibility level,
and ‘nade:hasLevel2’ denotes that the task with the ID ‘e3a9851a’ is associated with the
susceptibility level 2. Each landslide record and task possesses a unique ID linked to
an individual tile. Since tiles serve as the mapping units for landslide prediction, the
core of knowledge graph-based landslide susceptibility prediction lies in forecasting the
susceptibility level of each tile’s associated landslide task.
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Figure 8. The schema layer definition based on NADE, including concepts and relations, consists of three parts: NADE-Core, NADE-Environment, and NADE-Task.
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After creating the triples in the data layer, these triples are mapped to the schema
layer to generate the knowledge graph. Figure 9 illustrates the connection between the
data layer and schema layer. This connection primarily involves mapping tile triples to the
NADE-Environment (i.e., factor triples), mapping record triples to NADE-Core, mapping
record triples to GeoSPARQL, and particularly, establishing links between task triples and
NADE-Task during the prediction phase.

3.3. Knowledge Graph Embedding

KGE is a representation learning technique that aims to map information about entities,
relations, and attributes in a knowledge graph into a continuous vector space to better cap-
ture implicit relations between entities. KGE can measure the semantic similarity between
entities and the semantic associations of relations in a vector space. For instance, if two
entities share similar relations in the knowledge graph, their vector representations will be
closer in the embedded vector space. KGE models typically learn the vector representations
of entities and relations by minimizing or maximizing a loss function, preserving semantic
relations between entities in the knowledge graph within the embedded vector space.

Figure 9. The connection between the data layer and schema layer, showcasing examples of a
landslide record and a landslide prediction task under a tile. "̂" is the delimiter in GeoSPAEQL used
to define coordinate properties.

3.3.1. Task Formalization

In this paper, we transform the landslide prediction task into a knowledge graph-based
link prediction task. Link prediction involves predicting potential connections within a
knowledge graph by analyzing the information associated with existing nodes and edges.
It aims to determine the probable relation, denoted by r, between a given pair of entities,
represented as (h, t):

Score(h, r, t) = f (eh, er, et) (3)

where the vectors of entities h and t are denoted by eh and et, respectively, and the vector
of relations r is denoted by er. The Score(h, r, t) denotes the score of the relation r between
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the entity pairs (h, t); if the value of Score(h, r, t) is larger, it means that it is more likely
that the relation r exists between the entity pairs. The function f denotes a function that
maps entity vectors and relation vectors to scores, the exact form of which can be chosen
according to different KGE models, e.g., using the L2 norm [39].

The aim of link prediction is to forecast new relations that may exist within the
knowledge graph but have not been revealed yet, based on known entities and relations.
In the context of landslide prediction, this entails forecasting the level of the landslide
task indicator. For instance, when predicting landslide susceptibility for a grid cell with
task number ‘e3a9851a’, the objective of link prediction is to anticipate which level of
susceptibility is more likely to be associated with a pair of entities: a head entity of
‘disaster_task_e3a9851a’ and a tail entity of ‘susceptibility’.

3.3.2. Model Training

The training of the KGE model first involves ternaries that are present in the knowledge
graph, i.e., positive samples. The goal of the model is to embed these positive samples into
the vector space in order to capture the semantic information between entities and relations
through vector operations. On the other hand, negative samples need to be introduced
to train the KGE model and enhance its ability to recognize triples that do not exist in
the knowledge graph. For each positive sample (h, r, t), a head entity h or a tail entity t
is randomly selected and replaced by an irrelevant head entity h′ or a tail entity t′, thus
generating a negative sample (h′, r, t) or (h, r, t′). The positive and negative samples are
used together to train the KGE model, with the training objective being to minimize the
embedding distance of the positive samples while maximizing the embedding distance
of the negative samples. This process enhances the model’s ability to understand and
represent the knowledge graph.

In this paper, five typical KGE models are used for training and their score functions
are shown in Table 3. The loss functions defined in the training are as follows:

Loss = ∑
(h,r,t)∈D+

∑
(h′ ,r′ ,t′)∈D−

max(0, γ − Score(h, r, t) + Score(h′, r′, t′)) (4)

where Loss denotes the loss function, which is the objective function we aim to minimize
during training. The triple (h, r, t) denotes a positive triple, and (h′, r′, t′) denotes a negative
triple. D+ and D− denote the sets of positive and negative triples, respectively. γ denotes
the margin used to ensure a minimum score difference between positive and negative
triples.

Table 3. Typical KGE models and their score functions

Model Score(h, r, t)

TransE [39] −∥h + r − t∥
RESCAL [40] h⊤Mrt

DistMult [41] h⊤diag(r)t

ComplEx [42] h⊤Re(diag(r)t)

RotateE [43] ∥h ◦ r − t∥

3.3.3. Prediction

In this paper, landslide susceptibility assessment is employed as an illustrative example
for landslide prediction. Initially, the KGE-based link prediction model generates scores for
various landslide susceptibility levels on each grid cell, representing the likelihood of each
grid cell belonging to different susceptibility classes. Subsequently, the highest scoring
susceptibility class is selected for each grid cell, thereby determining the susceptibility
result for that particular location. Finally, the susceptibility results for each grid cell are
aggregated to produce a susceptibility map for the entire study area.
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4. Results
4.1. Experimental Settings
4.1.1. Metrics

We use Precision, Recall, and F1 to evaluate the effectiveness of the landslide prediction
model with the following equations:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2PrecisionRecall

Precision + Recall
(7)

where TP denotes true positives, representing instances correctly predicted as positive; FP
denotes false positives, representing instances incorrectly predicted as positive when they
are actually negative; TN denotes true negatives, representing instances correctly predicted
as negative; FN denotes false negatives, representing instances incorrectly predicted as
negative when they are actually positive.

Additionally, we utilize four widely adopted evaluation metrics in knowledge graph
embedding (KGE) to rigorously evaluate the effectiveness of our link prediction model.
Mean reciprocal rank (MRR) serves as a crucial metric, assessing the quality of the item
ranking by taking into account the reciprocal of the rank at which the first relevant item
is located. MRR provides insights into how efficiently the model prioritizes relevant
items within the overall ranking. Hits@1, Hits@3, and Hits@10 offer further granularity
in evaluating the model’s performance. Hits@1 measures the model’s ability to correctly
identify relevant items at the very top of the ranked outcomes. Hits@3 and Hits@10 extend
this assessment to the top-3 and top-10 ranked outcomes, respectively. These metrics
provide a nuanced understanding of the model’s capacity to accurately predict and include
relevant items within different segments of the ranking. Collectively, these evaluation
metrics contribute to a thorough and multifaceted evaluation of our model’s proficiency in
addressing landslide prediction tasks.

4.1.2. Implementation Detail

We used Dglke [44], an efficient tool for knowledge graph embedding, to conduct our
experiments. The learning rate for ComplEx is set to 0.02, while the rest of the models
are set to 0.01. The batch size is fixed at 2048, and the embedding dimensions are set to
400. For each positive sample in training, 256 negative samples are generated through
adversarial sampling. In a single process, the maximum number of training steps is set at
3000, with the total number of training steps limited to 12,000. The intervals γ for TransE,
RESCAL, DistMult, ComplEx, and ROTATE are set to 30, 12, 25, 1, and 3, respectively, with
a regularization factor of 1.00 × 10−8. We utilized four NVIDIA Titan Xp graphics cards to
accelerate our training process in the experiments.

4.2. Prediction Result

To demonstrate the advantages of knowledge graph modeling over general data-
driven methods, we selected commonly used machine learning models for landslide
prediction to make comparisons, including SVM [45], RF [46], KNN [47], and GCF [48].
First, we generated positive samples using landslide records and environmental data, and
negative samples were created with a positive-to-negative sample ratio (β) of 1.5. Next, we
divided the dataset based on these generated samples and utilized the training set to train
the machine learning model. Finally, we tested both the machine learning model and the
trained knowledge graph embedding model on the test set, and the results of the landslide
prediction are presented in Table 4. Furthermore, in our experiments, we paid attention
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to the comparison of the efficiency between data-driven methods and knowledge graph
embedding (KGE) methods. Generally, during the model training process, KGE methods
tend to have a larger data volume and higher training costs compared to data-driven
methods, as KGE methods involve more explicit relationships and need to learn deeper
semantic information. We consider this to be a trade-off for achieving precision advantages.
However, it is noteworthy that all tested models under the conditions of this experiment
can complete training within 3 h, which we deem an acceptable range.

In the process of link prediction for knowledge graphs, we employ common evaluation
metrics used in knowledge graph embedding (KGE) to assess the learning capabilities of
KGE models. For each positive triple, 256 negative triples are randomly sampled. For exam-
ple, replace the positive triple (disaster_record_6b65e22d, nade:hasDisasterType, landslide)
with the negative triple (disaster_record_6b65e22d, nade:hasDisasterType, hidden_fault).
The dataset is divided according to the generated triples for training. We calculate the
MRR, Hits@1, Hits@3, and Hits@10 on the test set, and the results are presented in Table 5.
Table 5 illustrates that the ComplEx model performs exceptionally well, achieving the
highest MRR score, indicating its significant advantage in accurately predicting triple
groups. Furthermore, it demonstrates a high likelihood of identifying the correct triple in
the first, first three, and first ten positions. In contrast, the RotateE model performs poorly,
particularly in terms of MRR and Hits@1 scores, which are relatively low. This suggests
limitations in its average ranking quality and the likelihood of correctly identifying the
triple in the first position. In practical applications, we predict the susceptibility of each
grid cell based on the KGE model, generating a susceptibility map for the study area, as
shown in Figure 10. From the figure, it is evident that TransE tends to categorize regions
densely populated with landslide points as high-risk zones. However, concurrently, TransE
is prone to misclassifying less densely populated landslide point areas as high-risk zones.
In contrast, ROTATE and ComplEx exhibit a weaker ability to differentiate landslide-prone
areas. RESCAL and DistMult demonstrate a stronger capability to distinguish landslide
risk zones, with RESCAL leaning towards classifying non-landslide areas as “very-low”
risk zones, and DistMult tending to categorize non-landslide areas as “low”-risk zones.

Table 4. Precision, Recall, and F1 score results on the dataset (best values in bold).

Model Precision Recall F1

SVM 0.70 0.75 0.72
RF 0.83 0.83 0.83

KNN 0.82 0.78 0.80
GCF 0.87 0.90 0.88

TransE 0.85 0.89 0.87
RESCAL 0.90 0.93 0.91
DistMult 0.91 0.90 0.90
ComplEx 0.92 0.92 0.92
RotateE 0.89 0.86 0.87

Table 5. Learning results of different KGE models on the knowledge graph (best values in bold).

Model MRR Hits@1 Hits@3 Hits@10

TransE 0.555 0.489 0.567 0.695
RESCAL 0.612 0.529 0.639 0.783
DistMulti 0.580 0.502 0.596 0.745
ComplEx 0.653 0.569 0.684 0.836
RotateE 0.361 0.221 0.427 0.648

In addition, data scarcity poses a common challenge in landslide prediction [49], and
we also conducted tests to evaluate the model’s performance under data-sparse conditions.
Initially, we randomly selected half of the landslide records and created a dataset following
the steps of the data-driven method. Subsequently, we trained and tested the model using
machine learning, calculating the prediction accuracy. Simultaneously, we concealed the
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unselected landslide records in the knowledge graph, training the KGE model using only
the chosen landslide records, and calculated the prediction accuracy. The comparative
results are presented in Table 6.

To comprehensively evaluate the performance of each KGE model in generating em-
bedded representations, we selected several typical entities from the knowledge graph.
These entities encompass the study area tiles at various distances, different types of LCFs,
instances of disaster tasks, and instances of disaster records. We then calculated their
similarity in the embedding space, and the resulting similarity matrix, with entities num-
bered for reference, is shown in Figure 11. We observed that the RESCAL (Figure 11b) and
ComplEx (Figure 11d) models excel in entity differentiation, particularly in their ability to
distinguish between entities of the same category and entities from different categories, sur-
passing the other models. However, RESCAL exhibits relative weaknesses in representing
LCF entities, and ComplEx occasionally experiences errors in the embedded representation
of specific entities. In contrast, TransE (Figure 11a) effectively discriminates between the en-
tities of different categories but tends to struggle in distinguishing entities within the same
category. RotateE (Figure 11e), on the other hand, places greater emphasis on capturing the
unique semantic information of each entity but is somewhat less effective in distinguishing
between the entities of different categories. It is speculated that RotateE tends to focus on
denser nodes in the knowledge graph and may not pay sufficient attention to sparse graphs.
Furthermore, DistMult (Figure 11c) outperforms TransE in representing entities within
the same category, although it may exhibit some limitations in capturing the semantic
information of certain entities. In general, for sparse categories in the knowledge graph,
where the degree of a category node is low, KGE models typically exhibit a weaker learning
performance. Conversely, for dense categories in the knowledge graph, KGE models tend
to demonstrate stronger learning effects.

(a) (b)
Figure 10. Cont.
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(c)

(d) (e)
Figure 10. Landslide susceptibility map generated with the KGE method using (a) TransE;
(b) RESCAL; (c) DistMult; (d) ComplEx; and (e) ROTATE.

Table 6. Results of Precision, Recall, and F1 score on the sparse dataset (best values in bold).

Model Precision Recall F1

SVM 0.56 0.52 0.54

RF 0.69 0.64 0.66

KNN 0.64 0.65 0.64

GCF 0.71 0.68 0.69

TransE 0.71 0.76 0.73

RESCAL 0.84 0.79 0.81
DistMult 0.78 0.82 0.80

ComplEx 0.81 0.81 0.81
RotateE 0.73 0.69 0.71
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(a) (b)

(c) (d)

(e)

Figure 11. Comparison of vector similarity for different KGE models, including (a) TransE;
(b) RESCAL; (c) DistMult; (d) ComplEx; and (e) ROTATE, after mapping entities to embedding
space. Darker colors indicate higher similarity between corresponding entities on the horizontal and
vertical axes.
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5. Discussion

In our experiments, we compare the general landslide prediction system with our
prediction system to demonstrate the feasibility and advantages of modeling landslide
scenes based on a knowledge graph. On one hand, the experimental results show that the
knowledge graph-based modeling of landslide scenarios is more useful for discovering
spatial patterns in the landslide process than the traditional modeling method based on
the “sequence” structure. This benefit stems from the nature of the knowledge graph in the
process of data organization and representation, which has the ability to convey semantic
information in model training, thus enhancing the model performance. Additionally,
based on the results of entity similarity comparison, we found that the KGE model can
indeed learn logical entity embedding representations, with semantically similar entities
having similar distances in the vector space. This contributes to the correct results in the
link prediction process. Similarly, the susceptibility map generated using the KGE model
demonstrates this semantic representation capability. Moreover, the advantages of KGE
models become more significant when the dataset is sparse. Data-driven models usually
require substantial data for training and prediction. With sparse data, it is challenging
for these models to effectively learn and generalize from missing data. The advantage of
KGE models lies in the mapping of entities and relations to the embedding space, which
assists the models in inferring missing values and gaining a deeper understanding of the
underlying relationships in the data. It is worth noting that the tile level also affects the
performance of the model. A smaller tile level can enhance the training and prediction
speed of the model. However, due to the lower resolution, there are too many LCFs on each
tile, preventing the model from fully learning the relationship between LCFs and grid cells,
ultimately reducing the model’s performance. On the other hand, if the tile level is too high,
it significantly decreases the training and prediction speed of the model. Additionally, it
may lead to an overly sparse knowledge graph, hindering the model’s ability to effectively
learn features. Therefore, selecting an appropriate tile level is crucial.

On the other hand, predicting landslides using KGE models is a novel and compre-
hensive end-to-end method. General data-driven methods typically involve manually
selecting, designing, and extracting environmental features, and then using those features
to train a model for a prediction task. These methods typically require multiple steps,
including data preprocessing and LCF analysis and selection. These steps often necessitate
the involvement of domain experts and multiple individual modules. For KGE models,
in contrast, the data preprocessing step is performed only once when constructing the
knowledge graph, enhancing data reusability. Moreover, KGE models generate predictions
directly from the embedding space, eliminating the need for manual feature selection or
multiple preprocessing steps. Thus, using the KGE model to predict landslides reduces the
complexity of manual intervention and engineering design, making the model more easily
scalable to other hazard tasks. Based on our experiments, we believe that this method
is promising.

However, there are some limitations to our method that are worth noting. In the case
of complete data, the advantage of the KGE method over generalized machine learning
methods is not very significant, although it exhibits a slight advantage in prediction perfor-
mance. This is mainly due to the sparsity of the structure of the constructed knowledge
graph and the inherent limitations of the KGE model’s learning capabilities. Additionally,
when performing data-driven landslide prediction based on the negative samples, which
are not truly non-landslide areas, errors may occur during the sample production process,
subsequently affecting the quality of the test set. Furthermore, in terms of the training
details of the KGE model, the way in which the head entity and tail entity are replaced in
negative triples can also affect the performance of the KGE model.

6. Conclusions

Data-driven methods typically simplify landslide scenarios during modeling, resulting
in information loss during the prediction process. To address this challenge, this paper
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presents a novel approach to landslide prediction. We represent complex disaster scenarios
by designing the schema layer of the knowledge graph and organize the multi-source
heterogeneous disaster data into triples by constructing the data layer of the knowledge
graph and mapping it to the schema layer. Subsequently, landslide prediction is conducted
using the KGE model. The novelty of the experimental results lies in demonstrating the
capability of knowledge graph modeling for complex disaster scenarios, addressing the
issue of information loss that occurs in data-driven approaches during modeling. The
primary contributions of this paper can be summarized as follows:

• For the first time, a knowledge graph embedding method is applied to landslide
prediction, resulting in a performance improvement, marking an innovative approach
in this field.

• With the assistance of a graph-based modeling method, we improve the exploration
of spatial information within landslide scenarios.

• We introduced a novel end-to-end assessment method for the precise evaluation of
landslide susceptibility, which holds extensive applicability.

• Our method empowers effective landslide prediction even with limited data, offering
support for applications in resource-constrained environments.

In future research, a primary focus will be on refining the precision of landslide predic-
tion, encompassing areas with sufficient sample data and those lacking historical landslide
records, as experimental results suggest promising potential in both scenarios. Addressing
the prediction bias stemming from the sparse knowledge graph structure will entail an
exploration of a more sophisticated schema layer. Concurrently, improvements to the
model structure will be actively pursued, including the integration of graph neural network
models to capture higher-order interactions among entities and relationships. This strategic
enhancement aims to enhance the predictive capabilities of the model. Furthermore, en-
deavors will be directed towards expanding the scope of downstream tasks to include other
disaster types, thereby augmenting the method’s versatility and the utility of disaster data.
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