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Abstract: This work presents a methodology for the hydrological characterization of natural and
urban landscapes, focusing on accurate estimations of infiltration capacity and runoff characteristics.
By combining existing methods from the literature, we created a systemic process that integrates
satellite-based vegetation maps, topography, and soil permeability data. This process generates a
detailed vegetation classification and slope-corrected composite curve number (CNcα) map using
information at the subpixel level, which is crucial for estimating excess runoff during intense pre-
cipitation events. The algorithm designed with this methodology is automated and utilizes freely
accessible multispectral imagery. Leveraging the vegetation–impervious–soil (V-I-S) model, it is
assumed that land cover comprises V-I-S components at each pixel. Automated Music and spectral
Separability-based Endmember Selection is employed on a generic spectral library to obtain the
most relevant V-I-S endmember spectra for a particular image, which is then employed in multiple
endmember spectral mixture analysis to obtain V-I-S fraction maps. The derived fractions are utilized
in combination with the Normalized Difference Vegetation Index and the Modified Normalized
Difference Water Index to adapt the CNcα map to different seasons and climatic conditions. The
methodology was applied to Esch-sur-Alzette, Luxembourg, over a four-year period to validate
the methodology and quantify the increase in the impervious surface area in the commune and the
relationship with the runoff dynamics. This approach provides valuable insights into infiltration and
runoff dynamics across diverse temporal and geographic ranges.

Keywords: infiltration; composite curve number; spectral unmixing; runoff

1. Introduction

Urban areas present an amplified vulnerability to flooding due to their concentration of
intricate physical, economic, infrastructural, and social attributes. As of 2023, approximately
1 in 4 people reside in high-risk flood zones, with 89% of these individuals residing in
densely populated urban areas [1]. Between 2000 and 2019, a total of 3254 flood disasters
were recorded worldwide, affecting 1.65 billion people [2]. Climate change is expected to
increase the frequency of such disasters on both global and local scales. At the local scale,
even sub-daily rainfall intensification is related to an escalation of flash flooding [3].

Developing appropriate flood mitigation strategies requires reliable risk assessment
methods. To accurately assess flood risk, estimations of the infiltration capacity and runoff
potential are crucial. These estimations are often linked to the hydrologic impacts of
increases in the impervious surface area (ISA), which can lead to increased runoff volumes,
peak discharge, and flashiness, even for low-intensity storms [4]. Studies have shown
that these impacts often arise from substantial expansions in impervious surface areas
(ISAs) such as roads, rooftops, parking lots, and sidewalks [5–8]. Impervious surfaces
impede the natural infiltration of precipitation into the subsurface, exacerbating the flood
risk in urban areas compared to the surrounding environment [9,10]. Therefore, gaining
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a comprehensive understanding of how ISAs influence infiltration and runoff patterns is
crucial for the formulation of effective flood mitigation strategies.

ISA mapping has been explored through the use of several methodological approaches.
While conventional approaches like ground-based measurements and aerial photo mapping
are effective, they can be time-consuming and costly. A variety of remote sensing indices,
such as the Modified Normalized Difference Impervious Surface Index (MNDISI) and
the Normalized Difference Built-Up Index (NDBI), have been developed for detecting
impervious surfaces from multi-spectral satellite images [11,12]. Establishing a suitable
threshold for urban surface delineation remains challenging, however, and often leads
to confusion with highly reflective soils [13]. Other ISA mapping processes in remote
sensing involve the identification of imperviousness at the subpixel level [14–16]. In
low-to-medium-resolution satellite imagery captured over complex urban areas, mixed
pixels are common since many materials exist near one another, making subpixel analyses
appropriate approaches in these settings. The vegetation–impervious surface–soil (V-I-S)
model proposed by Ridd [17] is an accepted approach to parameterizing the composition
of urban environments. This model categorizes urban land cover into V-I-S components
within each pixel, neglecting water. The V-I-S proportions within each pixel are typically
extracted with spectral mixture analysis (SMA), which decomposes mixed pixels based
on the quantities of the purest spectra for each material, known as endmembers [18].
Endmember spectra in complex urban settings are typically characterized by high intra-
class variability within a material and high inter-class similarity with other materials,
generating spectral confusion [19]. Roberts et al. [20] proposed multiple endmember
spectral mixture analysis (MESMA), an extension of simple SMA which represents each
material with multiple endmember spectra and determines the best endmember model
for each pixel. MESMA considers both the variability and similarity among endmembers,
making it a suitable approach for determining the distribution of V-I-S components across
a diverse range of environments.

The calculated V-I-S fractions in each pixel can be quantified for runoff analysis
with empirical analyses like the soil conservation service curve number method (SCS-CN
method). Bera et al. [21], Li et al. [22], and Fan et al. [23] use the V-I-S fractions to generate
a composite curve number at each pixel, accounting for subpixel infiltration variability.
These methodologies combine V-I-S extraction via SMA with remote sensing indices like the
Normalized Difference Vegetation Index (NDVI) and the Modified Normalized Difference
Water Index (MNDWI). However, none of these methodologies are fully automated, and
they require some degree of user intervention to obtain the final product.

Therefore, this study aims to design an algorithm, hereafter known as HydroSENS
(repository available in the “Data Availability Statement” section), for easy and automatic
extraction of infiltration and vegetation information based on freely available multispectral
satellite imagery that may be used in both flood modeling applications and ecosystem
services monitoring purposes. HydroSENS was tested in the urban Esch-sur-Alzette
commune in southeast Luxembourg to conduct an accuracy assessment, estimate the
changes in the ISA, and evaluate how ISA changes may impact the infiltration parameters
of the city. The structure of the paper is organized as follows: a brief description of the study
area is given in the Section 1, the Section 2 presents the methodology, the Section 3 outlines
the results, and the Section 4 comprises a comprehensive discussion of the outcomes. In
the Section 5, conclusions and future perspectives are drawn.

2. Materials and Methods
2.1. Study Area

The area of interest is the commune of Esch-sur-Alzette, located in the southeastern
portion of Luxembourg (Figure 1).
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from a steel industry-dominated urban center to a modern university city. Additionally, 
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Figure 1. Administrative border of Luxembourg, featuring the Esch-sur-Alzette commune in the
southeast (indicated by the red rectangle).

Luxembourg is situated in a moderate oceanic Western European climate and an aver-
age of 820 mm annual precipitation, with slightly higher quantities of precipitation between
June and November [24]. Esch-sur-Alzette has the second largest city in Luxembourg and
has experienced a variety of changes over the years as it continues its transition from a steel
industry-dominated urban center to a modern university city. Additionally, Luxembourg
has a vast quantity of data freely available, so they were incorporated into the accuracy
assessment of the spectral unmixing methodology.

2.2. Methodology

The proposed methodology utilizes various algorithms on multispectral satellite
imagery to calculate various indices and the fractional cover of the V-I-S materials to
determine a composite curve number (CNc) at each pixel in an image. The CNC is further
refined with a slope correction and optional antecedent moisture content (AMC) conversion
to yield a slope-corrected CNC (CNCα). The specific steps of the procedure are outlined in
Figure 2 below.
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Figure 2. Methodology workflow.

HydroSENS, developed in Python v3.8.2, requires a shapefile of the area of interest
in a projected coordinate system. The other inputs are either automatically downloaded
from Google Earth Engine or bundled into the algorithm file. HydroSENS yields multiple
results: a slope-adjusted composite CN map for the desired AMC, a runoff map based on
the user’s precipitation input, and a vegetation classification.

2.3. Data

Key data were obtained using Google Earth Engine (GEE) functions from the GEE
database, a geospatial processing application provided by Google with a wide variety of
datasets and functions available. The GEE functions were written in the GEE Python API
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to automate data extraction for the algorithm, so that the only variable modified is the
study area. Additional key data were sourced from established online datasets, including
Hengl’s [25] global soil dataset and the United States Geological Survey (USGS) Spectral
Library [26].

2.3.1. Satellite Imagery

The appropriate sensor and wavelengths for this study were selected with considera-
tion of the data accessibility and the temporal, spatial, and spectral resolutions. Copernicus
orthorectified atmospherically corrected surface reflectance Sentinel-2 MSI datasets are
freely available, easily extracted using GEE, and with twin satellites in orbit (Sentinel-2A/B)
have a high temporal resolution with a revisit time of 5 days. The frequent revisit time is
advantageous for the remote sensing of vegetation due to the daily, seasonal, and annual
phenological cycles of vegetation growth. Sentinel-2 imagery has a medium spatial resolu-
tion and wavelengths spanning through the visible, near-infrared (NIR), and short-wave
infrared (SWIR) spectrum (Table 1) [27].

Table 1. Sentinel-2 MSI band information, extrapolated from the Sentinel-2 User Handbook [27].

Band Name Spatial Resolution (m) Central Wavelength (nm)

1 Aerosol 60 443 ± 10
2 Blue 10 490 ± 32.5
3 Green 10 560 ± 17.5
4 Red 10 665 ± 15
5 Red-edge 1 20 705 ± 7.5
6 Red-edge 2 20 740 ± 7.5
7 Red-edge 3 20 783 ± 10
8 NIRwide 10 842 ± 57.5

8A NIRnarrow 20 865 ± 10
9 Cirrus 60 945 ± 10
10 Water Vapor 60 1375 ± 15
11 SWIR 1 20 1610 ± 45
12 SWIR 2 20 2190 ± 90

Of the 13 bands available, only 8 bands were used in the analysis: bands 2, 3, and 4
in the visible range, band 7 in the red-edge range, bands 8 and 8A in the NIR range, and
bands 11 and 12 in the SWIR range. Bands 7, 8A, 11, and 12 were resampled to a 10 m
spatial resolution to match the fine resolution that bands 2, 3, 4, and 8 contain.

2.3.2. Digital Elevation Model

The digital elevation model (DEM) utilized in this methodology is the Forest and Build-
ings Removed Copernicus 30 m Digital Elevation Model (FABDEM) created by Hawker
et al. [28], which uses machine learning techniques to remove building and tree height
bias. Separate random forest models were created for buildings and trees to predict the
heights of these objects and remove them before merging the corrections into a single
model, FABDEM.

2.3.3. Global Soil Dataset

Infiltration is influenced by the permeability of the subsurface. To address this factor,
soil is classified into four different hydrologic soil groups (HSGs), A, B, C, and D, based
on the minimum infiltration rate of the associated soil texture [29]. Group A represents
sandy soils, Group B represents silty soils, Group C represents a mixture of sandy and clay
soils, and Group D represents clay soils. Loam is present to some extent in the various HSG
groupings. The algorithm utilizes the SoilGrids250m dataset produced by Hengl [25], a
global soil dataset that assigns the appropriate HSG at the surface.
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2.3.4. Endmembers and Spectral Libraries

SMA of any kind requires appropriate endmember selection to conduct the unmixing
process. Frequently, researchers stand by more traditional endmember extraction method-
ologies that involve various methods of spectral reduction through techniques such as
principal component analysis (PCA) or minimum noise fraction (MNF), followed by end-
member extraction algorithms such as the pixel purity index (PPI) or the automated target
generation process (ATGP) [7,16,30]. However, it is difficult to truly automate the proposed
methodology using the aforementioned algorithms as they often require some level of user
intervention to match the correct endmember class to the extracted endmember spectra. As
the focus of this study is to fully automate the process, a different methodology utilizing
generic spectral libraries is applied to obtain appropriate spectra representing the V-I-S
elements within an image.

Providing an appropriate general spectral library is essential to a quality spectral
mixture analysis. The USGS spectral library was chosen for use in the algorithm due to its
comprehensive collection of vegetation and soil spectra in addition to the artificial imper-
vious surface spectra [26]. Additionally, the USGS spectral library is available resampled
to the Sentinel-2 MSI sensor; therefore, it is ideal for the purposes of this algorithm. The
interquartile range of reflectance and mean reflectance for the V-I-S classes measured by
the Sentinel-2 MSI sensor are presented in Figure 3.
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2.4. Band Indices

The Normalized Difference Vegetation Index (NDVI) is a common index in remote
sensing to identify vegetated surfaces. The red region of the visible spectrum strongly
absorbs chlorophyll in green vegetation while the near infrared region of the spectra reflects
the energy of green vegetation; thus, a ratio of these spectra provides a useful measure of
the vegetation in an image [31]. The NDVI is obtained using Equation (1):

NDVI =
(NIR − red)
(NIR + red)

, (1)
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where NIR is the near infrared band (Sentinel-2 band 8A) and red is the red band (Sentinel-2
band 4). The values of the NDVI range between −1 for low and +1 for high photosyn-
thetic activity.

The Modified Normalized Difference Water Index (MNDWI) is a common index to
delineate water bodies. The original Normalized Difference Water Index (NDWI) designed
by McFeeters [32] maximizes water reflectance in the green part of the visible spectrum
while minimizing low near-infrared (NIR) reflectance. This methodology often extracts
built-up surfaces in addition to water, leading Xu [33] to develop the MNDWI the shortwave
infrared (SWIR) portion of the spectrum. With the MNDWI, water has greater positive
value since the water absorbs more SWIR light than NIR light [33]. The MNDWI is defined
in Equation (2) as:

MNDWI =
(Green − SWIR)
(Green + SWIR)

, (2)

where green is the green band (Sentinel-2 band 3) and SWIR is the shortwave infrared band
(Sentinel-2 band 11). The threshold for the MNDWI to distinguish between water and land
is set to 0. The water areas are masked out of the image to ensure that the only surfaces in
the image are composed of V-I-S elements, in accordance with the theory of Ridd [17].

2.5. Spectral Unmixing
2.5.1. Spectral Library Optimization

Building image-specific spectral libraries often returns high-quality unmixing results;
however, this time-consuming process must be repeated for every single image. Evading this
methodology often involves the implementation of a generic spectral library. Generic spectral
libraries are large with an abundance of irrelevant spectra for a single image; thus, generic
spectral libraries benefit from a pruning technique that is specific to a single image. Iordache
et al. [34] proposed the Multiple Signal Classification Pruning Algorithm (MUSIC-PA), which
represents an image as a small set of eigenvectors. Then, the distances between the library
spectra and the eigenvector representation are measured, sorted, and pruned, leaving the
spectra with the least distances to be used for the final image unmixing [34]. Automated Music
and spectral Separability based Endmember Selection (AMUSES) builds upon MUSIC-PA to
improve endmember selection for complex landscapes, such as urban environments. AMUSES
adds a brightness normalization to decrease effect of brightness during the endmember selection
process and a spectral separability measure to further decrease redundancy within a spectral
library [35]. The AMUSES process can be divided into four main steps.

The first step, brightness normalization, is based on the normalized spectral mixture
analysis (NSMA) model proposed by Wu [36]. The normalized reflectance Rb for band b in
a pixel is obtained with Equations (3) and (4):

Rb =
Rb
µ

× 100, (3)

µ =
1
N

N

∑
b=1

Rb, (4)

where Rb is the original reflectance for band b in a pixel, µ is the average reflectance for
that pixel, and N is the total number of bands. The brightness normalization is applied to
both the original spectral library and the image to both maintain useful information for
separating vegetation, impervious, and soil surfaces while reducing redundant information.
The second step conveys the normalized image as 15 eigenvectors and calculates the
distance of each normalized library spectrum to the image’s 15 eigenvectors, mimicking the
process of MUSIC-PA. The third step sorts the spectra according to the MUSIC-PA distance,
retaining the spectra with the lowest distances and eliminating the spectra with the furthest
distances. The remaining spectra are assessed with the Jeffries Matusita distance and
spectral angle (JMSA) spectra separability measure in the fourth step. At this point, spectra
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are only retained if sufficiently dissimilar, i.e., if the JMSE is above the threshold determined
from the current spectra subset. The remaining spectra compose the final spectral library.

The AMUSES algorithm is available through the Spectral Library Tool Python API
developed by Maenhout and Crabbé [37]. AMUSES runs on the selected image and the
generic spectral library to prune the library to only relevant spectra that represent the
image. The specific variables required for AMUSES include the desired image array, the
original spectral library, and various parameter settings. The parameter settings were left at
the default values proposed by the AMUSES developers: 90% to prune 10% of the spectral
library with MUSIC-PA, then 95% to retain 5% of the remaining library with AMUSES, 15
as the set number of eigenvectors to represent the image, and finally 0.0002 and 0.02 as the
low and high thresholds for JMSA within the AMUSES algorithm [35].

2.5.2. Multiple Endmember Spectral Mixture Analysis (MESMA)

MESMA is an extension of simple spectral mixture analysis that accounts for the
natural variation in spectra of most materials on a pixel-scale [20]. MESMA unmixes every
possible combination of 2, 3, 4, or more endmember models on each image pixel. The exact
model selected for a particular pixel depends on what model fits the root mean squared
error (RMSE) the best [38]. The RMSE is shown in Equation (5):

RMSE =

(
λ

∑
k=1

(εiλ)
2/N

) 1
2

, (5)

where λ is the wavelength, εiλ is the unmodelled portion of the spectrum (residual term),
and N is the number of reference endmembers. The advantage of MESMA is its use of mul-
tiple reference endmember samples for a single endmember class, eliminating limitations
posed by SMA [38]. MESMA’s ability to consider high levels of spectral variability makes it
a popular methodology in the analysis of complex urban areas [35,39,40]. Shade in imagery
is common and does not perfectly fit spectral mixture analysis, so it is often calculated as a
separate endmember with zero reflectance [20].

Following spectral library pruning with the AMUSES algorithm, the MESMA Python
API developed by Crabbé et al. [41] was adapted to determine the appropriate fractions
of V-I-S components in each pixel. The maximum number of endmembers per pixel was
limited to 3, including shade, to maintain high computational efficiency, as increased model
complexity significantly increases computational time without notable improvements to the
results [41]. Additional adjustments to enhance computational efficiency include dividing
the image so that 10 rows of pixels of the image are processed at a time on all available
cores. The minimum and maximum allowable fractions to maintain physically reasonable
results are 0 and 1.0, respectively, and the minimum and maximum shade fractions are
−0.1 to 0.8, to avoid creating pixels that are entirely covered by shade. The shade is
allowed to be negative in case the selected endmembers do not represent the brightest
possible reflectance of a material. Introducing a negative fraction can effectively brighten
the endmember spectra and improve the overall fit of the model to the observed spectra.
The maximum allowable RMSE is set to 0.025 and the relative RMSE threshold is 0.007
for comparing the best 2 and 3 endmember model, in accordance with the defaults of the
MESMA developers [41]. After the fractions are calculated, the fraction arrays go through
shade normalization to remove the shade endmember, resulting in 3 arrays.

2.5.3. MESMA Accuracy Assessment

In order to assess the accuracy of the MESMA results, the V-I-S surfaces in 100 ran-
domly placed 10 m by 10 m squares were manually digitized using a high-resolution image
of the study area as the reference, mirroring the validation technique of many similar
studies [7,15,16,21,40,42] (Figure 4). The reference imagery was an orthophoto from the
Luxembourg Geoportal [43]. The official orthophotos covering the national territory of
Luxembourg were obtained in August 2022, so the comparison was performed using an
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S2 image acquired in the same period. The root mean square error (RMSE) and the mean
absolute error (MAE) were used to assess the accuracy of the calculated V-I-S fractions
based on the prediction fraction and reference fraction at a validation location.
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2.6. Runoff Estimation

The soil conservation service curve number (SCS-CN) method is a widely used ap-
proach for determining the approximate amount of runoff for a particular area during a
storm event. The CN is an empirical parameter that combines soil type, land use, and
antecedent moisture content [44]. The curve number ranges from 30 for permeable soil
with high infiltration rates to 100 for totally impervious surfaces.

The final curve number map in this algorithm is composed of multiple components
per pixel based on the fraction of V-I-S elements present and factors in the topographic and
moisture content characteristics. The CN values of the various elements are designated as
CNveg for vegetation, CNimp for impervious surfaces, and CNsoil for soil. The classification
of CNveg is based on the methodology described by Bera et al. [21], where the NDVI and
vegetation fraction at each pixel are combined to yield a vegetation classification that is
associated with a particular curve number (Table 2). The vegetation classification is an
additional output of the algorithm. All impervious surfaces are assigned a CNimp of 98, as
suggested by Bera et al. [21]. Finally, the CNsoil is based on the bare soil classification in
Cronshey [29] (Table 2).

Table 2. CN for each HSG based on the NDVI and the vegetation fraction.

Vegetation Type NDVI Threshold Vegetation Health CN Value

A B C D

Forest NDVI > 0.62
Poor (fveg < 50%) 45 66 77 83

Fair (50% < fveg < 75%) 36 60 73 79
Good (fveg > 75%) 25 55 70 77

Orchard 0.55 < NDVI < 0.62
Poor (fveg < 50%) 57 73 82 86

Fair (50% < fveg < 75%) 43 65 76 82
Good (fveg > 75%) 32 58 72 79

Grass and Farmland 0.31 < NDVI < 0.55
Poor (fveg < 50%) 68 79 86 89

Fair (50% < fveg < 75%) 49 69 79 84
Good (fveg > 75%) 39 61 74 80

Sparsely Vegetated NDVI < 0.31 N/A 69 84 88 91

Non Vegetated (Soil) N/A N/A 77 86 91 94
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The composite curve number (CNC) is calculated using Equation (6):

CNC = fveg × CNveg + fimp × CNimp + fsoil × CNsoil. (6)

The antecedent moisture condition (AMC) is defined as the initial moisture condition
of the watershed prior to the storm event of interest [29]. AMC II is the base to which CN
values are calculated and adjusted. AMC II describes the “average condition” of a drainage
basin in terms of its saturation, AMC I describes dry conditions, where the soil moisture
content is at the wilting point and AMC III describes nearly saturated conditions, where the
soil moisture content is at field capacity [29]. The conversions of the CN to reflect different
soil moisture conditions are accomplished using the formulae defined by Mishra et al. [45].
The conversion of CN at AMC II (CNII) to AMC I (CNI) is accomplished using Equation (7):

CNI =
CNII

2.2754 − 0.012754CNII
, (7)

while the conversion from CNII to AMC III (CNIII) is achieved with Equation (8):

CNIII =
CNII

0.430 + 0.0057CNII
. (8)

Generally, it is thought that infiltration decreases with increasing slope as there is less
time for rainfall to infiltrate into the subsurface [46]. To accommodate this physical process,
the CNC is adjusted where the slope is greater than 5%, in accordance with the Sharpley
and Williams method [47] presented in Equation (9):

CNII∝ =
(CNIII − CNII)

3

(
1 − e−13.86×∝

)
+ CNII, (9)

where CNIIα is the adjusted CN for AMC II; CNII and CNIII are the composite CN values
for AMCII and AMCIII conditions, respectively; and α (%) is the pixel slope. The final
output map is a slope corrected CNC, designated as CNCα.

The CNCα map in this methodology is used to determine the runoff with the SCS-CN
methodology defined by the U.S. Army Corps of Engineers [44]. With a known CN, the
maximum storage, S, can be calculated using Equation (10):

S = 254 ∗
(

100 − CN
CN

)
, (10)

and the initial abstraction of rainfall, Ia, is obtained using S in Equation (11):

Ia = 0.2 ∗ S. (11)

Estimations of Ia and S allow for the calculation of Pe, the accumulated excess precipi-
tation (i.e., runoff) for an event with precipitation P using Equation (12):

Pe =
(P − Ia)

2

(P − Ia) + S
. (12)

Rainfall events with return periods between 10 and 30 years estimated using intensity–
duration–frequency (IDF) curves are popular for evaluating urban drainage networks. In
accordance with the IDF related to the region of interest, the event analyzed has a return
period of 20 years, an event duration of 180 min, and total rainfall of 44.5 mm [48].

3. Results

HydroSENS was applied to satellite imagery acquired on 6 August 2018 and 10
August 2022.
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3.1. MESMA Accuracy Assessment

The accuracy assessment, employing digitized orthophotos in Esch-sur-Alzette and
the imagery from August 2022, demonstrated that the algorithm was able to properly
detect the V-I-S fractions that composed the landscape, with RMSE values of 0.21, 0.24, and
0.23 and MAE values of 0.13, 0.10, and 0.14 for vegetation, impervious surfaces, and soil,
respectively (Table 3).

Table 3. Accuracy assessment of spectral unmixing with MESMA.

Material RMSE MAE

Vegetation 0.21 0.13
Impervious 0.24 0.10

Soil 0.23 0.14

3.2. ISA Evolution 2018–2022

The ISA between August 2018 and August 2022 rose by 15% while the soil area
declined by 24.4%. The ISA appeared to increase the most in the urban center, especially
near the railroad tracks and roads to the north and northwest (Figure 5).
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Additionally, high soil fractions were found on construction sites throughout the urban
area and along more rural roads to the south (Figure 6).
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High vegetation fractions were detected in forested and farmland areas, with some of
the urban greenery highlighted. There was little change in vegetation over the study period
(Figure 7). Additionally, there was a loss of urban greenery in the urban center where a
higher ISA was detected in 2022.
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Figure 7. MESMA results in Esch-sur-Alzette over the study period showing the vegetation fractional
covers in 2018 (left) and 2022 (right).

However, the increase in the ISA did yield slightly higher runoff, with it increasing by
4% between 2018 and 2022. In the densely populated urban center, the rise in the ISA and
the reduction in vegetation led to a noticeable change in runoff volume (Figure 8).
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4. Discussion

The spectral unmixing using a generic spectral library performed in a comparable
manner to Degerickx et al. [35], whereby spectra from different sensors and locations with
no image-specific spectra present yielded an overall RMSE of 0.22. The unmixing methodol-
ogy also proves competitive with traditional methods that necessitate user intervention. For
instance, Bera et al. [21] obtained an RMSE of 0.24 for impervious surfaces using the purity
pixel index for endmember extraction and Linear SMA. Similarly, Fan et al. [28] achieved
V-I-S RMSE values of 0.21, 0.19, and 0.35, respectively, using the minimum noise fraction
with high and low albedo endmembers that were further categorized into appropriate V-I-S
categories. While some instances of confusion between soil and impervious surfaces were
observed within the proposed methodology due to their shared high reflectance values,
the outcomes of the unmixing process remained appropriate. It is important to note that
the algorithm’s primary focus is on global applicability, rather than fine-tuning for specific
environments. This broader perspective ensures the algorithm’s versatility and utility
across diverse landscapes.

The hydrological processes in Esch-sur-Alzette underwent alterations over the study
period under the same precipitation and surface drainage conditions. This can be attributed
to variations in the spatial distribution of the V-I-S elements. There was an overall increase
in the ISA which impeded infiltration, and the vegetation remained the same in farmland
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and grassland areas while decreasing in the urban center. The increase in the ISA cor-
responded with a decrease in soil coverage, signifying the completion of infrastructure
projects within the city, such as the construction of a highway to the north. The areas with
static vegetation coverage maintained low runoff values, indicating that the vegetation
aided runoff reduction. Moreover, the areas which lost urban greenery had higher runoff
values. These findings may be significant for urban planners, offering insights into the
impacts of urban growth and emphasizing the potential positive influence of nature-based
solutions in mitigating the effects of runoff.

The algorithm designed to carry out the proposed methodology is novel in its emphasis
on automation, as other proposed methodologies for infiltration parameter extraction lack
a cohesive and entirely automated process. While the described case study exhibits a
successful outcome, it is important to acknowledge the algorithm’s limitations.

MESMA is a core part of the procedure that produces results with a respectable level
of accuracy. However, it is still difficult to discriminate between impervious surfaces and
spectrally confusing features, e.g., highly reflective soils, in heterogeneous contexts. It is
well established that the better the endmembers are, the better the unmixing results are.
The current method relies on a large, generic spectral library and a spectral library pruning
algorithm to determine the appropriate endmembers. In alignment with recent trends,
Deng et al. [49], Misra et al. [50], and Priem et al. [51] explored image-specific endmember
extraction with various machine learning (ML) algorithms on both hyperspectral and
multispectral imagery. These experiments yielded satisfactory outcomes, suggesting that
the potential application of such ML techniques could enhance this algorithm in the future.
Overall, spectral unmixing is a complicated process devoid of a single correct method
given the complexity of image-specific endmember selection. Therefore, it is imperative to
continue assessing a variety of methods for further development.

Additional limitations lie with the imagery. The algorithm’s effectiveness is compro-
mised when processing images with cloud cover, as the clouds are inaccurately classified as
impervious surfaces and the V-I-S elements below are masked. Enhancing the availability of
quality cloud-free data could involve incorporating additional multispectral sensors from
other satellite missions. These other sensors, such as Landsat, allow a longer time series
of images to be evaluated, which is pertinent to long-term studies. The methodology’s
adaptability to a range of multispectral sensors highlights its versatile nature.

Finally, the relationship between the various land cover and soil characteristics and
the CN values must be mentioned. Although the CN values employed in this study align
with other peer-reviewed research, it is important to note that these proposed CN values
might not universally apply to all conditions. Ultimately, these CN values are empirical
parameters devoid of an absolute, universally correct counterpart, an important concept to
realize in the hydrologic modeling process.

5. Conclusions

This study proved successful in using Sentinel-2 imagery of Esch-sur-Alzette, Luxem-
bourg, to determine the validity of the methodology and quantify the changes in runoff over
a 4-year period that may be attributed to an increasing ISA and decreasing urban greenery.
The methodology is generic in its composition and thus may be easily transferred to other
multispectral satellite sensors, given a spectral library resampled to the desired sensor. The
methodology, while evidently applicable to analyzing changes in the hydrologic regime,
can be employed in a wide variety of applications with the valuable information extracted
from spectral unmixing. The temporal and spatial changes in the V-I-S components can
provide insights regarding both anthropogenic and natural processes, such as deforestation,
land degradation, or regreening.

Most significantly, the proposed methodology is an entirely automated process to
extract valuable information without geographic restrictions. The combination of AMUSES
and MESMA with an expansive spectral library allows for thorough analysis without user
intervention. In the future, the methodology could benefit from the application of various
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ML-techniques to the spectral unmixing, as this is the aspect of the methodology most
laden with uncertainty.

The proposed methodology produces valuable information regarding the hydrologic
characteristics of both natural and urban areas. The arrangement of the V-I-S elements
in space, in addition to the NDVI, MNDWI, topography, and soil classification across
different temporal intervals, demonstrated the redistribution of energy in the system. This
redistribution induces changes in the infiltration parameter and thus, the hydrologic regime,
making the product of the methodology valuable for flood risk assessment across natural
and urban landscapes.
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