
Citation: Yuan, S.; Li, P.; Wu, B. Radar

Emitter Signal Intra-Pulse Modulation

Open Set Recognition Based on Deep

Neural Network. Remote Sens. 2024,

16, 108. https://doi.org/10.3390/

rs16010108

Academic Editors: Eugin Hyun and

Inoh Choi

Received: 7 November 2023

Revised: 15 December 2023

Accepted: 24 December 2023

Published: 26 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Radar Emitter Signal Intra-Pulse Modulation Open Set
Recognition Based on Deep Neural Network
Shibo Yuan , Peng Li * and Bin Wu

School of Electronic Engineering, Xidian University, Xi’an 710071, China; yuanshibo@stu.xidian.edu.cn (S.Y.);
bwu@xidian.edu.cn (B.W.)
* Correspondence: penglixd@xidian.edu.cn

Abstract: Radar emitter signal intra-pulse modulation recognition is important for modern electronic
reconnaissance systems to analyze target radar systems. In the actual environment, the intra-pulse
modulations of the sampled radar emitter signals contain not only the known types in the library
but also the unknown types. Therefore, the existing recognition methods, which are based on a
closed set, cannot recognize the unknown samples. In order to solve this problem, in this paper,
we proposed a method for radar emitter signal intra-pulse modulation open set recognition. The
proposed method could classify the known modulations and identify the unknown modulation by
using an original deep neural network-based recognition model trained on a closed set, estimating
the signal-to-noise ratio, and calculating the reconstruction loss by an encoder–decoder model. For
a given sample, the original deep neural network-based recognition model will label it as a certain
known class temporarily. By estimating the SNR of the sample and calculating the reconstruction
loss by inputting the sample to the corresponding encoder–decoder model related to the temporary
predicted known class, whether the sample belongs to the predicted temporary known class or
the unknown class will be confirmed. Experiments were conducted with five different openness
conditions. The experimental results indicate that the proposed method has good performance on
radar emitter signal intra-pulse modulation open set recognition.

Keywords: intra-pulse modulation recognition; radar emitter signals; open set recognition; deep
neural network

1. Introduction

The modern electromagnetic environment has become more complex with the ad-
vancement of modern radar systems [1], and the number of types of intra-pulse modulation
of radar emitter signals is increasing. Intra-pulse modulation recognition technologies are
important for modern electronic reconnaissance systems, such as electronic support mea-
sure (ESM) systems, electronic intelligence (ELINT) systems, and radar warning receivers
(RWRs) [2–4]. Accurately recognizing the intra-pulse modulation of radar emitter signals
could increase the reliability of analyzing the function and information of the target radar.

Due to the rapid development of deep learning, recently, many researchers have com-
bined deep learning methods and radar technologies to recognize intra-pulse modulations
of radar emitter signals. In [5], Qu et al. preprocessed time-domain signals to obtain time-
frequency images (TFIs) by using a Cohen class time-frequency distribution. Then, they
designed a convolutional neural network (CNN) to recognize the intra-pulse modulations.
In [6], Yu et al. used short-time Fourier transformation (STFT) to convert radar signals
into TFIs, and then trained a CNN model to recognize their intra-pulse modulation. In [7],
Yuan et al. proposed a 1-D selective kernel convolutional neural network to recognize
eleven types of intra-pulse modulations based on the frequency-domain sequences of radar
emitter signals. Wu et al. [8] combined a 1-D CNN and attention mechanism to recognize
seven types of radar emitter signal intra-pulse modulations in the time domain. Si et al. [9]
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used a smooth pseudo-Wigner–Ville distribution transformation to covert dual-component
radar signals in the time domain into TFIs and accomplished multi-label recognition tasks
by using EfficientNet [10]. Similarly, Wan et al. [11] proposed a novel modulation recog-
nition method of multi-component radar signals based on the deep convolutional neural
network with a convolutional block attention module (DCNN-CBAM) to recognize multi-
component radar signals. In [12], Cai et al. proposed a self-supervised learning framework
with virtual adversarial training, which overcomes the limitation that the performance of
radar signal intra-pulse modulation recognition mainly relies on a large number of labeled
samples. Unlike most of the fully supervised situations, Yuan et al. [13] focused on a more
common situation, where a very limited number of labeled samples and a large number of
unlabeled samples are provided, and proposed a semi-supervised intra-pulse modulation
recognition method.

However, there are still some problems in the above intra-pulse modulation recog-
nition methods. The existing intra-pulse modulation recognition methods focus on the
situation that the types of intra-pulse modulation in the testing dataset are the same types
of intra-pulse modulation in the training dataset. Therefore, this type of intra-pulse mod-
ulation recognition is closed set recognition (CSR). Based on this assumption, these deep
neural network-based methods perform well. But in the real environment, intra-pulse
modulations are varied. Except for the known intra-pulse modulation types, unknown
types emerge from time to time. These existing deep neural network-based CSR methods
will naturally but mistakenly recognize an unknown type of intra-pulse modulation as one
of the known types. Although the occurrence probability of this situation could be reduced
by collecting as many types of intra-pulse modulations as possible, their collection for a
training library is difficult as intra-pulse modulations are mainly used in the military field.
In practical applications, it is important to not only classify the known classes but also label
the unknown classes, which is called open set recognition (OSR). The OSR of radar emitter
signal intra-pulse modulations is a tough challenge of great significance for the analysis of
the information of a target radar emitter.

Recently, OSR methods have been shifted to the deep learning field. In [14], Hendrycks
et al. presented a method using softmax distributions to detect misclassified and out-of-
distribution samples, which provides the possibility of OSR in a deep neural network
(DNN). The most representative research is that of Bendale et al. [15], who proposed
the OpenMax approach based on the theory of the Weibull distribution, which replaced
the softmax layer with an OpenMax layer to reassign the value of the activation vec-
tor. In the field of radar signal recognition, many studies have been conducted. For
example, in [16], Sun et al. proposed a pseudo-signal generation and recognition neural
network to identify specific emitters under an open set condition. Zhou et al. [17] presented
two models for radar jamming OSR that can accurately classify known jamming and
distinguish unknown jamming.

With increasingly complex electromagnetic environments, intra-pulse modulation
recognition methods should be able to deal with an open set condition. These methods
should not only classify the known intra-pulse modulations with high accuracy, but also
have the ability to identify the unknown intra-pulse modulations correctly. Due to the great
success of DNN-based methods in radar emitter signal intra-pulse modulation recognition,
we proposed a DNN-based method to solve the OSR problem in intra-pulse modulation.
This method does not change the existing well-trained recognition model in a closed set
condition. Instead, in this method, taking the number of known intra-pulse modulations,
we design the same number of encoder–decoder models to reconstruct the TFIs in the
same class through compression and decompression. By estimating the signal-to-noise
ratio (SNR) for each sample in a validation dataset, using the corresponding encoder–
decoder model to calculate the reconstruction loss for the samples in the validation dataset,
the thresholds with SNR for classifying known and unknown intra-pulse modulation
could be set based on different recognition accuracies of the known classes. Combined
the recognition results from the existing well-trained recognition model with the SNR
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of the testing samples, thresholds with SNR, and reconstruction loss values, the original
recognition result could be revised.

The main contribution of this paper is that unlike most of the closed set situations, we
focus on a more common open set situation, where the unknown samples are included for
recognition during the testing session. Another contribution is that our method is based on
the DNN with a closed set situation, which is trained only with known samples. Through
estimating the SNR and calculating the reconstruction loss for testing the sample based
on the proposed encoder–decoder model, the recognition result could be confirmed as a
certain known class or as an unknown class.

This paper is organized as follows: In Section 2, the proposed method is described
in detail. The dataset and experimental settings are shown in Section 3. The extensive
experiments and corresponding analysis are described in Section 4. The ablation study is
given in Section 5. Finally, the conclusion is presented in Section 6.

2. Materials and Methods

OSR of intra-pulse modulation refers to a case in which the samples used for the
training model are in a certain number of classes. When the model is applied for a testing
session, the types of intra-pulse modulation for the testing samples not only include the
known classes from the training library, but also the unknown classes.

Let Xtrain = {(xi, yi) : i ∈ (1, 2, . . . , Ktrain)} be a known dataset in the library, where
xi and yi are the known samples and the corresponding labels, and Ktrain is the number
of total samples. The label of yi belongs to {1, 2, . . . , N}, where N is the number of total
known classes. For the testing dataset Xtest =

{
(xtest

j , ytest
j ) : j ∈ (1, 2, . . . , Ktest)

}
, where

xtest
j and ytest

j are the testing samples and the corresponding labels, and Ktest is the number
of total samples. In this case, the label of ytest

j belongs to {1, 2, . . . , N, N + 1}, where the
category of {1, 2, . . . , N} refers to the known classes and the category of {N + 1} refers to
the unknown class. Therefore, a good model for intra-pulse modulation OSR should have
good accuracy not only in classifying samples from known classes, but also in identifying
samples from unknown classes.

In this paper, the method for intra-pulse modulation OSR mainly consists of 3 steps:
Step 1: Data preprocessing and original recognition model training.

(1) Split the known samples dataset into a training dataset and validation dataset. Note
that both the training dataset and validation dataset do not contain unknown samples.

(2) Estimate the SNR for each sample in the validation dataset.
(3) Convert the training samples and validation samples into TFIs by using STFT.
(4) Train an original recognition model in the CSR way with TFIs.

Step 2: Encoder–decoder model training and threshold setting.

(1) Select the samples from one known class and only use these TFIs to train the encoder–
decoder model. Then, use the corresponding encoder–decoder model to calculate the
reconstruction loss of the corresponding validation TFIs. As the SNR of the valida-
tion samples has been obtained, by setting the interval of SNR, the corresponding
reconstruction loss in each interval of SNR could be counted. In this paper, the
reconstruction loss is mean square error (MSE). Note that the number of encoder–
decoder models is the same as the number of known classes. For example, if there are
11 known classes, then there will be 11 corresponding encoder–decoder models, where
each model is only responsible for reconstructing one class.

(2) Set the threshold for reconstruction loss in each interval of SNR. The details of the
threshold setting are introduced as follows: For a known class, we could calculate the
reconstruction loss of its validation samples from each SNR interval. Assuming that
each SNR interval contains 400 samples, for example, then, we sort these 400 samples’
reconstruction losses from a low value to a high value for each interval. Then we
set, for example, the top highest 1%, 2%, . . ., 25%, etc. reconstruction losses of these
400 samples as the threshold. Similarly, we could get the thresholds for the other
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known classes based on the above operation. Note that the ratio (1%, 2%, . . ., 25%,
etc.) is the same for each SNR interval in each known class. After obtaining all of the
thresholds for each SNR interval of all of the known classes, we could evaluate the
recognition accuracy in the validation dataset through the corresponding thresholds
controlled by the same ratio (like 5%). For example, if we set the ratio as 5%, that
means the corresponding threshold will be related to the top 5% highest reconstruction
losses in each SNR interval for each known class in the validation dataset. Based
on the ratio, the recognition results will be revised (some samples will be labeled
as unknown), leading to different mean recognition accuracies in the known class
validation dataset. Therefore, by setting a suitable ratio, it could be ensured that the
methods have 80%, 85%, 90%, and 95%, respectively, mean recognition accuracy (also
the mean recognition accuracy for known classes) on the corresponding validation
dataset. For example, when we set the ratios as 4% and 20%, the mean recognition
accuracies on the validation dataset are 95% and 80%, respectively. Based on this
threshold setting with 80%, 85%, 90%, and 95% mean recognition accuracy on the
validation dataset, we test the methods with the corresponding testing dataset.

(3) Perform (1) and (2) in Step 2 until all of the known classes are covered.

Step 3: Recognition of the testing sample.

(1) Estimate the SNR for the testing samples and convert the testing samples to TFIs by
using STFT. Now the testing samples contain the unknown class.

(2) Use the well-trained recognition model in Step 1 to predict the class of the testing sample.
(3) Based on the prediction result, use the corresponding encoder–decoder model to

calculate the reconstruction loss of this testing sample. For example, if a testing
sample is recognized as category {2}, then only the encoder–decoder model for
category {2} will be used to calculate its reconstruction loss.

(4) Based on the SNR and reconstruction loss of the testing sample and the threshold
for reconstruction loss in each interval of the SNR for the used encoder–decoder
model, the final recognition result for this sample will be obtained. Note that if the
reconstruction loss is higher than the threshold, then the corresponding sample is
seen as the unknown class. If it is not, the corresponding sample is seen as the known
class, and its label is the predicted result from the original recognition model.

A flow chart of the proposed intra-pulse modulation OSR method is shown in Figure 1.
Figure 2 shows a sketch map of the proposed method in actual deployment.

2.1. Data Preprocessing

In this paper, we chose to use short-time Fourier transformation (STFT) to convert the
time domain signal into a time-frequency domain. STFT is based on Fourier transformation,
which is faster than other time-frequency analysis tools. The mathematical expression of
STFT [18,19] could be written as:

TF(m, n) =
N−1

∑
k=0

s(k)h(k − m)e−j 2πn
N k (1)

where TF is the result of the STFT. m and n are the time index and frequency index of TF,
respectively. s(k) is the sampled sequence of the intra-pulse signal. h(k) is the window
function, which is used to obtain the sub-signal of s(k). In this paper, the length of the
obtained sub-signal s(k)h(k − m) is set to be 256, which is also the value of N. Hamming
Window is chosen as the window function, with a length of 64 (a quarter of the length
of the sub-signal). Compared with a traditional Fourier transformation, which provides
only global frequency-domain features, the time shift and frequency shift of the window
function provide STFT with localization characteristics. By using STFT, the radar emitter
signals could be analyzed with time-frequency features.
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estimating the SNR of the sample and calculating the reconstruction loss by inputting the sample to



Remote Sens. 2024, 16, 108 6 of 24

the corresponding encoder–decoder model related to the temporary predicted known class, whether
the sample belongs to the predicted temporary known class or the unknown class will be confirmed.

As the result of STFT is a complex matrix, first we calculate the square of the modulus
value of each element in TF, then we resize the resulting matrix in an image processing
way, where the resized result is a 128 × 128 matrix. Finally, we normalize the value of each
element in this matrix so that the value for each element of the resized matrix will range
from 0 to 1. The process could be written as:

TFsquare(a, b) = TFsquare(a, b)× TF∗
square(a, b), a ∈ [1, 2, . . . , m], b ∈ [1, 2, . . . , 256] (2)

imresize(·) : TFsquare ∈ Rm×256 → TFresize ∈ R128×128 (3)

TFI(i, j) =
TFresize(i, j)− min(TFresize)

max(TFresize)− min(TFresize)
, i ∈ [1, 2, . . . , 128], j ∈ [1, 2, . . . , 128] (4)

where TFsquare is the result calculated by squaring each element in TF and TF∗
square(a, b) is

the conjugation of TFsquare(a, b). The operation of imresize(·) is based on nearest-neighbor
interpolation. TFresize is the result of resizing TFsquare as a 128 × 128 matrix. max(·) and
min(·) are the functions used to obtain the max value and min value of the matrix, respec-
tively. TFI is the final result used for training and testing the model.

The results of data preprocessing based on STFT are shown in Section 3. Through the
data preprocessing based on STFT, the time-domain sampled radar emitter signals with
different intra-pulse modulations can be converted into time-frequency images, which are
used as the input for deep neural network models.

2.2. SNR Estimation

The signal-to-noise ratio (SNR) is important for intra-pulse modulation recognition.
We assume that the noise is additional white Gaussian noise [20]. Traditionally, except
for the intra-pulse part, the sampler also samples the blank part, which only includes the
noise. Let the received sequence of the blank part be noiseb(n). If the received sequence of
pure intra-pulse signal is s(n), then the actual received sequence of the intra-pulse signal
polluted by noise could be written as:

x(n) = s(n) + noisein(n) (5)

where x(n) is the sampled intra-pulse sequence polluted by noise. noisein(n) refers to the
noise sequence in the intra-pulse part. The power of x(n) could be calculated as follows:

Px =

N−1
∑

i=0
(x(i))2

N
(6)

where Px is the power of x(n) and N is the length of the sequence in the intra-pulse part. As
Px is the additional result of the power of s(n) and the power of noisein(n), the following
relationship can be written as:

Px = Ps + Pnoisein (7)

Ps =

N−1
∑

i=0
(s(i))2

N
(8)

Pnoisein =

N−1
∑

i=0
(noisein(i))

2

N
(9)

where Ps and Pnoisein are the power of s(n) and noisein(n), respectively.
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Based on the definition of SNR, the actual value of SNR is calculated as:

SNRactual = 10 log10

(
Ps

Pnoisein

)
(10)

As the power of noise is stable during a period of time, the power of nin(t) is closely
similar to that of nb(t). Therefore, the estimated SNR could be written as:

SNRestimated = 10 log10

(
Px − Pnoiseb

Pnoiseb

)
(11)

Pnoiseb =

M−1
∑

k=0
(noiseb(k))

2

M
(12)

where SNRcalculated is the estimated SNR of the signal. M is the length of the sequence in
the blank part.

2.3. Original Recognition Model for CSR

In many studies, convolutional neural networks (CNNs) have been used for recogniz-
ing intra-pulse modulations. Unlike the recognition with ImageNet [21,22], which usually
contains more than 1000 classes, there are fewer types of intra-pulse modulations. There-
fore, we take a CNN model with a normal VGG-based structure [23] as the intra-pulse
modulation recognition backbone. The structure of the original recognition model used in
this paper is shown in Figure 3.
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The input shape of the original recognition model is 128 × 128. There are five convolu-
tional blocks and each block contains two convolutional layers, a max-pooling layer where
the stride and pooling size are 2, and a batch-normalization layer [24]. The kernel size in all
convolutional blocks is 3 and the channels for convolutional block 1 to convolutional block
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5 are 16, 32, 64, 128 and 256, respectively. The fully connection layer contains 256 nodes
and the number of nodes of the output layer is the same as the number of known classes.
Except for the output layer, which uses “softmax,” the activation function for the rest is
“ReLU” [25]. At the stage of training this recognition model, the cross-entropy function is
selected as the loss function.

2.4. Encoder–Decoder Model

In anomaly detection tasks, the auto-encoder models have higher reconstruction loss
for the anomaly samples than the normal samples. And inspired by SegNet [26], we chose
to use an encoder–decoder-based structure to compress and decompress the TFIs and revise
the recognition result predicted by the original recognition model. The structure of the
encoder–decoder model used in this paper is shown in Figure 4.
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The input shape of the encoder–decoder model is 128 × 128. The encoder–decoder
model mainly contains two parts.

The first part is used to compress the TFIs. There are six compressed convolutional
blocks in the compress-encoder part. The compressed convolutional block is the same as
the convolutional block in the original recognition model in Section 3.3. The channels for
compressed convolutional block 1 to compressed convolutional block 6 are 16, 32, 64, 128,
128, and 128, respectively.

The second part of the encoder–decoder model is the decompress-encoder part, which
is used for up-sampling the features from the compress-encoder part and reconstructing
the TFIs. There are six decompressed convolutional blocks in the decompress-encoder part.
Each block includes an up-sampling layer where the rate is 2, two convolutional layers, and
a batch-normalization layer. The kernel size in all decompress convolutional blocks is 3.
And the channels for decompressed convolutional block 1 to decompressed convolutional
block 6 are 128, 128, 128, 64, 32, and 16, respectively. The activation function used in this
part is “ReLU”.

The output layer includes a convolutional layer with “Sigmoid” as the activation
function, where the channel and kernel size are 1. Therefore, the output shape of the
encoder–decoder model is same as the input shape. During the training session, MSE was
used as the loss function.
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3. Dataset and Experimental Settings

This section provides a simulation dataset of eleven different intra-pulse modulations
of radar emitter signals. Then, a description of the experiments with different levels of
openness is provided in detail. In addition, the two most representative methods based
on OpenMax and the maximum logit score (MLS) were used as the baseline methods for
intra-pulse modulation of OSR.

All programs related to the experiments were conducted with a computer with Intel
10,900 K, 128 GB RAM, and RTX 4090 GPU hardware capabilities; “MATLAB 2021a”
software; and the “Keras” and “Python” programming languages.

3.1. Intra-Pulse Modulation Radar Emitter Signal Datasets

In the actual environment, the carrier frequency of a radar emitter signal could range
from 300 MHz to 300 GHz. The receiver, where its local oscillators will down mix the
frequency, could output the signal sequences with a lower frequency. These low-frequency
signal sequences are finally aimed for analyzing and preprocessing later. Although the
pulse width could range from several microseconds to a hundred microseconds, a short
pulse width is more common. Therefore, in this paper, we focus on a certain range of pulse
width, from 5 µs to 20 µs. Besides, assuming the bandwidth for the receiver is 100 MHz,
we set a 200 MHz sampling frequency with single-channel sampling.

As a result, in this paper, we simulated eleven types of intra-pulse modulation sig-
nals, which include single-carrier frequency (SCF) signals, linear frequency modulation
(LFM) signals, sinusoidal frequency modulation (SFM) signals, quadratic frequency modu-
lation (EQFM) signals, dual linear frequency modulation (DLFM) signals, multiple linear
frequency modulation (MLFM) signals, binary frequency shift keying (BFSK) signals,
quadrature frequency shift keying (QFSK) signals, binary phase shift keying (BPSK) sig-
nals, Frank phase-coded (Frank) signals, and composite modulation with LFM and BPSK
(LFM-BPSK) signals. The parameters of the eleven types of intra-pulse modulations are
shown in Table 1.

Table 1. The parameters of eleven types of intra-pulse modulations.

Type Frequency Parameters Details

SCF 10 MHz–90 MHz None None

LFM 10 MHz–90 MHz Bandwidth: 10 MHz–70 MHz
1. Both up LFM and down LFM are included
2. Both max value and min value of the instantaneous
frequency for LFM range from 10 MHz to 70 MHz

SFM 10 MHz–90MHz Bandwidth: 10 MHz–70 MHz Both max value and min value of the instantaneous
frequency for SFM range from 10 MHz to 70 MHz

EQFM 10 MHz–90 MHz Bandwidth: 10 MHz–70 MHz

1. The instantaneous frequency increases first and then
decreases, or decreases first and then increases
2. Both max value and min value of the instantaneous
frequency for EQFM range from 10 MHz to 70 MHz

DLFM 10 MHz–90 MHz Bandwidth: 10 MHz–70 MHz

1. The instantaneous frequency increases first and then
decreases, or decreases first and then increases
2. Both max value and min value of the instantaneous
frequency for DLFM range from 10 MHz to 70 MHz

MLFM 10 MHz–90 MHz
10 MHz–90 MHz

Bandwidth: 10 MHz–70 MHz
Bandwidth: 10 MHz–70 MHz
Segment ratio: 20–80%

1. Up LFM and down LFM are included in each of the
two parts
2. Both max value and min value of the instantaneous
frequency for each part of the MLFM range from
10 MHz to 70 MHz
3. The distance of the instantaneous frequency in the
end of the first part and the instantaneous frequency in
the start of the last part is more than 10 MHz
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Table 1. Cont.

Type Frequency Parameters Details

BFSK 10 MHz–90 MHz
10 MHz–90 MHz 5, 7, 11, 13-bit Barker code The distance of two sub-carrier frequency is more than

10 MHz

QFSK

10 MHz–90 MHz
10 MHz–90 MHz
10 MHz–90 MHz
10 MHz–90 MHz

16-bit Frank code The distance of each two sub-carrier frequency is more
than 10 MHz

BPSK 10 MHz–90 MHz 5, 7, 11, 13-bit Barker code None

FRANK 10 MHz–90 MHz Phase number: 6, 7, 8 None

LFM-BPSK 10 MHz–90 MHz Bandwidth: 10 MHz–70 MHz
5, 7, 11, 13-bit Barker code

1. Both up LFM and down LFM are included
2. Both max value and min value of the instantaneous
frequency for LFM-BPSK range from 10 MHz to 70 MHz

The SNR for each type of intra-pulse modulation ranges from −10.5 dB to 10.5 dB.
That is, there are 21 intervals of the SNR split by 1 dB. The mid value of each corresponding
interval is [−10 dB,−9 dB, . . . , 9 dB, 10 dB]. For example, if the SNR = 2 dB, this means that
the actual SNR in this interval belongs to [1.5 dB, 2.5 dB).

In each interval of the SNR, the number of samples for each type of intra-pulse
modulation is 1500. Where 600 samples are training samples, 400 samples are validation
samples and 500 samples are testing samples. Figure 5 shows the heat maps of the TFIs of
eleven types of intra-pulse modulation signals when the SNR is 10 dB.
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3.2. Description of the Experiments with Different Openness

In this paper, we conducted several experiments with different levels of openness to
show the performance of the proposed OSR method for intra-pulse modulation. Specifically,
we take five main conditions into consideration. The details of these five conditions are
shown as follows:
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Condition 1: Ten out of eleven types of intra-pulse modulation are known classes,
and the other type is an unknown class. Therefore, there are 11 different situations in
Condition 1.

Condition 2: Nine out of eleven types of intra-pulse modulation are known classes,
and the other two types are unknown classes. Therefore, there are 55 different situations in
Condition 2.

Condition 3: Eight out of eleven types of intra-pulse modulation are known classes,
and the other three types are unknown classes. Therefore, there are 165 different situations
in Condition 3.

Condition 4: Seven out of eleven types of intra-pulse modulation are known classes,
and the other four types are unknown classes. Therefore, there are 330 different situations
in Condition 4.

Condition 5: Six out of eleven types of intra-pulse modulation are known classes, and
the other five types are unknown classes. Therefore, there are 462 different situations in
Condition 5.

3.3. Baseline Methods

OpenMax has been widely used for OSR tasks. It combines deep learning with extreme
theory to estimate the probability of unknown classes. In [17], the authors used STFT and
OpenMax to recognize different jamming signals. Although the DNN model and the source
signal are different, the OpenMax-based recognition method in [17] is still instructive.
Therefore, we chose to reuse its OpenMax method accompanied by the recognition model
in Section 2.3 as the baseline method. In addition, the maximum logit score (MLS) method
was proven competitive with or to outperform other OSR methods in [27]. Therefore, in
this paper, it was also chosen as a baseline method.

4. Experiments
4.1. Training Details and Computational Cost

The original recognition model for intra-pulse modulation CSR was trained with
20 epochs and the batch size was 64. The weights for the testing sections were chosen to
have the highest overall recognition accuracy on the corresponding validation dataset.

For the encoder–decoder model, the training epoch was 300 and the batch size was 40.
The optimization algorithm was all set as adaptive moment estimation (ADAM) [28] with
a 0.001 learning rate. The weights, which have the lowest overall reconstruction loss on the
according validation dataset, were chosen as in the testing section.

The average data preprocessing time per sample based on the method in Section 2.1
and the dataset in Section 3.1 was around 14.4 ms. The floating point operations (FLOPs),
parameters, and time usage for the training and testing sessions based on the CSR model
and encoder–decoder model are shown in Tables 2 and 3, respectively.

Table 2. The FLOPs, parameters, and time usage for the training and testing sessions based on the
CSR model.

FLOPs 4.5 M

Parameters 2.2 M

Training Time/Iteration
(Batch Size: 64) 13.7 ms

Forward Time
(Single Sample) 2.3 ms
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Table 3. The FLOPs, parameters, and time usage for training and testing sessions based on the
encoder–decoder model.

FLOPs 3.8 M

Parameters 1.9 M

Training Time/Iteration
(Batch Size: 40) 23 ms

Forward Time
(Single Sample) 4.9 ms

4.2. Experimental Results of the Proposed Method and Baseline Methods

Our proposed method and the baseline method were trained based on the dataset in
Section 3.1 with different conditions as in Section 3.2. First of all, we provided well-trained
the average recognition accuracy of the original recognition model on the correspond-
ing known testing dataset in a closed set situation. The results are shown in Table 4,
which indicates that the original recognition model has good performance on intra-pulse
modulation CSR.

Table 4. The average recognition accuracy on the corresponding known testing dataset with different
SNRs and conditions based on the original recognition models in the situation of a closed set. The
number of known classes is 10, 9, 8, 7, and 6 for Condition 1 to Condition 5, respectively. The point of
the SNR refers to the mean accuracy for the 1 dB interval of the SNR. The results for each condition
are based on the average results of all situations in the corresponding condition. For Condition 1 to
Condition 5, the number of situations is 11, 55, 165, 330, and 462, respectively.

SNR/dB Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

−10 0.8745 0.8853 0.8971 0.9081 0.9196

−9 0.9356 0.9409 0.9469 0.9529 0.9594

−8 0.9672 0.9698 0.9730 0.9761 0.9794

−7 0.9881 0.9889 0.9899 0.9911 0.9925

−6 0.9956 0.9955 0.9959 0.9964 0.9969

−5 0.9980 0.9981 0.9984 0.9984 0.9988

−4 0.9993 0.9995 0.9996 0.9995 0.9997

−3 0.9999 0.9998 0.9998 0.9999 0.9999

−2 0.9999 0.9999 0.9999 1.0000 1.0000

−1 1.0000 0.9999 0.9999 1.0000 1.0000

0 1.0000 1.0000 1.0000 1.0000 1.0000

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.9998 0.9998 0.9999 0.9999 0.9999

3 1.0000 1.0000 1.0000 1.0000 1.0000

4 0.9999 1.0000 1.0000 1.0000 1.0000

5 1.0000 1.0000 1.0000 1.0000 1.0000

6 1.0000 1.0000 1.0000 1.0000 1.0000

7 1.0000 1.0000 1.0000 1.0000 1.0000

8 1.0000 0.9999 1.0000 1.0000 1.0000

9 1.0000 1.0000 1.0000 1.0000 1.0000

10 1.0000 1.0000 1.0000 1.0000 1.0000

Average Accuracy 0.9885 0.9894 0.9905 0.9915 0.9927
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Next, we conducted the experiments for the intra-pulse modulation OSR. In real actual
radar systems, the average recognition accuracy on the known classes should be kept
higher than or at least close to a certain value. Based on this reason, the average accuracy
threshold on known classes was set to be 80%, 85%, 90%, and 95%, respectively.

Therefore, for each situation of the different conditions in Section 3.2, we set different
thresholds for the reconstruction loss for our method and the score thresholds for the
OpenMax-and MLS-based methods, so that the average accuracy of these methods on the
corresponding validation dataset could adapt to the requirements (equal to or close to the
average accuracy thresholds as much as possible).

The setting of the threshold for the OpenMax-based method and MLS-based method
was based on the revised softmax score and the maximum logit score, respectively. Both
methods follow the principle that if the score of the given testing sample is lower than the
threshold, then the sample will be seen as unknown.

The setting of the threshold for our method is based on the principle in Section 2,
where we control the ratio to ensure that the mean recognition accuracy in corresponding
validation datasets is close to 80%, 85%, 90%, and 95%, respectively. Figure 6 shows the
thresholds of reconstruction loss in the corresponding validation dataset with different
SNRs based on these 11 encoder–decoder models when selecting 85%, 90%, and 95%
samples as the known, respectively.
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Figure 6. The thresholds of reconstruction loss in the corresponding validation datasets with different
SNRs based on these 11 encoder–decoder models when selecting 85%, 90%, and 95% samples as
the known, respectively, which equals to setting the top highest 15%, 10%, and 5% reconstruction
losses from the corresponding validation samples as the thresholds in each interval of the SNR in one
known class. The marker point refers to the accuracy for the 1 dB interval of the SNR.

Then, we evaluated the above models by testing the dataset. Note that the threshold
settings are all based on the corresponding validation dataset.

Figure 6 shows that a higher ratio for selecting samples as the known leads to a higher
threshold for reconstruction loss. In addition, it can be seen that when the value of the
SNR rises, the reconstruction loss of the corresponding validation samples based on the
encoder–decoder model generally decreases.

Tables 5–8 give the testing results of the average recognition accuracy of the methods
for known classes and unknown classes, where the average accuracy threshold for the
validation dataset is 80%, 85%, 90%, and 95%, respectively. Note that if the recognition
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accuracy for one of situations in one of conditions cannot reach the average accuracy
threshold (like 95%), for OpenMax, the revised softmax-based threshold will be 0 and for
our method, the threshold of the SNR will be positive infinity.

Table 5. Under the average accuracy threshold of 80%, the average recognition accuracy of our
proposed method, the OpenMax-based method and MLS-based method on the corresponding test
dataset with 5 different conditions. The results for each condition are based on the average results of
all situations in the corresponding condition. For Condition 1 to Condition 5, the number of situations
is 11, 55, 165, 330, and 462, respectively.

Method
(Average
Accuracy

Threshold of
80%)

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Known Unknown Known Unknown Known Unknown Known Unknown Known Unknown

Ours 0.7869 0.6762 0.7876 0.6784 0.7884 0.6854 0.7891 0.6896 0.7900 0.6977
OpenMax 0.8063 0.6207 0.8058 0.6095 0.8079 0.5960 0.8100 0.5838 0.8124 0.5811

MLS 0.8077 0.7183 0.7983 0.7657 0.7992 0.7208 0.7996 0.6879 0.8003 0.6684

Table 6. Under the average accuracy threshold of 85%, the average recognition accuracy of our
proposed method, the OpenMax-based method and MLS-based method on the corresponding test
dataset with 5 different conditions. The results for each condition are based on the average results of
all situations in the corresponding condition. For Condition 1 to Condition 5, the number of situations
is 11, 55, 165, 330, and 462, respectively.

Method
(Average
Accuracy

Threshold of
85%)

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Known Unknown Known Unknown Known Unknown Known Unknown Known Unknown

Ours 0.8468 0.6337 0.8377 0.6444 0.8386 0.6524 0.8394 0.6575 0.8403 0.6665
OpenMax 0.8517 0.5357 0.8515 0.5308 0.8519 0.5279 0.8527 0.5248 0.8532 0.5265

MLS 0.8547 0.6842 0.8548 0.7231 0.8557 0.6797 0.8562 0.6455 0.8569 0.6267

Table 7. Under the average accuracy threshold of 90%, the average recognition accuracy of our
proposed method, the OpenMax-based method and MLS-based method on the corresponding test
dataset with 5 different conditions. The results for each condition are based on the average results of
all situations in the corresponding condition. For Condition 1 to Condition 5, the number of situations
is 11, 55, 165, 330, and 462, respectively.

Method
(Average
Accuracy

Threshold of
90%)

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Known Unknown Known Unknown Known Unknown Known Unknown Known Unknown

Ours 0.9000 0.5891 0.8905 0.6031 0.8915 0.6121 0.8924 0.6182 0.8934 0.6283
OpenMax 0.9014 0.4014 0.9017 0.4132 0.9018 0.4258 0.9014 0.4333 0.9012 0.4353

MLS 0.9059 0.6380 0.9060 0.6704 0.9071 0.6304 0.9077 0.5944 0.8987 0.5880

As the results show, both of the methods have good performance in recognizing the
known intra-pulse modulations. But there is a significant difference for these three methods
in the average recognition accuracies in the unknown class. When the average accuracy
threshold is 95%, the average recognition accuracy in the unknown class of the OpenMax-
based method is at most 0.28, while our proposed OSR method and the MLS-based method
perform better, where the average recognition accuracy in the unknown class is over 0.50.
As the value of the average accuracy threshold decreases, the average recognition accuracy
in the unknown class for the three methods increases. Besides, although the MLS-based
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method performs better in Condition 1 to Condition 3, when the openness rises, our method
is better at recognizing the unknown samples.

Table 8. Under the average accuracy threshold of 95%, the average recognition accuracy of our
proposed method, the OpenMax-based method and MLS-based method on the corresponding test
dataset with 5 different conditions. The results for each condition are based on the average results of
all situations in the corresponding condition. For Condition 1 to Condition 5, the number of situations
is 11, 55, 165, 330, and 462, respectively.

Method
(Average
Accuracy

Threshold of
95%)

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Known Unknown Known Unknown Known Unknown Known Unknown Known Unknown

Ours 0.9530 0.5248 0.9539 0.5324 0.9449 0.5576 0.9459 0.5652 0.9470 0.5767
OpenMax 0.9533 0.1667 0.9511 0.2177 0.9522 0.2407 0.9513 0.2669 0.9494 0.2793

MLS 0.9515 0.5750 0.9519 0.5951 0.9530 0.5600 0.9539 0.5242 0.9548 0.5086

The average recognition accuracy with five conditions and different SNRs is shown in
Figures 7–11.
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Figure 7. The average recognition accuracy of our proposed method, the OpenMax-based method,
and the MLS-based method on the according test dataset for different SNRs in Condition 1. The
marker point refers to the accuracy for the 1 dB interval of the SNR. The results are based on the
average results of 11 situations in Condition 1. “Threshold of 80%, 85%, 90%, and 95%” means the
average accuracy in the corresponding validation dataset with known classes is 80%, 85%, 90%, and
95%, respectively.
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Figure 8. The average recognition accuracy of our proposed method, the OpenMax-based method,
and the MLS-based method in the corresponding test dataset for different SNRs in Condition 2. The
marker point refers to the accuracy for the 1 dB interval of the SNR. The results are based on the
average results of 55 situations in Condition 2. “Threshold of 80%, 85%, 90%, and 95%” means the
average accuracy in the corresponding validation dataset with known classes is 80%, 85%, 90%, and
95%, respectively.
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average accuracy in the corresponding validation dataset with known classes is 80%, 85%, 90%, and
95%, respectively.
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Figure 10. The average recognition accuracy of our proposed method, the OpenMax-based method,
and the MLS-based method in the corresponding test dataset for different SNRs in Condition 4. The
marker point refers to the accuracy for the 1 dB interval of the SNR. The results are based on the
average results of 330 situations in Condition 4. “Threshold of 80%, 85%, 90%, and 95%” means the
average accuracy in the corresponding validation dataset with known classes is 80%, 85%, 90%, and
95%, respectively.
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average accuracy in the corresponding validation dataset with known classes is 80%, 85%, 90%, and
95%, respectively.

From the figures, it can be seen that our OSR method and the MLS-based method are
more stable than the OpenMax-based method. In contrast, the known classes accuracy
of the OpenMax-based method first rises with the increment of SNR, then it drops a lot
when the SNR keeps increasing. Although the accuracy for known classes based on the
OpenMax-based method is higher when SNR is higher, in the situation of a lower SNR,
the OpenMax-based method performs extremely poorly compared with our OSR method
and the MLS-based method. In addition, the trend of the accuracy in the unknown class
based on the OpenMax-based method is decreasing as the SNR increases, while the trend
based on our OSR method and the MLS-based method is generally increasing. In addition,
although the MLS-based method is better at lower SNR, when the SNR goes up, the average
recognition accuracy in the unknown class is less competitive than our method, where the
average recognition accuracy based our method in the unknown class is equal or more than
80% at 5 dB.

As a result, based on extensive experimental results with five different openness condi-
tions, it is indicated that our proposed method, which better meets the actual requirement
where the recognition of known classes is taken as the first consideration for actual radar
systems, is effective for recognizing intra-pulse modulations of radar emitter signals in an
open set. Figures 12–16 provide some confusion matrices based on our method for one of
the situations in the testing dataset when the SNR is 0 dB, 5 dB, and 10 dB in Condition 1 to
Condition 5, respectively.
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5. Discussion

We further analyzed the influence of the structure of the reconstruction model on
recognition accuracy. The ablation experiments are based on the same dataset and condi-
tions as in Sections 3.1 and 3.2, and the training setting is the same as in Section 4.1. In
addition, we provide some scenarios where our method could potentially be applied.

5.1. Ablation Study on the Structure of the Reconstruction Model on Recognition Accuracy

In this section, the original recognition models are same to those in Section 4.2. We
changed the number of compressed convolutional blocks and decompressed convolutional
blocks. Specifically, three ablation models are included. These three models are based the
same encoder–decoder structure in Section 2.4. The differences are the block numbers. The
details are as follows:

Ablation Model 1 (AM1): 4th to 6th compressed convolutional blocks and decom-
pressed convolutional blocks are deleted.

Ablation Model 2 (AM2): 5th to 6th compressed convolutional blocks and decom-
pressed convolutional blocks are deleted.

Ablation Model 3 (AM3): 6th compressed convolutional block and decompressed
convolutional block are deleted.

In addition, the parameters of the reserved convolutional blocks are the same as the
blocks in Section 2.4.

Except for these three models, we also applied the widely used reconstruction models
named U-Net [29] and UNet3+ [30] as two extra ablation models.

Based on these reconstruction models, we conducted the intra-pulse modulation OSR
experiments. The average recognition results are shown in Tables 9–12. In addition, we
summarized the average reconstruction loss on the corresponding validation dataset in
Table 13.
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Table 9. Under the average accuracy threshold of 80%, the average recognition accuracy in the
corresponding test dataset with 5 different conditions based on the ablation models and our proposed
model. The results for each condition are based on the average results of all situations in the
corresponding condition. For Condition 1 to Condition 5, the number of situations is 11, 55, 165, 330,
and 462, respectively.

Method
(Average
Accuracy

Threshold of
80%)

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Known Unknown Known Unknown Known Unknown Known Unknown Known Unknown

Ours 0.7869 0.6762 0.7876 0.6784 0.7884 0.6854 0.7891 0.6896 0.7900 0.6977
AM1 0.8099 0.3696 0.8006 0.3817 0.8015 0.3818 0.8023 0.3815 0.8033 0.3790
AM2 0.8006 0.4427 0.8014 0.4504 0.8022 0.4515 0.8031 0.4520 0.8040 0.4516
AM3 0.7996 0.5993 0.8003 0.6027 0.8011 0.6091 0.8019 0.6108 0.8028 0.6134

U-Net 0.8024 0.3333 0.8031 0.3273 0.8039 0.3320 0.8047 0.3345 0.8057 0.3371
UNet3+ 0.7998 0.3605 0.8005 0.3645 0.8014 0.3696 0.8022 0.3717 0.8032 0.3742

Table 10. Under the average accuracy threshold of 85%, the average recognition accuracy in the
corresponding test dataset with 5 different conditions based on the ablation models and our proposed
model. The results for each condition are based on the average results of all situations in the
corresponding condition. For Condition 1 to Condition 5, the number of situations is 11, 55, 165, 330,
and 462, respectively.

Method
(Average
Accuracy

Threshold of
85%)

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Known Unknown Known Unknown Known Unknown Known Unknown Known Unknown

Ours 0.8468 0.6337 0.8377 0.6444 0.8386 0.6524 0.8394 0.6575 0.8403 0.6665
AM1 0.8490 0.3421 0.8498 0.3468 0.8508 0.3473 0.8517 0.3472 0.8526 0.3446
AM2 0.8496 0.4065 0.8504 0.4141 0.8513 0.4158 0.8522 0.4168 0.8532 0.4168
AM3 0.8489 0.5620 0.8496 0.5664 0.8505 0.5736 0.8514 0.5760 0.8523 0.5793

U-Net 0.8500 0.2768 0.8508 0.2720 0.8517 0.2762 0.8526 0.2791 0.8536 0.2816
UNet3+ 0.8494 0.3042 0.8501 0.3082 0.8511 0.3135 0.8519 0.3162 0.8529 0.3189

Table 11. Under the average accuracy threshold of 90%, the average recognition accuracy in the
corresponding test dataset with 5 different conditions based on the ablation models and our proposed
model. The results for each condition are based on the average results of all situations in the
corresponding condition. For Condition 1 to Condition 5, the number of situations is 11, 55, 165, 330,
and 462, respectively.

Method
(Average
Accuracy

Threshold of
90%)

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Known Unknown Known Unknown Known Unknown Known Unknown Known Unknown

Ours 0.9000 0.5891 0.8905 0.6031 0.8915 0.6121 0.8924 0.6182 0.8934 0.6283
AM1 0.9076 0.2937 0.8992 0.3066 0.9001 0.3074 0.9011 0.3077 0.9021 0.3053
AM2 0.9077 0.3616 0.8991 0.3765 0.9001 0.3788 0.9010 0.3801 0.9021 0.3803
AM3 0.8989 0.5161 0.8998 0.5216 0.9007 0.5299 0.9017 0.5332 0.9027 0.5374

U-Net 0.8989 0.2133 0.8997 0.2086 0.9007 0.2124 0.9016 0.2154 0.9026 0.2176
UNet3+ 0.8987 0.2437 0.8995 0.2479 0.9005 0.2535 0.9014 0.2567 0.9025 0.2601
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Table 12. Under the average accuracy threshold of 95%, the average recognition accuracy in the
corresponding test dataset with 5 different conditions based on the ablation models and our proposed
model. The results for each condition are based on the average results of all situations in the
corresponding condition. For Condition 1 to Condition 5, the number of situations is 11, 55, 165, 330,
and 462, respectively.

Method
(Average
Accuracy

Threshold of
95%)

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Known Unknown Known Unknown Known Unknown Known Unknown Known Unknown

Ours 0.9530 0.5248 0.9539 0.5324 0.9449 0.5576 0.9459 0.5652 0.9470 0.5767
AM1 0.9560 0.2457 0.9473 0.2615 0.9484 0.2628 0.9494 0.2633 0.9505 0.2612
AM2 0.9563 0.3089 0.9473 0.3276 0.9484 0.3304 0.9494 0.3322 0.9505 0.3326
AM3 0.9576 0.4428 0.9492 0.4650 0.9502 0.4744 0.9512 0.4787 0.9523 0.4837

U-Net 0.9563 0.1223 0.9472 0.1371 0.9483 0.1400 0.9492 0.1427 0.9503 0.1442
UNet3+ 0.9565 0.1547 0.9574 0.1582 0.9487 0.1809 0.9497 0.1848 0.9508 0.1890

Table 13. The average reconstruction loss in the corresponding validation dataset based on the
ablation models and our proposed model. As there are 11 types of intra-pulse modulations, the
results for each reconstruction model are based on the average results of 11 sub-reconstruction
encoder–decoder models. As the original loss is based on MSE, which is too small, we report it by
magnifying itself 16,384 times (equal to 128 × 128).

Reconstruction Model Ours AM1 AM2 AM3 U-Net UNet3+

Average Reconstruction Loss
(The original value based on MSE is magnified 16,384 times

(equals to 128 × 128))
36.7777 4.5015 10.3470 24.0721 0.0294 0.0333

From Tables 9–13, it could be found that the deeper structure of the proposed encoder–
decoder model provides better performance in recognizing the unknown intra-pulse mod-
ulation. In addition, the experimental results of AM1 to AM3 and ours show that the
structure of the encoder–decoder will obtain more reconstruction loss when the depth
increases. In addition, the average reconstruction loss of the U-Net model and UNet3+
model is quite low, compared among the Ablation Model 1 to Ablation Model 3 and the
model in Section 2.4, which means these two models reconstruct the TFIs in high quality.

However, although these two models with complex structures have lower reconstruc-
tion loss in the validation dataset, they do not provide good performance in recognizing the
unknown intra-pulse modulation. The reason for this is that the merging connection from
the encoder part to the decoder part keeps many shallower features, where the decoder
part receives many features without deep compression. If the model receives an unknown
sample, due to the merging connection, the output will still have low reconstruction loss.

The encoder–decoder structure in Section 2.4, which does not have an extra connection
branch, extremely compresses the feature used for the decoder part. Therefore, the output
reconstructed TFIs have higher reconstruction loss. If this model receives an unknown
sample, then a very slight change from the output of its encoder part will cause a higher
difference in the output result, reflected in the higher reconstruction loss compared with
the unknown samples.

In terms of the intra-pulse modulation OSR, our proposed structure of an encoder–
decoder model without an extra merging connection is more suitable and effective for
recognizing the unknown class.

5.2. Application Scenarios

DNN-based models have been widely used for radar emitter signal intra-pulse mod-
ulation recognition. In real applications, except for the known classes, radar systems are
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often facing unknown intra-pulse modulations. It is essential for the systems not only to
classify the known classes in the library correctly, but also to identify the unknown samples.
Currently, there are few pieces of literature focusing on OSR in radar emitter signal intra-
pulse modulation. Through the result of Tables 5–12 in Sections 4.2 and 5.1, we could reach
a conclusion that a deeper encoder–decoder structure without an extra merging connection
could increase the performance in recognizing unknown intra-pulse modulation.

At the same time, our method could be applied to other radar signal recognition tasks.
For example, in radar jamming recognition tasks [17,31], the library cannot include all of
the jamming types from the target jamming emitter. Therefore, it is important to accurately
classify the known jamming types and recognize the unknown jamming. Besides, automatic
target recognition based on synthetic aperture radar images [32] and high-resolution range
profile recognition [33] is also facing the problem that unknown targets often emerge
and cannot be neglected. Correctly recognizing the unknown targets will provide better
intelligence for the systems. Although the source data for different radar signal recognition
tasks are different, the framework of our method, like threshold setting and an encoder–
decoder model for revising the recognition result, still could provide guidance for designing
corresponding recognition methods.

6. Conclusions

In this paper, we focused on an open set situation instead of a closed set situation and
proposed a method for recognizing radar emitter signal intra-pulse modulations. Through
the extensive experiments, including five different openness conditions, we found that our
proposed method, which combines data preprocessing based on STFT, SNR estimation, a
recognition model for CSR, and an encoder–decoder model, is effective in recognizing an
unknown intra-pulse modulation with good performance in classifying known intra-pulse
modulations. Additionally, according to an ablation study of the effect of the structure
of the reconstruction model on recognition accuracy, we could conclude that a deeper
encoder–decoder structure without extra merging connections leads to better performance
in recognizing unknown samples. Our proposed method in this paper could provide
guidance for radar emitter signal intra-pulse modulation OSR tasks.

As the current method only recognizes unknown samples from different types as one
unknown class, in future work, we will focus on the task of classifying these unknown
samples into specific classes.
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