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Abstract: Achieving high-resolution remote sensing images is an important goal in the field of
space exploration. However, the quality of remote sensing images is low after the use of traditional
compressed sensing with the orthogonal matching pursuit (OMP) algorithm. This involves the recon-
struction of the sparse signals collected by photon-integrated interferometric imaging detectors, which
limits the development of detection and imaging technology for photon-integrated interferometric
remote sensing. We improved the OMP algorithm and proposed a threshold limited-generalized
orthogonal matching pursuit (TL-GOMP) algorithm. In the comparison simulation involving the
TL-GOMP and OMP algorithms of the same series, the peak signal-to-noise ratio value (PSNR) of the
reconstructed image increased by 18.02%, while the mean square error (MSE) decreased the most
by 53.62%. The TL-GOMP algorithm can achieve high-quality image reconstruction and has great
application potential in photonic integrated interferometric remote sensing detection and imaging.

Keywords: remote sensing image; compressed sensing; image reconstruction; photon-integrated
technology; detection image

1. Introduction

With the increasingly mature manufacturing process of photonic integrated devices
and interference detection technology, the segmented planar imaging detector for electro-
optical reconnaissance (SPIDER), which has photonic integrated interference imaging as its
core technology, has attracted a lot of attention from researchers in the field of astronomical
observation or remote sensing detection. It has been used to replace traditional optical
telescopes with large volume, weight, and energy consumption [1] in the detection of
targets. For example, the Hubble Telescope is 13.3 m long and weighs 27,000 pounds [2].

Interferometry is an important technology used in photonic integrated interferometric
imaging systems. It uses electromagnetic wave superposition to extract the wave source
information and provides technical support for the reconstruction of high-resolution images.
Optical interferometry unifies the light from many lens pairs on a photonic integrated chip
(PIC) and then reconstructs the remote sensing image from the optical signal obtained
by interferometry. Optical interferometer arrays are the preferred instruments for high-
resolution imaging. Such interferometer arrays include the CHARA array [3,4], larger
telescope interferometer [5], and navy precision optical interferometer [6]. These systems
use far-field spatial coherence measurements to form intensity images of light source
targets [7]. In our previous publication [8,9], we discussed the definition of a small-
scale interferometric imager, which we called a planar photoelectric detection imaging
detector (SPIDER). The SPIDER imager [8] comprises one-dimensional interferometric
arms arranged along the azimuth angles in multiple directions. Each interference arm has
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the same design structure. Any two lenses on the interference arm form the interference
baseline; the collected optical signals are coupled in the PIC and interfered in the multi-
mode interferometer (MMIs), while the fringe data are read by the two-dimensional detector
array. Because the interference arms in the PIC are distributed along the azimuth angle
[0, 2π], and since interference baselines of any length on the interference arms correspond
to the spatial frequency information in the two-dimensional Fourier Transform domain,
the PIC can obtain optical frequency information through sparse sampling in all directions.
We can use the compressing sensing (CS) theory algorithm to reconstruct sparse optical
signal data in order to obtain the content information of detection targets. The CS theory
can be applied in the field of photonic integrated interference imaging to meet our needs in
life, production, and scientific exploration.

In recent years, CS has attracted increasing attention in signal processing. Donoho et al.
proposed this theory in 2006. The traditional Nyquist sampling theorem [10] requires that
the sampling frequency of the signal be greater than or equal to twice the signal frequency.
The proposed compressed sensing theory overcomes the limitations of traditional sampling
theorems. If the collected signals are sufficiently sparse, the original signals can be recon-
structed by projection onto random vectors. More specifically, the original signals could
be reconstructed at low speeds. Therefore, this innovative theory of improving sampling
efficiency has been of great interest in the fields of digital signal processing [11], optical
imaging [12], medical imaging [13], radio communication [14], radar imaging [15], and
pattern recognition [16]. The research conducted on compressed sensing comprises three
main areas: (1) the sparse representation of original signals, with commonly used sparse
transform methods such as the Fourier Transform (FT) [17], Discrete Cosine Transform
(DCT) [18], and Wavelet Transform (DWT) [19]; (2) the design of the measurement matrix,
including the random measurement matrix [20,21] and deterministic measurement ma-
trix [22,23]; (3) reconstruction algorithms, such as the basis pursuit (BP) algorithm [24,25],
matching pursuit (MP) algorithm [26], and orthogonal matching pursuit algorithm [27–30].

The compressed sensing OMP algorithm is one of the most representative greedy
algorithms; it is simple, stable, has low computational complexity, and has been widely
studied by researchers. In contrast, the traditional OMP algorithm produces Gaussian
noise when reconstructing an image, which significantly affects the quality of the recon-
structed image. Consequently, the traditional OMP algorithm has continuously been
improved over time, and enhanced algorithms such as stagewise orthogonal matching
pursuit (STOMP), generalized orthogonal matching pursuit (GOMP), and stagewise weak
orthogonal matching pursuit (SWOMP) have been generated to improve the quality of the
reconstructed image. To further solve the above-mentioned problems, we improved the
threshold limited-generalized orthogonal matching tracing algorithm using the traditional
OMP algorithm.

The main contributions of this paper can be summarized as follows:

(1) We improved the traditional OMP algorithm and proposed the TL-GOMP algorithm,
which was used to reconstruct the sparse spatial frequency information collected by
the PIC and recover the content information of the detected target. In the simula-
tion, we compared the TL-GOMP algorithm with the other improved OMP image
reconstruction algorithm from the same series and the non-OMP image reconstruction
algorithm, and subsequently verified its superiority in image reconstruction.

(2) Simultaneously, we used this algorithm to reconstruct and simulate the sparse signals
collected by photonic integrated chips at different distances. The simulation results
showed that the TL-GOMP algorithm can be applied in the field of photon-integrated
interferometric remote sensing detection and imaging to recover the content informa-
tion of unknown targets.

2. Related Work

Image reconstruction is based on sparse original signals from the target or image, and
the content and feature information of the target or image are restored and reproduced by
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designing reconstruction algorithms. At present, the compressed sensing reconstruction
algorithm has become the mainstream in the field of image reconstruction, mainly because
the image signal has two characteristics: high dimension and can be sparse. The research
on compressed sensing theory mainly includes three aspects: sparse signal representation,
measurement matrix design, and reconstruction algorithm design.

2.1. Sparse Signal Representation

The sparse representation of signals is an important premise and foundation of com-
pressed sensing theory. When a signal can become approximately sparse under the action
of a change domain, it is said to have sparsity or compressibility, which can achieve the
purpose of reducing signal storage space and effectively compressed sampling. If the length
of a signal is N, and the number of non-zero value elements is no more than k after repre-
sentation by the sparse basis matrix, we can define it as a k-sparse signal. The sparsity k of
the sparse signal directly affects the accuracy of the reconstructed signal; that is, the higher
the sparsity, the higher the accuracy of the reconstructed signal. Based on the above reasons,
the reasonable selection of the sparse basis matrix is very important. The commonly used
transform bases are as follows: Fourier Transform basis [17], Discrete Cosine Transform
basis [18], Discrete Wavelet Transform basis [19], Contourlet Transform basis [31], and the
K-singular value decomposition method based on matrix decomposition [32].

2.2. Design of Measurement Matrix

In compressed sensing theory, the measurement matrix has the function of sampling
the original signal, and its selection is very important. It can project the signal from a high-
dimensional space to a low-dimensional space to obtain the corresponding measurement
value. In order to obtain an accurate sparse representation through measurement values,
an uncorrelated relationship between the observed matrix and the sparse basis matrix
was required to satisfy the Restricted Isometry Property (RIP), which guaranteed that the
original space and the sparse space could be mapped one-to-one. At the same time, the
matrix formed by arbitrarily extracting the number of column vectors that was equal to
the number of observed values is non-singular. Commonly used measurement matrices
are as follows: Gaussian random matrix [33], measurement matrix constructed based
on equilibrium Gold sequence [34], partial Fourier matrix [35], and partial Hadamard
matrix [36]. Wang Xia proposed a deterministic random sequence measurement matrix [37]
and verified its effectiveness through experiments.

2.3. Design of Reconstruction Algorithm

In recent years, remarkable achievements have been made in the research on com-
pressed sensing reconstruction algorithms, which can be divided into the traditional it-
erative compressed sensing reconstruction algorithm and the deep compressed sensing
network-based reconstruction algorithm.

2.3.1. Traditional Iterative Compressed Sensing Reconstruction Algorithm

The purpose of compressed sensing is to find the sparsest original signal to meet the
demands of measurement, which can be understood as the inverse problem of minimizing
the norm of l0. Specific methods for achieving this are as follows: (1) convex relaxation
method, which converts the minimum l0-norm problem into the minimum l1 norm problem
under certain conditions, that is, the non-convex problem is converted into a convex
problem such as the basis pursuit algorithm [38] and the Gradient Projection for Sparse
Reconstruction (GPSR) [39]; (2) greedy matching tracking algorithms such as the matching
pursuit algorithm [26] and the orthogonal matching pursuit algorithm [27,28]; (3) non-
convex optimization methods, including the Bayesian Compressed Sensing algorithm
(BCS) [40]; and (4) model-based optimization algorithms, the first three of which are based
on the sparsity of original signals; these may not be valid for ordinary signals, such as the
improved Total Variation-based algorithm (TV) [41].
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2.3.2. Reconstruction Algorithm Based on Deep Compressed Sensing Network

As the use of deep learning in various research fields has increased, it has gradually
been introduced into the research on compressed sensing image reconstruction algorithms.
Ali Mousavi et al. proposed a Stacked Denoising Autoencode (SDA) algorithm, which
mainly realized the end-to-end mapping between measured values and reconstructed
images and adopted an unsupervised learning method. Kulkarni et al. proposed Recon-
Net [42], a non-iterative framework based on convolutional neural networks, and applied
convolutional neural networks to compressed sensing reconstruction for the first time.
The network structure consisted of a fully connected layer and six convolutional layers.
Yao and Dai et al. combined the idea of residual learning with ReconNet and proposed a
Deep Residual Reconstruction Network (DR2-Net) for compressed image perception recon-
struction [43]; the network was cascaded. Kulkarni K, Lohit S et al. [44] further deepened
the network structure of ReconNet and used the network structure of a full connection
layer to replace the original Gaussian matrix in order to realize the image sampling. This
kind of network is called adaptive sampling ReconNet. Xuemei Xie et al. [45] made some
improvements to the sampling process of compressed sensing and also used full connection
and deconvolution methods to optimize the compressed sensing network. Nie and Fu et al.
not only used the convolutional neural network for image reconstruction, but also added
image denoising into the network. The ResConv network they proposed [46] has these two
characteristics. The CSnet network proposed by Shi et al. [47] redesigned the sampling
process, which, as with the previous algorithms, does not only realize image reconstruction,
but also puts forward a novel sampling mechanism to match the reconstructed network.

3. Methods

The theoretical framework of compressed sensing consists of three main aspects: the
sparse representation of the original signal vector

→
x ; the measurement matrix designed to

change the high-dimensional original signal into a low-dimensional measurement vector
→
y ; and the algorithm designed to obtain the approximate sparse representation

→
θ̂ in order

to recover the original signal.

3.1. The Reconstruction Principle of the OMP Algorithm Based on Compressed Sensing

Figure 1 shows a schematic for solving sparse representations in compressed sensing.
Here, we consider the compressed sensing theory as a linear model:[→

y1,
→
y2, · · · · · · ,

→
yn

]
= Bm×n ×

[→
x1,
→
x2, · · · · · · ,

→
xn

]
(1)

where
→
y ∈ Rm and

→
x ∈ Rn represent the column vectors in the observation data and

unknown image, respectively, and the measurement matrix B ∈ Rm×n arranged in the
order of the column vectors is known. We chose the unknown image D ∈ Rn×n, which can
be represented by D =

[→
x1,
→
x2, · · · · · · ,

→
xn

]
.

Because the original signal
→
x is not absolutely sparse, to transform it into a compress-

ible signal, a sparse basis matrix Ψ ∈ Rn×n is adopted, which transforms the original signal

into a sparse domain and forms a sparse representation vector
→
θ ∈ Rn×1. The number of

non-zero values in the sparse representation vector
→
θ = [k1, k2 · · · · · · kn−1, 0, 0] is k � n,

and thus the vector
→
θ is called the k-sparse representation. The measured data of the target

can be written as follows:[→
y1,
→
y2, · · · · · · ,

→
yn

]
= B×Ψ×

[→
θ1,
→
θ2, · · · · · · ,

→
θn

]

=

 b11 . . . b1n
...

. . .
...

bm1 · · · bmn

×
ψ11 . . . ψ1n

...
. . .

...
ψm1 · · · ψmn

× [→θ1,
→
θ2, · · · · · · ,

→
θn

] (2)
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Figure 1. Schematic of the sparse representation of compressed sensing.

Here, we define the sensor matrix A, whose function is to establish the linear relation-

ship between the sparse representation
→
θ and the measured value

→
y .

The measurement data of the target can then be expressed as[→
y1,
→
y2, · · · · · · ,

→
yn

]
= A×

[→
θ1,
→
θ2, · · · · · · ,

→
θn

]
(3)

Here, we use the most commonly used OMP algorithm [30,31] to illustrate the approx-

imate solution
→
θ̂ of the sparse representation. A column vector

→
y ∈

[→
y1,
→
y2, · · · · · · ,

→
yn

]
of the measurement data is selected, and

→
r
(k)

is used to represent the residual value after

the kTH iteration. The initial value of the residual is set as
→
r
(k)

=
→
y
(0)

. Λk represents the
matrix used to store the column vector

→
a k of the sensor matrix after the kTH iteration. The

initial value of the matrix is represented by Λ0. The sensor matrix is defined as follows:

A =

 a11 . . . a1n
...

. . .
...

am1 · · · amn


m×n

=
[→

a 1,
→
a 2 · · · · · ·

→
a n

]
(4)

After multiplying the transposed form [
→
a 1,
→
a 2 · · · · · ·

→
a n]

T
of the sensor matrix A with

the initial residual value
→
r
(0)

,
→
b can be expressed as

→
b =

a11 . . . a1m
...

. . .
...

an1 · · · anm


n×m

×→y =

a11 . . . a1m
...

. . .
...

an1 · · · anm


n×m

×

 y1
...

ym


m×1

=

 b1
...

bm


m×1

(5)

Here, each element in the vector
→
b

T
= [b1, b2 · · · · · · bm] represents the inner product of

each row vector in [
→
a 1,
→
a 2 · · · · · ·

→
a n]

T
with

→
r
(0)

, that is, bi =
→
a

T
j ×

→
r
(0)

(i = 1, 2 · · · · · ·m; j = 1, 2 · · · · · · n). The corresponding column vector
→
a j in the sen-

sor matrix is selected according to the maximum inner product value bi, and
→
a j is stored

in the Λ matrix. The least-squares method is used to obtain the minimum residual value
→
c
(k)

= (
→
a

T
j ×

→
a j)
−1
×→a

T
j ×

→
y
(k−1)

. The residual value
→
r
(k)

after the kTH iteration is

→
r
(k)

=
→
y
(k−1)

−→a
(k)
j ×

→
c
(k)

(6)



Remote Sens. 2023, 15, 2478 6 of 27

where
→
a
(k)
j represents the column vector selected from the sensor matrix during the kTH

iteration. Finally, after k iterations, we can obtain the k-sparse representation (approximate

solution
→
θ̂ ), which comprises k non-zero values such as c(1), c(2) · · · · · · c(k). This is an

optimization problem for the smallest norm of l1, which can be mathematically expressed
as follows:

min
→
θ

∣∣∣∣∣∣∣∣→θ ∣∣∣∣∣∣∣∣
l1

s.t.
→
y = Bψ

→
θ (7)

Algorithm 1 presents the execution steps of the OMP algorithm. As shown in Figure 2,

we multiply the approximate solution
→
θ̂ by the sparse basis matrix ψ; then, the original

signal recovered is
→
x̂ = Ψ×

→
θ̂ . The final reconstructed image is obtained as follows:[→

x̂1,
→
x̂2, · · · · · · ,

→
x̂n

]
= Ψ×

[→
θ̂1,
→
θ̂2, · · · · · · ,

→
θ̂n

]
(8)

Figure 2. Schematic of original image reconstruction using sparse representation
→
θ̂ .

Algorithm 1: Orthogonal Matching Pursuit

Input: Sensor matrix B, Sparseness k

Output: Sparse representation
→
θ

Initialize: Residual
→
r 0 =

→
y , Index setΛ0 = ∅, t = 1

Loop performs the following five steps:

(1) Find out : q : qt = argmaxj=1······N
∣∣∣〈→r t−1, αj

〉∣∣∣;
(2) Update the index set: Λt = Λt−1 ∪ {qt}; Reconstruction of atomic collection: Bt = [Bt−1, αq];

(3) Least-squares method:
→
θ t = argmin

∣∣∣∣∣∣→y − Bt
→
x
∣∣∣∣∣∣

2
;

(4) Update the residual:
→
r t =

→
y − Bt

→
θ t, t = t + 1;

(5) Judgment: If t > k, stop the iteration, or go to step (1).

3.2. The Reconstruction Principle of the TL-GOMP Algorithm Based on Compressed Sensing

In this section, we introduce an improved TL-GOMP algorithm based on the traditional
OMP algorithm. We selected unknown images D ∈ RN×N . To illustrate the principle of the
improved TL-GOMP algorithm, we took the unknown target D ∈ RN×N and converted
it into the form of a column vector D =

[→
x 1,
→
x 2 · · · · · ·

→
x n

]
, as expressed by the equation

below: [→
y 1,
→
y 2 · · · · · ·

→
y n

]
=

 b11 . . . b1n
...

. . .
...

bm1 · · · bmn


m×n

×
[→

x 1,
→
x 2 · · · · · ·

→
x n

]
(9)
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Here, Ψ =

 b11 . . . b1n
...

. . .
...

bm1 · · · bmn


m×n

is the measurement matrix. Assuming that the resid-

ual value after k iterations is
→
r
(k)

, we arbitrarily extracted a column
→
y ∈

[→
y 1,
→
y 2 · · · · · ·

→
y n

]
and assigned it to the initial value

→
r
(0)

=
→
y of the residual value. By using the transpose form

[
→
a 1,
→
a 2 · · · · · ·

→
a n]

T
of the sensor matrix B =

 a11 . . . a1n
...

. . .
...

am1 · · · amn


m×n

= [
→
a 1,
→
a 2 · · · · · ·

→
a n],

and multiplying the residual value
→
r
(k−1)

∈ Rm×1, we could obtain vector
→
d ∈ Rn×1

as follows:

→
d =

 d1
...

dn

 =

a11 . . . a1m
...

. . .
...

an1 · · · anm

×→r (k−1)
(10)

Here, we define one parameter qs =

∣∣∣∣∣∣∣∣→r (k−1)
∣∣∣∣∣∣∣∣/√M and the other parameter ms = 1;

the parameter ms can be understood as a variable that controls or adjusts the threshold,
which is a range value. The principle of its selection is to constantly change the threshold
value and form the corresponding column vector of the first S inner product values in
the sensor matrix into a matrix, with the purpose of solving the optimal S least-squares
solutions to form a sparse representation. After k cycles, the sparsity of the sparse rep-
resentation is kS. Parameter M represents the number of rows of perception matrix and
measurement matrix in compressed sensing theory, or the number of measurements of
observation matrix. The threshold Th is then denoted as

Th = msqs =

∣∣∣∣∣∣∣∣→r (k−1)
∣∣∣∣∣∣∣∣/√M (11)

Subsequently, we took the absolute value of each of the elements in the vector
→
d and

placed them in descending order to obtain the vector
→
d

T
= [d11, d22 · · · · · · dnn]. We stored

the sequence numbers of the elements satisfying the inequality relation in Equation (12).

→
d

T
= [d11, d22 · · · · · · dnn] ≥

∣∣∣∣∣∣∣∣→r (k−1)
∣∣∣∣∣∣∣∣/√M (12)

The algorithm cycles k times in total, where k refers to the number of non-zero-
valued elements in the sparse representation. Each cycle will store the maximum number
of elements S that satisfy the threshold conditions. After k cycles, there is a kS value.
Thereafter, the column vector of the sensor matrix corresponding to the value of kS is stored
in the matrix At, where At ∈ RM×kS. We then use the least-squares method to obtain the

approximate solution
→
θ̂ for the sparse representation, as expressed by the equation below:

→
θ̂ = (AT

t × At)
−1 × AT

t ×
→
r
(k−1)

(13)

After each iteration, the updated residual value
→
r
(k)

is expressed as:

→
r
(k)

=
→
r
(k−1)

− At ×
→
θ̂ (14)
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Finally, the reconstructed image D̂ =

[→
x̂ 1,
→
x̂ 2 · · · · · ·

→
x̂ n

]
is obtained as follows:

D̂ =

[→
x̂ 1,
→
x̂ 2 · · · · · ·

→
x̂ n

]
=

ψ11 . . . ψ1n
...

. . .
...

ψm1 · · · ψmn

× [→θ̂ 1,
→
θ̂ 2 · · · · · ·

→
θ̂ n

]
(15)

As listed in Algorithm 2, the core function of the algorithm is to effectively select the
maximum number S using the additional threshold value. After the algorithm iterates
k times, the sparse representation vector has kS sparsity. The threshold value used was

Th = msqs. In the subsequent simulations, we selected ms = 1 and qs =

∣∣∣∣∣∣∣∣→r (k−1)
∣∣∣∣∣∣∣∣/√M.

Algorithm 2: Threshold Limited–Generalized Orthogonal Matching Pursuit

Input: Sensor matrix B, Sparseness k

Output: Sparse representation
→
θ , Residual

→
r k

Initialize: Residual
→
r 0 =

→
y , Index set Λ0 = ∅, A0 = ∅, t = 1

Loop performs the following five steps:

(1) Find out q : qt = argmaxj=1······N
∣∣∣〈→r t−1, αj

〉∣∣∣, selecting the maximum number S of values that

are greater than the threshold value Th = msqs;
(2) Update the index set : Λt = Λt−1 ∪ {qt}; Reconstruction of atomic collectionBt = [Bt−1, αq];

(3) Least-squares method:
→
θ t = argmin

∣∣∣∣∣∣→y − Bt
→
x
∣∣∣∣∣∣

2
;

(4) Update the residual :
→
r t =

→
y − Bt

→
θ t, t = t + 1;

(5) Judgment: If t > k, stop the iteration, or go to step (1).

The advantage of this algorithm is that the inner product values meeting the threshold
conditions can be quickly screened out in time by setting the limiting threshold value
Th = msqs, and corresponding column vectors can be directly found in the sensor matrix
according to the serial number of the first S inner product values. These inner product
values are represented by logical value 1 in the code, while other inner product values are
represented by logical value 0. On the other hand, by setting the threshold coefficient ms
to adjust the limiting threshold, we constantly combine the serial numbers of the first S
inner product values into the corresponding column vectors in the sensor matrix to form
a matrix, aiming at solving the optimal S least-squares solutions with good universality
and flexibility. After k iterations, we can reconstruct the image information of the target

through sparse representation
→
θ with a sparsity of kS.

4. Experiments

To demonstrate the performance of the TL-GOMP algorithm (refer to Algorithm 2) in
reconstructing the target images, we present some simulation results in this section. First, we
used the TL-GOMP algorithm and the same series of OMP, STOMP, and GOMP algorithms
to conduct a comparative simulation of the target test images, as shown in Figure 3. In
this case, the simulation results show that the image quality reconstructed using the TL-
GOMP algorithm is better than that reconstructed using the same series of OMP algorithms.
Subsequently, in order to rigorously prove the advantages of the TL-GOMP algorithm, we
selected algorithms other than the OMP series to conduct a comparative simulation of the
targets shown in Figure 3, and the simulation results once again showed that the image
reconstructed by the TL-GOMP algorithm was better than that reconstructed by the other
algorithms. We then applied the TL-GOMP algorithm in the field of photonic integrated
interference image reconstruction and used this algorithm to reconstruct sparse spatial
frequency information collected by the PIC at different distances. The simulation image
results show that this algorithm can reconstruct the content information of the detected target
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well. Finally, we explored the measurement number M and sparsity k in the TL-GOMP
algorithm and their influence on the quality of the reconstructed images.

Figure 3. Original image.

In all the experiments below, we used the Gaussian random matrix as the measure-
ment matrix, which is established by the randn function in the code, and the values of each
element in this matrix satisfy the standard normal distribution. Meanwhile, we used the
discrete cosine transform matrix as the sparse matrix, whose function is the sparse represen-
tation or compression of the original signal. In the experiments, the measurement matrix
was updated with the operation of the code every time, which reflects the randomness.
Therefore, we conducted several simulation experiments in each research part and verified
the reliability of the conclusion through the data results.

4.1. Comparison of Simulation Results of the TL-GOMP and OMP Series Algorithms

For this section, we selected test images with pixel values of 350 × 350, 500 × 500,
650 × 650, and 800 × 800 as the target scenes; four image reconstruction algorithms (OMP,
STOMP, GOMP, and TL-GOMP) to perform image reconstruction simulation; and used peak
signal-to-noise ratio and mean square error to evaluate the image quality. Figure 4a–d show
the simulation results of the 800 × 800 image reconstruction. From an intuitive point of
view, the improved TL-GOMP tracing algorithm can be used to further improve the quality
of the reconstructed images. Table 1 presents the quality evaluation data and the code
runtime for the 350 × 350 reconstructed images. From the perspective of quantitative data,
we can also see that the PSNR values of the images obtained by the TL-GOMP algorithm
increased by 15.82% (compared with the results of the GOMP algorithm), 14.60% (compared
with the STOMP algorithm), and 16.63% (compared with the OMP algorithm). The MSE
values of the images decreased by 48.64%, 46.30%, and 50.12%, respectively, and the code
running time was relatively fast. Therefore, from the above simulation data, we conclude
that the TL-GOMP algorithm based on compressed sensing can rely on sparse data collected
by the PIC to restore the content information of the detected target.

Table 1. PSNR, MSE, and time of the 350 × 350 image reconstructed by OMP series algorithms.

OMP STOMP GOMP TL-GOMP

PSNR (dB) 18.1671 18.4884 18.2944 21.1882

MSE 991.6670 920.9654 963.0243 494.6024

Running time (s) 3.3577 1.7663 2.7278 2.5031
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Figure 4. Reconstruction results of four different algorithms: (a) OMP; (b) STOMP; (c) GOMP; and
(d) TL-GOMP.

Table 2 shows simulation results, with the test image at a resolution of 500 × 500 pixels
selected as the target. The data results show that the PSNR values of the reconstructed
images obtained by the TL-GOMP algorithm increased by 18.05% (compared with the
GOMP algorithm), 17.82% (compared with the STOMP algorithm), and 18.02% (compared
with the OMP algorithm). The MSE values of the images decreased by 53.68%, 53.28%, and
53.62%, respectively.

Table 2. PSNR, MSE, and time of the 500 × 500 image reconstructed by OMP series algorithms.

OMP STOMP GOMP TL-GOMP

PSNR (dB) 18.5193 18.5506 18.5136 21.856

MSE 914.4386 907.8610 915.6401 424.1134

Running time (s) 6.7739 3.2574 5.5594 5.6994

Table 3 shows the simulation results, with the test image at a resolution of 650 × 650 pixels
selected as the target. The data results show that the PSNR values of the reconstructed im-
ages obtained by the TL-GOMP algorithm increased by 17.58% (compared with the GOMP
algorithm), 15.40% (compared with the STOMP algorithm), and 15.45% (compared with the
OMP algorithm). The MSE values of the images decreased by 52.95%, 48.97%, and 49.08%,
respectively.
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Table 3. PSNR, MSE, and time of the 650 × 650 image reconstructed by OMP series algorithms.

OMP STOMP GOMP TL-GOMP

PSNR (dB) 18.9683 18.9774 18.6246 21.8993

MSE 824.6088 822.8859 892.5204 419.9057

Running time (s) 12.1603 5.5557 12.0085 11.5920

Table 4 shows the simulation results, for which a test image with a resolution of
800 × 800 pixels was selected as the target. The resulting data show that the PSNR values
of the reconstructed image obtained by the TL-GOMP algorithm increased by 14.40%
(compared with the result of the GOMP algorithm), 11.21% (compared with the result of the
STOMP algorithm), and 12.29% (compared with the result of the OMP algorithm). The MSE
values of the images decreased by 46.36%, 39.28%, and 41.82%, respectively. In the image
quality evaluation, the higher the peak signal-to-noise ratio, the better the image quality;
in contrast, the smaller the mean square error value, the better the image quality. The red
curve shown in Figure 5 is the simulation result of the image reconstruction with different
resolutions using the TL-GOMP algorithm. We can observe that image quality improves
with an increase in resolution, and thus this algorithm has the advantage of improving
the quality of the reconstructed image. Table 5 shows PSNR values and MSE values of the
different pixel image repeatedly reconstructed by TL-GOMP algorithms. Table 6 shows
PSNR values and MSE values of the different pixel image repeatedly reconstructed by
OMP algorithms. Table 7 shows PSNR values and MSE values of the different pixel image
repeatedly reconstructed by STOMP algorithms. Table 8 shows PSNR values and MSE values
of the different pixel image repeatedly reconstructed by GOMP algorithms. The data results
show the advantages of the TL-GOMP image reconstruction algorithm once again.

Table 4. PSNR, MSE, and time of the 800 × 800 image reconstructed by OMP series algorithms.

OMP STOMP GOMP TL-GOMP

PSNR (dB) 19.1433 19.3284 18.7903 21.4954

MSE 792.0467 759.0033 859.1182 460.8311

Running time (s) 18.8039 8.7040 22.8444 23.6628

Table 5. PSNR, MSE, and time of the different pixel image reconstructed by TL-GOMP algorithms.

350 × 350 Pixel Values 500 × 500 Pixel Values 650 × 650 Pixel Values 800 × 800 Pixel Values

PSNR MSE Time PSNR MSE Time PSNR MSE Time PSNR MSE Time

21.3302 478.6986 3.0450 21.9785 412.3144 5.7769 21.7634 433.2510 12.1419 21.4110 469.8728 24.8091
21.3607 475.3485 2.4762 21.8199 427.6476 5.7062 21.8976 420.0683 12.2621 21.1822 495.2878 24.8688
21.2495 487.6785 2.4810 21.6895 440.6868 5.7678 21.7275 436.8474 16.2619 21.3847 472.7259 24.6147
21.3407 477.5455 2.4567 21.9302 416.9279 5.6955 21.9430 415.7013 12.2062 21.2746 484.8612 24.4856
21.1693 496.7621 2.4414 21.6719 442.4760 5.7021 21.9532 414.7298 12.2592 21.2543 487.1404 24.2110
21.2787 484.4030 2.4960 21.7925 430.3612 5.8279 21.8741 422.3505 15.7850 21.2940 482.7085 24.5258
21.2071 492.4605 2.4652 21.8286 426.7995 5.6639 21.7166 437.9442 15.4912 21.3495 476.5711 24.5294
21.3974 471.3456 2.4356 21.8625 423.4784 5.6723 21.6169 448.1164 15.5665 21.1921 494.1608 24.6656

21.2362 489.1702 2.4730 21.8421 425.4695 5.6400 21.7768 431.9201 14.7710 21.2277 490.1291 23.7997
21.1882 494.6024 2.5031 21.8560 424.1134 5.6994 21.8993 419.9057 11.5920 21.4954 460.8311 23.6628

PSNR Mean: 21.2758
MSE Mean: 484.8015

PSNR Mean: 21.8272
MSE Mean: 427.0275

PSNR Mean: 21.8168
MSE Mean: 428.0835

PSNR Mean: 21.3066
MSE Mean: 481.4289
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Figure 5. (a) Relationship between the image size and PSNR of reconstructed images; (b) relationship
between the image size and MSE of reconstructed images; (c) relationship between the image size and
running times.

Table 6. PSNR, MSE, and time of the different pixel image reconstructed by OMP algorithms.

350 × 350 Pixel Values 500 × 500 Pixel Values 650 × 650 Pixel Values 800 × 800 Pixel Values

PSNR MSE Time PSNR MSE Time PSNR MSE Time PSNR MSE Time

18.1671 991.6670 3.9888 18.4080 938.1606 7.5859 18.9861 821.2361 12.3038 19.0968 800.5658 20.3478
18.2682 968.8629 3.2198 18.5454 908.9571 7.7925 18.9347 831.0171 12.5650 19.1620 788.6510 21.0002
18.3101 959.5554 3.4737 18.4466 929.8707 7.2411 18.9399 830.0296 12.5509 19.2571 771.5568 20.4160
18.3829 943.6068 3.6291 18.5152 915.3030 7.1395 19.1091 798.3158 12.4553 19.0280 813.3486 20.9783
18.0393 1021.3 3.6883 18.4265 934.1821 7.7281 18.9553 827.0812 12.3023 19.2065 780.6037 22.2521
18.2515 972.5983 3.2354 18.5735 903.0985 7.4901 18.9398 830.0348 12.4164 19.1368 793.2272 20.6466
18.3869 942.7279 3.2961 18.6313 891.1402 7.5999 19.0351 812.0306 12.4421 19.0966 800.6090 20.4755
18.2823 965.7220 3.2445 18.6419 888.9868 6.7575 18.8986 837.9640 12.5608 19.1766 785.9948 20.5140
18.2712 968.1929 3.2312 18.6113 895.2566 6.7414 19.0885 802.0964 12.4971 19.1135 797.4937 19.9576
18.1671 991.6670 3.3577 18.5193 914.4386 6.7739 18.9683 824.6088 12.1603 19.1433 792.0467 18.8039

PSNR Mean: 18.2523
MSE Mean: 972.5902

PSNR Mean: 18.5319
MSE Mean: 911.9394

PSNR Mean: 18.9855
MSE Mean: 821.4414

PSNR Mean: 19.1417
MSE Mean: 792.4097
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Table 7. PSNR, MSE, and time of the different pixel image reconstructed by STOMP algorithms.

350 × 350 Pixel Values 500 × 500 Pixel Values 650 × 650 Pixel Values 800 × 800 Pixel Values

PSNR MSE Time PSNR MSE Time PSNR MSE Time PSNR MSE Time

18.4565 927.7439 1.9871 18.8762 842.2853 3.2992 19.1958 782.5286 5.3546 19.4015 746.3251 8.9414

18.6146 894.5757 1.7530 18.7574 865.6460 3.0897 19.0214 814.5855 5.5177 19.1294 794.5858 8.4978
18.3691 946.6053 1.7672 18.9131 835.1674 3.2591 19.1162 797.0074 5.3404 19.3628 753.0119 8.3268
18.7747 862.2063 1.6509 18.6830 880.5934 3.1428 19.0212 814.6351 5.4728 19.3334 758.1162 8.3945
18.5523 907.5075 1.6583 18.7680 863.5269 3.1527 19.1821 784.9930 5.8004 19.2737 768.6233 8.8009
18.5249 913.2449 1.7565 18.9101 835.7386 3.1413 19.1222 795.9122 5.2623 19.2195 778.2766 9.1070
18.4711 924.6457 1.8162 18.9665 824.9626 3.0769 19.1388 792.8615 5.3666 19.1329 793.9458 8.9904
18.5027 917.9382 1.7327 18.8543 846.5476 3.2085 19.0365 811.7637 5.2851 19.2444 773.8263 9.3969
18.5617 905.5508 1.6634 18.6145 894.5940 3.1701 19.1874 784.0488 6.3562 19.0907 801.6980 9.0372
18.4884 920.9654 1.7663 18.5506 907.8610 3.2574 18.9774 822.8859 5.5557 19.3284 759.0033 8.7040

PSNR Mean: 18.5316
MSE Mean: 912.0984

PSNR Mean: 18.7894
MSE Mean: 859.6923

PSNR Mean: 19.0999
MSE Mean: 800.1222

PSNR Mean: 19.2517
MSE Mean: 772.7412

Table 8. PSNR, MSE, and time of the different pixel image reconstructed by GOMP algorithms.

350 × 350 Pixel Values 500 × 500 Pixel Values 650 × 650 Pixel Values 800 × 800 Pixel Values

PSNR MSE Time PSNR MSE Time PSNR MSE Time PSNR MSE Time

18.5342 911.3028 2.5342 18.5828 901.1544 5.5202 18.6002 897.5575 12.2352 18.6504 887.2426 25.3709
18.5119 915.9863 2.3974 18.5438 909.2880 5.2957 18.7124 874.6603 12.7123 18.7940 858.3842 24.2956
18.4565 927.7495 2.4619 18.5660 904.6536 5.3261 18.7070 875.7537 11.9305 18.6203 893.4049 25.9419
18.4604 926.9053 2.3857 18.5033 917.7947 5.3010 18.6821 880.7937 11.6473 18.7787 861.4088 24.9687
18.4557 927.9302 2.4236 18.5870 900.2903 5.2821 18.8511 847.1601 11.7459 18.6419 888.9819 25.1073
18.5121 915.9399 2.4229 18.4860 921.4620 5.4175 18.6688 883.4962 11.5865 18.7756 862.0250 25.7629
18.6042 896.7213 2.4183 18.4826 922.1833 5.3205 18.6093 895.6809 11.4574 18.7594 865.2522 28.2525
18.4933 919.9185 2.4489 18.5674 904.3666 5.2700 18.5587 906.1624 11.5960 18.5693 903.9659 25.3977
18.3236 956.5777 2.4210 18.5627 905.3299 5.3125 18.6640 884.4572 11.6323 18.6851 880.1824 24.9104
18.2944 963.0243 2.7278 18.5136 915.6401 5.5594 18.6246 892.5204 12.0085 18.7903 859.1182 22.8444

PSNR Mean: 18.4646
MSE Mean: 926.2056

PSNR Mean: 18.5395
MSE Mean: 910.2163

PSNR Mean: 18.6680
MSE Mean: 883.8242

PSNR Mean: 18.7063
MSE Mean: 875.9966

4.2. Comparison of Simulation Results of the TL-GOMP and Other Algorithms

In this section, to verify the excellent performance of the TL-GOMP algorithm in
image reconstruction, we adopt the research method of simulating the same target and
comparing the results with those of other algorithms. In the following section, we simulate
the test images with resolutions of 350 × 350, 500 × 500, 650 × 650, and 800 × 800. Figure 6
shows the simulation results for the test image with a resolution of 800 × 800 pixels using
different types of algorithms. The figure shows that the image reconstructed by the TL-
GOMP algorithm reflects the details or content information of the results. We present the
results of the simulation and conduct a quantitative analysis below. In conclusion, the
TL-GOMP algorithm has great potential for applications in the field of photonic integrated
interference imaging.

In this section, we adopted a test image with a resolution of 350 × 350 as the scene
target and simulated it using a series of six different image reconstruction algorithms:
Compressive Sampling Matching Pursuit (CoSaMP), Generalized Back Propagation (GBP),
Iterative Hard Thresholding (IHT), Iteration Reweighted Least Square (IRLS), Subspace
Pursuit (SP), and TL-GOMP. The image quality was evaluated using the peak signal-to-
noise ratio and mean square error. Table 9 lists the quality evaluation data and code
running times of the reconstructed images. From the quantitative data, it can be seen
that the PSNR values of the images obtained by the TL-GOMP algorithm are increased by
25.76% (compared with CoSaMP), 10.32% (compared with GBP), 38.50% (compared with
IHT), 5.15% (compared with IRLS), and 17.18% (compared with SP). The MSE values of the
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images decreased by 63.19%, 36.64%, 74.23%, 21.27%, and 51.09%, respectively, and the
code running time was also relatively fast.

Figure 6. Reconstructed image using different algorithms: (a) CoSaMP; (b) IHT; (c) IRLS; (d) GBP;
(e) SP; and (f) TL-GOMP.
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Table 9. PSNR, MSE, and running time of the 350 × 350 image reconstructed by different algorithms.

CoSaMP GBP IHT IRLS SP TL-GOMP

PSNR (dB) 16.8484 19.2067 15.2984 20.1498 18.0819 21.1882

MSE 1343.5 780.5690 1919.8 628.2036 1011.3 494.6024

Running
time (s) 8.2561 15.1944 0.9567 10.8665 6.9127 2.5031

Table 10 shows the simulation results for the use of a test image with a resolution of
500 × 500 as the target. The results show that the PSNR values of the reconstructed images
obtained by the TL-GOMP algorithm improved by 27.74% (compared with CoSaMP),
10.69% (compared with GBP), 42.08% (compared with IHT), 4.01% (compared with IRLS),
and 19.75% (compared with SP). The MSE values of the images decreased by 66.47%, 38.51%,
77.47%, 17.64%, and 56.39%, respectively.

Table 10. PSNR, MSE, and running time of the 500 × 500 image reconstructed by different algorithms.

CoSaMP GBP IHT IRLS SP TL-GOMP

PSNR (dB) 17.1099 19.7444 15.3828 21.0134 18.2516 21.8560

MSE 1265 689.6748 1882.8 514.9214 972.5734 424.1134

Running
time (s) 20.4365 60.4386 2.5600 64.1737 16.4263 5.6994

Table 11 shows the simulation results for the use of a test image with a resolution of
650 × 650 as the target. The data in the table show that the PSNR value of the reconstructed
image obtained by the TL-GOMP algorithm improved by 26.29% (compared with CoSaMP),
8.87% (compared with GBP), 42.31% (compared with IHT), 2.83% (compared with IRLS),
and 17.26% (compared with SP). The MSE values of the images decreased by 64.99%, 33.70%,
77.67%, 12.97%, and 52.39%, respectively.

Table 11. PSNR, MSE, and running time of the 650 × 650 image reconstructed by different algorithms.

CoSaMP GBP IHT IRLS SP TL-GOMP

PSNR (dB) 17.3410 20.1147 15.3888 21.2962 18.6761 21.8993

MSE 1199.4 633.3042 1880.2 482.4597 881.9959 419.9057

Running
time (s) 47.6477 151.2679 5.5886 260.7229 34.7940 11.5920

Table 12 lists the simulation results for the use of the test image with a resolution
of 800 × 800 as the target. The data in the table show that the PSNR value of the image
reconstructed by the TL-GOMP algorithm increased by 22.92% (compared with CoSaMP),
5.35% (compared with GBP), 37.98% (compared with IHT), 0.40% (compared with IRLS),
and 14.74% (compared with SP). The MSE values of the images decreased by 60.26%, 22.23%,
74.40%, 1.91%, and 47.05%, respectively. In Figure 7, the red curve represents the image
data as reconstructed by the TL-GOMP algorithm. It can be observed that the peak signal-
to-noise ratio and mean square error of the image reconstructed by this algorithm are
higher than those reconstructed by the other algorithms. Its mean square error value is
much lower than that of the image reconstructed by the other algorithms, and it is also
faster in terms of the code running time. In summary, the TL-GOMP algorithm has better
image reconstruction performance.
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Table 12. PSNR, MSE, and running time of the 800 × 800 image reconstructed by different algorithms.

CoSaMP GBP IHT IRLS SP TL-GOMP

PSNR (dB) 17.4872 20.4032 15.5785 21.4114 18.7344 21.4954

MSE 1159.7 592.5921 1799.8 469.8253 870.2398 460.8311

Running
time (s) 96.3305 308.2801 10.4591 650.7766 66.1669 23.6628

Figure 7. (a) Relationship between the image size and PSNR of the reconstructed image; (b) relation-
ship between the image size and MSE of the reconstructed image; (c) relationship between image size
and running time.

Table 13 shows PSNR values and MSE values of the different pixel image repeatedly
reconstructed by CoSaMP algorithms. Table 14 shows PSNR values and MSE values of
the different pixel image repeatedly reconstructed by GBP algorithms. Table 15 shows
PSNR values and MSE values of the different pixel image repeatedly reconstructed by IHT
algorithms. Table 16 shows PSNR values and MSE values of the different pixel image
repeatedly reconstructed by IRLS algorithms. Table 17 shows PSNR values and MSE values
of the different pixel image repeatedly reconstructed by SP algorithms. The data results
show the advantages of the TL-GOMP image reconstruction algorithm once again.
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Table 13. PSNR, MSE, and time of the different pixel image reconstructed by CoSaMP algorithms.

350 × 350 Pixel Values 500 × 500 Pixel Values 650 × 650 Pixel Values 800 × 800 Pixel Values

PSNR MSE Time PSNR MSE Time PSNR MSE Time PSNR MSE Time

16.8092 1355.7 8.8949 16.9569 1310.4 21.0424 17.4505 1169.6 53.1953 17.4279 1175.7 104.1132
16.4940 1457.7 8.5638 17.1272 1260 20.5154 17.3648 1192.9 51.8239 17.5628 1139.7 100.1575
16.4971 1456.7 8.6117 17.0410 1285.2 20.8961 17.4114 1180.2 47.8983 17.4618 1166.6 99.2829
16.8151 1353.8 8.6880 17.0706 1276.5 20.2516 17.3835 1187.8 48.2978 17.6096 1127.5 102.0728
16.7148 1385.5 8.6742 17.1166 1263 20.0926 17.4745 1163.1 46.9857 17.4945 1157.8 102.7467
16.5159 1450.4 8.2333 16.9466 1313.5 20.1809 17.3226 1204.5 48.5044 17.6168 1125.6 106.1725
16.7907 1361.5 8.0242 17.1552 1251.9 20.0922 17.1436 1255.2 47.4073 17.5932 1131.8 103.6256
16.6924 1392.7 8.1107 17.1143 1263.7 20.1702 17.3318 1202 47.1307 17.5843 1134.1 102.4037
16.6452 1407.9 8.0281 16.9100 1324.6 20.1803 17.3889 1186.3 46.7126 17.6081 1127.9 102.3405
16.8484 1343.5 8.2561 17.1099 1265 20.4365 17.3410 1199.4 47.6477 17.4872 1159.7 96.3305

PSNR Mean: 16.6823
MSE Mean: 1396.54

PSNR Mean: 17.0548
MSE Mean: 1281.38

PSNR Mean: 17.3613
MSE Mean: 1194.1

PSNR Mean: 17.5446
MSE Mean: 1144.64

Table 14. PSNR, MSE, and time of the different pixel image reconstructed by GBP algorithms.

350 × 350 Pixel Values 500 × 500 Pixel Values 650 × 650 Pixel Values 800 × 800 Pixel Values

PSNR MSE Time PSNR MSE Time PSNR MSE Time PSNR MSE Time

19.4978 729.9666 16.7171 19.9097 663.9063 60.8671 20.2651 611.7477 152.6819 20.4798 582.2355 313.1546

19.1973 782.2584 15.4194 19.8177 678.1193 58.8448 20.2567 612.9301 151.4318 20.4731 583.1371 307.3742
19.4500 738.0428 15.7188 19.9173 662.7476 60.3878 20.0630 640.8796 152.0517 20.3483 600.1356 306.4753
19.3991 746.7401 15.4124 19.8520 672.7897 60.0065 20.1227 632.1369 152.8503 20.4549 585.5920 315.1839
19.3752 750.8673 15.4889 19.7395 690.4477 59.8597 20.2543 613.2665 151.6609 20.4367 588.0450 307.7829
19.2693 769.3932 15.3593 19.9330 660.3565 62.0048 20.3432 600.8463 151.6051 20.4022 592.7377 311.2913
19.4267 742.0074 15.5287 19.7074 695.5632 60.5518 20.2234 617.6454 150.1376 20.5054 578.8216 306.9459
19.3039 763.2860 15.4373 19.7071 695.6140 60.3061 20.2587 612.6538 150.4258 20.3715 596.9458 308.9359
19.4260 742.1325 15.4490 19.8390 674.8012 60.0366 20.2990 606.9950 149.5369 20.4816 581.9978 308.8351
19.2067 780.5690 15.1944 19.7444 689.6748 60.4386 20.1147 633.3042 151.2679 20.4032 592.5921 308.2801

PSNR Mean: 19.3552
MSE Mean: 754.5263

PSNR Mean: 19.8167
MSE Mean: 678.4020

PSNR Mean: 20.2201
MSE Mean: 618.2406

PSNR Mean: 20.4357
MSE Mean: 588.2240

Table 15. PSNR, MSE, and time of the different pixel image reconstructed by IHT algorithms.

350 × 350 Pixel Values 500 × 500 Pixel Values 650 × 650 Pixel Values 800 × 800 Pixel Values

PSNR MSE Time PSNR MSE Time PSNR MSE Time PSNR MSE Time

15.3230 1908.9 1.0292 15.5289 1820.5 2.7308 15.5357 1817.6 5.8068 15.1495 1986.7 10.6558
15.2696 1932.5 0.9657 15.3572 1893.9 2.5608 15.5149 1826.4 5.7885 15.6001 1790.9 10.7756
15.4349 1860.3 0.9223 15.3438 1899.8 2.5887 15.3108 1914.3 5.5971 15.4884 1837.6 10.4584
15.6466 1771.8 0.9237 15.5348 1818 2.5473 15.2720 1931.4 5.6787 15.3543 1895.2 10.7111
15.6298 1778.7 0.9336 15.3886 1880.3 2.5745 15.3944 1877.8 5.5852 15.1589 1982.4 10.4426
15.4950 1834.7 0.9343 15.6286 1779.2 2.5784 15.4219 1865.9 5.6056 15.2874 1924.6 10.5495
15.3671 1889.6 0.9265 15.3710 1887.9 2.5645 15.4774 1842.2 5.6063 15.4666 1846.8 10.5276
15.4187 1867.3 0.9262 15.3187 1910.8 2.5596 15.2540 1939.5 5.6121 15.4023 1874.4 10.4417
15.6738 1760.8 0.9315 15.6133 1785.5 2.5755 15.3534 1895.6 5.5838 15.4003 1875.2 10.4518

15.2984 1919.8 0.9567 15.3828 1882.8 2.5600 15.3888 1880.2 5.5886 15.5785 1799.8 10.4591
PSNR Mean: 15.4557
MSE Mean: 1852.44

PSNR Mean: 15.4468
MSE Mean: 1855.87

PSNR Mean: 15.3923
MSE Mean: 1879.09

PSNR Mean: 15.3886
MSE Mean: 1881.36



Remote Sens. 2023, 15, 2478 18 of 27

Table 16. PSNR, MSE, and time of the different pixel image reconstructed by IRLS algorithms.

350 × 350 Pixel Values 500 × 500 Pixel Values 650 × 650 Pixel Values 800 × 800 Pixel Values

PSNR MSE Time PSNR MSE Time PSNR MSE Time PSNR MSE Time

20.6086 565.2282 11.7302 21.2215 490.8249 65.6006 21.3258 479.1809 270.9207 21.3758 473.7010 664.0105
20.6022 566.0515 10.5527 21.0093 515.4109 74.9643 21.4131 469.6444 262.2276 21.5207 458.1548 693.0186
20.6176 564.0528 11.4481 20.8764 531.4202 66.3486 21.4715 463.3728 260.0932 21.3714 474.1812 668.7674
20.4171 590.7103 10.6213 21.0181 514.3672 64.8940 21.6391 445.8292 261.3721 21.5438 455.7273 662.6378
20.7530 546.7416 11.0238 21.2248 490.4610 65.6442 21.2211 490.8747 258.2043 21.6174 448.0666 666.4153
21.0103 515.2937 11.2650 20.8733 531.7981 64.7945 21.2544 487.1234 261.8442 21.5099 459.2951 668.0591
21.1637 497.4021 11.4127 20.9998 516.5319 64.5561 21.2597 486.5327 255.4833 21.3478 476.7588 677.1501
20.4757 582.7821 10.9141 21.1686 496.8444 64.5493 21.2293 489.9456 255.1096 21.3538 476.1018 666.8833
20.6876 555.0313 10.6173 21.1205 502.3765 64.5562 21.3770 473.5656 264.4215 21.3173 480.1209 663.1420
20.1498 628.2036 10.8665 21.0134 514.9214 64.1737 21.2962 482.4597 260.7229 21.4114 469.8253 650.7766

PSNR Mean: 18.6069
MSE Mean: 561.1497

PSNR Mean: 21.0526
MSE Mean: 510.4957

PSNR Mean: 21.3487
MSE Mean: 476.8529

PSNR Mean: 21.4369
MSE Mean: 467.1933

Table 17. PSNR, MSE, and time of the different pixel image reconstructed by SP algorithms.

350 × 350 Pixel Values 500 × 500 Pixel Values 650 × 650 Pixel Values 800 × 800 Pixel Values

PSNR MSE Time PSNR MSE Time PSNR MSE Time PSNR MSE Time

17.9046 1053.5 7.1466 18.4409 931.0924 17.3122 18.5753 902.7211 36.5388 18.8447 848.4259 70.6439
17.8879 1057.5 6.9380 18.1981 984.6217 16.6595 18.6085 895.8334 35.2757 18.8404 849.2576 68.9989

17.8405 1069.1 7.0076 18.1930 985.7762 16.7420 18.5203 914.2157 36.1913 18.8246 852.3637 74.357
17.8168 1075 6.8259 18.1758 989.6957 16.6609 18.4910 920.4035 34.9478 18.5796 901.8120 70.4628
17.7943 1080.6 6.7711 18.2247 978.6191 16.6698 18.5779 902.1786 35.1908 18.7513 866.8650 74.8542
17.7769 1084.9 6.739 18.2543 971.9713 16.7688 18.7444 868.2313 35.4837 18.7457 867.9828 70.8790
17.7737 1085.7 6.6753 18.3440 952.0871 17.0695 18.2689 968.6950 35.2054 18.7504 867.0365 71.0472
18.0686 1014.4 6.8211 18.1780 989.1917 17.3466 18.7020 876.7578 35.1299 18.7856 860.0449 69.8509
17.8676 1062.5 6.8499 18.2797 966.3036 16.6775 18.5849 900.7179 35.1921 18.7113 874.8790 71.3209
18.0819 1011.3 6.9127 18.2516 972.5734 16.4263 18.6761 881.9959 34.7940 18.7344 870.2398 66.1669

PSNR Mean: 17.8813
MSE Mean: 1059.45

PSNR Mean: 18.2540
MSE Mean: 972.1932

PSNR Mean: 18.5800
MSE Mean: 903.1750

PSNR Mean: 18.7568
MSE Mean: 865.8907

4.3. Simulation Results of Single-Column Signal Reconstruction by the CS TL-GOMP Algorithm

Figure 8 shows the 256 × 256 target test images. Figure 9 shows the simulation
results from the use of the TL-GOMP algorithm to reconstruct a single column of the
original signals with different running times. We first selected an image with a resolution
of 256 × 256 for testing, arbitrarily selected a 256 × 1 column vector as the original signal,
and then performed signal reconstruction 1, 50, 100, and 200 times. The simulation results
of the signal reconstruction are shown in Figure 9. It can be observed that the reconstructed
signal swings around the original signal and gradually approaches the original signal
with an increase in the reconstruction time. Table 18 shows that the residual values of the
TL-GOMP algorithm after different runs are 168.5664, 161.6117, 150.3473, and 136.5506
upon comparison of the reconstructed signal with the original signal. Among these, the
residual value is an important index for measuring the size of the error or the degree of
deviation. The simulation results show that with an increase in the number of original
signal reconstructions, the residual value demonstrates a decreasing trend; that is, the
accuracy of the reconstructed signal gradually approaches that of the original signal. The
TL-GOMP algorithm exhibits good stability in the reconstruction of the original signal.
Table 19 shows multiple simulation data with different signal reconstruction times.
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Figure 8. Original version of the 256 × 256 image.

Figure 9. Reconstruction results of randomly selected single-column signals: (a) 1 time; (b) 50 times;
(c) 100 times; (d) 200 times.

Table 18. Signal reconstruction times and residual values.

Times of Signal
Reconstruction 1 50 100 200

Value of residual 168.5664 161.6117 150.3473 136.5506
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Table 19. Multiple simulation data with different signal reconstruction times.

Residual Values

1 time 168.5664 168.6020 162.6642 165.0314 169.6857 165.8414 158.1089 155.4569 155.4202 149.4011

50 times 161.6117 159.0616 160.1910 155.4877 155.4719 150.6663 142.2037 149.5014 148.7272 155.5769

100 times 150.3473 150.5078 150.1486 147.8456 148.4673 153.6050 153.2938 147.4182 155.6388 149.4355

200 times 136.5506 143.0227 139.9187 143.3128 146.7156 147.7237 146.9315 141.7615 144.6260 143.4051

4.4. Simulation Results of the CS TL-GOMP Algorithm in Image Reconstruction at
Different Distances

We used the Photonic Integrated Circuit to collect the spatial frequency information
emitted by the target to form the restoration image. Figure 10 shows the imaging results for
the frequency information collected by the microlens array on the PIC at different distances
d; the resolution of the restored images is 256 × 256. The “Original image” in Figure 10
represents the restoration image of the microlens array on PIC as the target test image.
Because the signal acquisition of the PIC is an under-sampling process, it is necessary to use
a sparse signal image reconstruction algorithm in order to recover the content information
of the detected target.

Figure 10. Restoration image results of the PIC at different distances: (a) d = 75 m; (b) d = 125 m;
(c) d = 175 m; and (d) d = 225 m.

In the experiment, the Gaussian random matrix was selected as the measurement
matrix, and the discrete cosine transform matrix was used as the sparse matrix. In this part,
we conducted several simulation experiments and displayed the experimental data and
reconstructed images of one of them, as shown in Figure 11 and Table 20.
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Figure 11. Simulation results of the TL-GOMP algorithm reconstruction of restored images at different
distances: (a) d = 75 m; (b) d = 125 m; (c) d = 175 m; and (d) d = 225 m.

Table 20. PSNR and MSE of reconstructed images at different distances.

d (m) 75 125 175 225

PSNR (dB) 13.5770 10.4228 11.2921 12.2664

MSE 2.8525 × 103 5.8992 × 103 4.8292 × 103 3.8587 × 103

Figure 11 shows the simulation results after the reconstruction of restored images at
d = 75, 125, 175, and 225 m using the compressed sensing TL-GOMP algorithm. We used
two image quality evaluation indices, the peak signal-to-noise ratio, and the mean square
error to measure the image quality. That is, the higher the peak signal-to-noise ratio, the
better the image quality. Conversely, the lower the mean square error, the better the image
quality. The simulation data in Table 20 show that the compressed sensing TL-GOMP
image reconstruction algorithm is suitable for the content restoration of detected targets at
different distances. “1d rec img” in Figure 11 represents the result of target reconstruction
by TL-GOMP algorithm. We used the image quality evaluation function for evaluation of
the reconstructed image; 13.5770 dB, 10.4228 dB, 11.2921 dB, and 12.2664 dB show the peak
signal-to-noise ratio of the reconstructed image.

4.5. Influence of Measurement Number M in the CS TL-GOMP Algorithm

Figure 8 shows the 256 × 256 target test images. The observation matrix (M× N) Φ
is an important parameter in the CS TL-GOMP algorithm, which can collect the original
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signal
→
x , obtain the sparse representation

→
θ by combining with the algorithm, and finally

reconstruct the desired signal
→
θ̂ . Figure 12a shows the relationship curve of different

measurement numbers M on the sparsity k and quality of the reconstructed image. The
value of M ranged from 56 to 256, with a step size of 5. The simulation data show that the

sparsity k (the number of non-zero values) in the sparse representation
→
θ is 18. Meanwhile,

with an increase in M in the observation vector
→
y , the PSNR value of the image also increases.

In addition, the MSE value of the image exhibits a decreasing trend. Therefore, we can
conclude that the quality of the reconstructed image also improves with an increase in M
in the observation vector. In the experiment, the Gaussian random matrix was selected as
the measurement matrix, and the discrete cosine transform matrix was used as the sparse
matrix; Figure 12 shows the multiple simulation results.

Figure 12. Influence of measurement number M on sparsity k and reconstructed image quality.
(a) The results of the first experiment; (b) The results of the second experiment; (c) The results of the
third experiment; (d) The results of the fourth experiment.

4.6. Influence of Measurement Matrix M × N and Sparsity k in the CS TL-GOMP Algorithm on
the Quality of the Reconstructed Image

Figure 8 shows the 256 × 256 target test images. Figure 13 shows the results from the
simulation of the relationship between different sparsity k values and the quality of the
reconstructed image. For the sparsity k, we selected the values of 9, 10, 11, 12, and 13 for the
simulation of the test image with a resolution of 256 × 256. The results show that the PSNR
increases with an increase in k, whereas the MSE decreases with an increase in k. Figure 14
shows the simulation results for the relationship between the different measurement matrix
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sizes and the quality of the reconstructed image. We selected measurement matrices with
dimensions of 36 × 256, 42 × 256, 64 × 256, and 85 × 256 to simulate the same test image.
The simulation results show that PSNR increases with an increase in the size of the size of the
measurement matrix. The MSE decreases with an increase in the size of the measurement
matrix. Tables 21 and 22 list one of the multiple simulation results. Therefore, we can
conclude that the quality of the reconstructed image improves with an increase in k and the
size of the measurement matrix.

Figure 13. (a) Variation curves for the PSNR of the reconstructed images with sparsity k; (b) variation
curves for the MSE of the reconstructed images with sparsity k.

Figure 14. (a) Variation curves for the MSE of reconstructed images with matrix size M × N;
(b) variation curves for the PSNR of reconstructed images with matrix size M × N.

Table 21. PSNR and MSE of the reconstructed images with different sparsity k.

k 9 10 11 12 13

PSNR 24.4658 25.9451 26.2747 26.4402 26.5216

MSE 232.5423 165.4131 153.3254 147.5921 144.8496

Table 22. PSNR and MSE of the reconstructed images with different matrix sizes M × N.

M 85 64 51 42 36

PSNR 24.5055 23.9166 23.3133 22.6527 21.3493

MSE 230.4277 263.8865 303.2150 353.0308 476.5985

We studied the influence of different sparsity and different measurement matrix sizes
on reconstruction quality. The measurement matrix selected by us was Gaussian random
matrix, and the sparse matrix was discrete cosine transform matrix. For the sparsity k,



Remote Sens. 2023, 15, 2478 24 of 27

we selected the values of 9, 10, 11, 12, and 13. In each case of sparsity, we conducted
several experiments, and the results of the experiments are shown in Table 23. Similarly,
we selected measurement matrices with dimensions of 36 × 256, 42 × 256, 64 × 256, and
85 × 256 to simulate the same test image. In the case of the size of each measurement
matrix, we also used the same measurement matrix and the same research method to carry
out many experiments. The experimental data results are shown in Table 24. According to
the data results for many experiments, we conclude that “the quality of the reconstructed
image improves with an increase in k and the size of the measurement matrix”. However,
in order to achieve high-quality image reconstruction, the measurement matrix and sparse
matrix of compressed sensing theory are constantly being studied. In future research, we
will use an updated measurement matrix to verify the above conclusions.

Table 23. PSNR and MSE of the multiple simulation data with different sparsity k.

k = 9
PSNR 24.4658 24.4578 24.5642 24.6083 24.5429 24.3835 24.4639 24.4566 24.5734 24.5788

MSE 232.5423 232.9702 227.3323 225.0338 228.4496 236.9926 232.6450 233.0364 226.8511 226.5680

k = 10
PSNR 25.9451 25.9281 25.9644 25.9163 26.1031 26.0670 26.1165 25.9435 26.2481 25.9240

MSE 165.4131 166.0630 164.6806 166.5131 159.5034 160.8350 159.0111 165.4743 154.2653 166.2188

k = 11
PSNR 26.2747 26.2508 26.3373 26.1912 26.3492 26.2861 26.2062 26.2744 26.2622 26.1795

MSE 153.3254 154.1708 151.1292 156.3016 150.7153 152.9223 155.7619 153.3364 153.7671 156.7223

k = 12
PSNR 26.4402 26.4753 26.3413 26.2574 26.5338 26.4707 26.3457 26.4020 26.3657 26.5155

MSE 147.5921 146.4039 150.9896 153.9345 144.4438 146.5585 150.8391 148.8964 150.1456 145.0545

k = 13
PSNR 26.5216 26.4978 26.5798 26.6370 26.6094 26.4142 26.6716 26.4771 26.4774 26.6881

MSE 144.8496 145.6461 142.9226 141.0527 141.9519 148.4760 139.9344 146.3412 146.3327 139.4024

Table 24. PSNR and MSE of the multiple simulation data with different matrix size M × N.

M = 85
PSNR 24.5055 24.6425 24.5528 24.5056 24.5522 24.5659 24.5421 24.5434 24.4919 24.4003

MSE 230.4277 223.2689 227.9270 230.4216 227.9595 227.2443 228.4929 228.4230 231.1488 236.0733

M = 64
PSNR 23.9166 24.1006 23.9725 24.0803 24.1310 24.0046 24.0576 24.1294 23.9754 24.0435

MSE 263.8865 252.9398 260.5121 254.1288 251.1774 258.5935 255.4592 251.2689 260.3421 256.2885

M = 51
PSNR 23.3133 23.5388 23.5970 23.4893 23.4474 23.2988 23.2958 23.3413 23.4279 23.3476

MSE 303.2150 287.8705 284.0408 291.1752 293.9946 304.2291 304.4373 301.2679 295.3188 300.8316

M = 42
PSNR 22.6527 22.7587 23.1023 22.7050 22.5485 22.8871 23.2799 22.9354 22.9467 22.6748

MSE 353.0308 344.5174 318.3073 348.8021 361.6032 334.4826 305.5548 330.7809 329.9219 351.2371

M = 36
PSNR 21.3493 21.9878 21.9421 21.8499 22.1946 21.9828 21.8089 21.8007 22.1391 21.0789

MSE 476.5985 411.4304 415.7896 424.7125 392.2991 411.9064 428.7317 429.5465 397.3452 507.2072

5. Conclusions

In this study, we improved the traditional image reconstruction algorithm and pro-
posed a TL-GOMP tracing algorithm for compressed sensing. In the simulation, we used
the TL-GOMP algorithm and the same series of traditional OMP, STOMP, and GOMP
algorithms to perform simulations using the same test targets. The results of the simulation
show that the quality of the image reconstructed by the TL-GOMP algorithm was better
than that reconstructed by the other traditional algorithms in the same series. To illus-
trate the advantages of this algorithm more rigorously, we also conducted a comparison
simulation between the TL-GOMP algorithm and other image reconstruction algorithms.
The results also showed that the quality of the image reconstructed by the TL-GOMP
algorithm was better than that reconstructed by the other algorithms, which has potential
application value. To verify the stability of the algorithm, we arbitrarily extracted a column
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of the original signal column vectors and performed signal reconstruction several times.
The simulation results showed that the accuracy of the reconstructed signal gradually
approached that of the original signal with an increase in the number of reconstruction
runs. The TL-GOMP algorithm was also used to reconstruct the restored images at different
detection distances, and the simulation results showed that the algorithm could reproduce
the content information of the target. Therefore, the TL-GOMP algorithm is advantageous
for applications in photonic integrated interference imaging. It can reconstruct sparse
spatial frequency information collected by the PIC and recover the content information of
the detected target. In summary, the TL-GOMP algorithm can reconstruct the sparse and
unknown information collected as well as recover the content information of unknown
targets. This could benefit scientific and technological exploration and production, and
it also has good potential for application in the field of photonic integrated interference
detection technology.
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