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Abstract: Through formation flying, the distributed spaceborne SAR(synthetic aperture radar) system
can increase the number of spatial degree of freedoms (DOFs) and provide flexible multi-baselines for
SAR-GMTI (ground moving target indication), which improves the system performance. This paper
proposes an a priori knowledge-based adaptive clutter cancellation and moving target detection
technique applied to the distributed spaceborne SAR-GMTI systems. Firstly, the adaptive clutter
cancellation technique is exploited to suppress the ground clutter. A priori knowledge, such as
road network information, is integrated to the adaptive clutter cancellation processor to reduce any
moving target steering vector mismatch. Secondly, adaptive matched filter (AMF) and adaptive
beamformer orthogonal rejection test (ABORT) are exploited as adaptive detection techniques for
moving target detection. Due to the dense road network, the moving target steering vector estimation
may be ambiguous for the different position and orientation of the roads. The multiple hypothesis
testing (MHT) technique is proposed to detect the moving targets and resolve the potential ambigui-
ties. A scheme is exploited to detect, classify, and relocate the moving targets. Finally, simulation
experiments and performance analysis have demonstrated the effectiveness and robustness of the
proposed technique.

Keywords: distributed spaceborne SAR; GMTI; a priori knowledge; adaptive clutter cancellation;
adaptive detection technique; multiple hypothesis testing

1. Introduction

Spaceborne SAR-GMTI systems combine high-resolution SAR (synthetic aperture
radar) imaging with the GMTI (ground moving target indication) technique to observe the
stationary scene and detect moving targets on the ground. In addition to the large coverage
of the spaceborne SAR sensor, its day-and-night and all-weather capabilities make it a
very interesting tool for traffic management, detection of ground slowly moving targets for
military use, and other uses. The planned single-pass distributed spaceborne SAR [1] can
provide large and flexible along-track baselines to enhance clutter cancellation performance
and decrease the minimum detectable velocity (MDV) for GMTI. However, due to high
satellite velocity and the long range between satellites and the earth, suppression of clutter
and detection of ground slowly moving targets become a difficult task for spaceborne SAR.

The distributed spaceborne SAR-GMTI systems, multibaseline/multichannel ATI
(along track interferometry)/DPCA (displaced phase center antenna), and adaptive clutter
suppression techniques applied to the SAR image or Doppler domain are always exploited
as clutter cancellation techniques [2–5]. Based on the short/long multiple baselines, the
high-resolution SAR satellites TerraSAR-X (TSX) and TanDEM-X (TDX) utilized the bistatic
SAR-ATI technique to get highly accurate velocity estimates for slow and fast target move-
ment [6,7]. In [8,9], the joint pixel eigendecomposition method is proposed to resolve
the SAR image misregistration in the linear clutter suppression scheme for distributed
spaceborne SAR-GMTI. In [10], based on the multi-channel SAR images, a radial velocity
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estimation algorithm is proposed to mitigate the effect of heterogeneous clutter using
the joint-pixel normalized sample covariance matrix and the shift vector. F.Meyer and
S.Hinz et al. [11–14] integrated a priori information into the SAR-ATI technique for traffic
monitoring with TSX. In reality, except for some special military applications of GMTI, a
large majority of targets may travel strictly on roads or highways in a specific direction
and within a velocity range. The integration of a priori information into SAR-GMTI was
suited for theoretical and engineering applications. In [15], the optimum linear clutter
filter integrated with a priori information applied to spaceborne dual-channel SAR-GMTI
is proposed, which maximizes the output signal-to-clutter plus noise ratio(SCNR). S.V.
Baumgartner et al. [16–18] proposed an a priori knowledge-based ground moving target
indication and parameter estimation algorithm applicable to single as well as to multichan-
nel synthetic aperture airborne radars. In [19], for a multichannel SAR-GMTI system, the
along-track baseline is derived based on the subspace projection, where the target radial
velocity is estimated according to the azimuth position offset by exploiting the road-aided
information. A.Budillon et al. [20] determined that it is difficult to use the road map as a
priori information for the dense road network, but the prior road information can be used
to assess the GMTI performance. C.Song et al. [21] proposed a GLRT detection method
to detect the moving targets for multichannel SAR. In [22,23], a robust optimum adaptive
clutter suppression technique for SAR-GMTI applied to the distributed spaceborne SAR,
which includes the diagonal loading technique with a priori information integrated into
the processor. Research in the area of moving targets detection in the presence of clutter
has resulted in a number of adaptive detection algorithms. In general, the generalized
likelihood ratio test (GLRT) is always exploited for moving target detection for multistatic
or multi-channel SAR-GMTI techniques [15,21–23]. Traditional detectors can suppress
clutter and achieve detection. In reality, AMF and ABORT are the two well-known adaptive
techniques for radar target detection. The AMF exhibits robust behavior with respect to
steering vector mismatches and more computational efficiency than many other detectors as
the generalized likelihood ratio test (GLRT) [15,21–23]. The ABORT can reject interference
signals orthogonal to the nominal steering direction, which modifies the null hypothesis to
the unwanted signal assumed to be orthogonal to the nominal steering vector.

In this paper, a priori knowledge-based adaptive clutter cancellation and moving
target detection techniques for SAR-GMTI are applied to the distributed spaceborne SAR
systems. The technique is applied to the formation flying that the distributed satellites
exhibit as they fly along the same orbit arc as seen from the ground. The phase centers of
these satellites are aligned to form a sparse linear array [1]. A priori knowledge, such as the
roads information predicted from the road network database, is integrated into the adaptive
processor to reduce moving target steering vector mismatch. Two traditional adaptive
detection techniques, which include the adaptive matched filter (AMF) and the adaptive
beamformer orthogonal rejection test (ABORT), are exploited to detect moving targets in
clutter. If the road network is so dense that the azimuth displacement and the moving
target steering vector estimation may be ambiguous for different positions and orientations
of the roads [11–14], the multiple hypothesis testing technique (MHT) is proposed to
detect the targets and resolve the potential ambiguities. The detection, classification and
relocation scheme are exploited to detect the presence of a target, correctly classify, and
relocate it to the corresponding roads. Performance is investigated by means of Monte
Carlo simulations in terms of probability of false alarm, detection, and classification. To
verify the distributed spaceborne SAR processing scheme and simplify the instrument
hardware design, our research group designed the commercial simulation software named
SpaceBorne Radar Advanced Simulator (SBRAS) [24,25]. Simulation results developed
on SBRAS and performance analysis demonstrate the effectiveness and robustness of the
proposed method.

The paper is organized as follows: Section 2 reviews the signal model under Gaussian
assumption of clutter and states the adaptive clutter cancellation technique. Section 3
analyzes the moving target steering vector mismatch and integrates a priori knowledge
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to the adaptive clutter cancellation processor. Section 4 analyzes two traditional adaptive
detection techniques and proposes the MHT technique. Performance has been investigated
either analytically or by means of Monte Carlo simulation in terms of probabilities of false
alarm, detection, and correct classification. Section 5 gives the simulation experimental
results and analysis based on SBRAS. Section 6 gives the conclusions.

This paper is an extension of our conference papers presented at the IET International
Radar Conference in 2009 [15] and at the International Conference on Computer Application
and System Modeling in 2010 [22]. This paper is an extension of the first author’s PhD
thesis [23].

2. Signal Model and Adaptive Clutter Cancellation

Consider K identical spaceborne SARs flying along the same orbit when viewed from
the ground. This semiactive configuration is named SAR-Train [1]. The K SAR flies on the
same orbital arc in an Earth frame, which means that the SARs are generally on different
orbit planes because of the across orbit Earth rotation between successive passes. The main
formation flying constraint is the width of the tube containing the satellite trajectories.
The time intervals between the satellites, which cause the temporal decorrelation of the
backscatter, is supposed to be very short. In the train of K monostatic/bistatic spaceborne
SARs, the first satellite known as master satellite transmits/receives radar signal/echo,
while other satellites, known as slave satellites, only receive the radar echo. The phase
centers of these satellite constellations are aligned to form a sparse linear array. Based
on the configurations and the monostatic/bistatic SAR imaging techniques, the K phase
centers focus on the processed point at different times [6,15,22,23]. The complex SAR
images of the same area can be obtained with identical geometry of every satellite and
with uniform/nonuniform along-track baselines. In other words, the multi-aperture SAR
images are sampled with time delay determined by baseline permutation and combination.
Image alignment can be performed in the coregistration stage.

Firstly, some realistic assumptions are described as follows: (1) since the along-track
baseline distance is short for the multibaseline spaceborne SAR-GMTI system, the target’s
movement is smaller than the resolution cell size within the small time delay; (2) stationary
clutter is modeled as a Gaussian distributed process; (3) the multilook SAR resolution cell
size is larger than the spatial dimension of the target that contains both clutter and the
moving target; the clutter power can no longer be neglected; (4) moving target travel with
constant velocity without acceleration or brake; (5) magnitude and phase errors caused
by mismatched SAR processing or channel unbalance have been eliminated prior to the
detection [26]; and (6) the subpixel coregistration precision can be obtained using the
maximum-spectrum image registration method.

Two hypotheses H0 and H1 are defined as clutter and noise (H0) andsignal plus clutter
and noise (H1). For image pixel index (m, n), the K dimensional SAR image vector can be
modeled as the following [15,22,23],

Hypothesis H0 :
⇀
Z(m, n) =

⇀
C(m, n) +

⇀
N(m, n)

Hypothesis H1 :
⇀
Z(m, n) =

⇀
S (m, n) +

⇀
C(m, n) +

⇀
N(m, n)

(1)

where
⇀
C is the clutter vector that is assumed to be independent with an identically dis-

tributed (i.i.d.) circular Gaussian with zero mean in the local terrain.
⇀
N is the additive noise

vector. The moving target’s signal vector
⇀
S is modeled as a statistically independent point

target.
⇀
S (m, n) = β

⇀
a (ψ) �

⇀
S Nor(m, n).

⇀
S Nor(m, n) is the normalized complex moving

target’s image pixel vector. β is the amplitude of the moving target.
⇀
a (ψ) is the normalized
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spatial steering vector. γ is the unknown moving target’s interferometric phase between
the master and the first slave satellite. � is the Shur–Hadamard product. Furthermore,

⇀
a (ψ) =

1√
K
[1, exp(−jψ), exp(−jψ

B1,3

B1,2
), . . . , exp(−jψ

B1,K−1

B1,2
), exp(−jψ

B1,K

B1,2
)]

T
(2)

where (•)T denotes the transpose operator. B1,i(i = 2, · · · , K) are the along-track baselines
between the master and the ith slave satellite. K is the number of spaceborne SARs with
transmitters and receivers. The adaptive clutter cancellation processor can be expressed as,

⇀
y (m, n) =

⇀
W(m, n)H ·

⇀
Z(m, n) (3)

where
⇀
y is the output,

⇀
W is the weight of the processor, and (•)H denotes the Hermitian

transpose. Under some well-known optimal criteria, the processor can be given in a more
general form as,

⇀
W(m, n) = γR−1(m, n) ·

⇀
S (m, n) (4)

where R denotes the clutter plus noise covariance matrix. The complex constant γ is selected
according to the following criteria. Under linearly constrained minimum expectation

power criterion, the normalization constant γ = 1/
√

⇀
S (m, n)H R−1(m, n)

⇀
S (m, n). γ can be

arbitrarily chosen for the maximum SCNR criterion.
Similar to traditional adaptive beamforming or adaptive clutter cancellation tech-

niques for GMTI, R is unknown and is usually estimated using the maximum likelihood
(ML) technique. Assume that the neighboring 2Km ∗ 2Kn samples around pixel (m, n) are
available, which are free from any moving target signals and identically distributed. Then
the sample clutter plus noise matrix of pixel index (m, n) is [15,22,23],

R̂(m, n) =
1

2Km ∗ 2Kn

km=Km

∑
km=−Km ,km 6=0

kn=Kn

∑
kn=−Kn ,kn 6=0

(
⇀
Z(m− km, n− kn) ·

⇀
Z(m− km, n− kn)

H
)

(5)

In practice,
⇀
a (ψ) is always unknown and the scanning method is always exploited

to get the estimation
⇀̂
a (ψ) for the matched filter, which is a computationally intensive

technique. The Equation (4) can be computed as,

⇀̂
W(m, n) = γR̂−1(m, n) ·

⇀̂
S (m, n) (6)

The adaptive clutter cancellation processor can be expressed as,

⇀̂
y (m, n) =

⇀̂
W(m, n)H ·

⇀
Z(m, n) (7)

3. Problem Statements and A Priori Knowledge Integration
3.1. Moving Target Steering Vector Mismatch

As shown in Equation (6), the adaptive clutter cancellation processor is to estimate the
moving target steering vector

⇀
a (ψ) using the scanning method in the presence of clutter

and noise. The goal, of course, is to search the desired steering vector quickly with a high
degree of reliability. In reality, the estimation might be obscured by high clutter, noise, and
a distorted beampattern, which is always called moving target steering vector mismatch.

The total available output SCNR for the adaptive clutter cancellation can be denoted
as [15,22],

SCNRouttotal = β2 ·⇀a (ψ)H R−1⇀a (ψ) (8)
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After SAR processing, the definition of SCNR is somewhat different from the usual
definition in STAP (space time adaptive processing) [27]. The SCNR can be defined as,

SCNR =
(Nr Na)

PT GT GRλ2σs

(4π)3r4
t

(Nr Na)
PT GT GRλ2σ0

c ρaρr

(4π)3r4
t

+ KBTB
(9)

where σs is the radar cross-section (RCS) of the moving targets. σ0
c is the mean RCS of the

stationary terrain. ρa and ρr are the SAR azimuth and range resolution. rt is the target’s
slant range distance. λ is the radar wavelength. PT is the radar transmitting power. KB is
the Boltzmann constant. GT , GR are the radar transmitter and receiver antennas gain. T is
the radar receiver noise temperature. B and T are the radar receiver bandwidth temperature.
Nr, Na are the SAR processing of range samples and azimuth samples.

In practice, the detectable output SCNR is sensitive to mismatches between the
searched and actual target steering vectors. We define θ as the mismatch angle between the

searched and actual target steering vector
⇀̂
a ,

⇀
a [15,22,23,28–30].

cos2(θ) =

∣∣∣∣⇀̂a (ψ)H R−1⇀a (ψ)
∣∣∣∣2(

⇀̂
a (ψ)H R−1⇀̂a (ψ)

)(
⇀
a (ψ)H R−1⇀a (ψ)

) (10)

The available output SCNR for target steering vector mismatch can be shown
as [15,22,28–30],

SCNRout = β2 ·⇀a (ψ)H R−1⇀a (ψ) · cos2(θ)0 ≤ cos2 θ ≤ 1 (11)

Note that cos2(θ) partially captures the effect of steering vector mismatch, where
⇀
a

and
⇀̂
a point in different directions. cos2(θ) = 0 represents that the estimated steering

vectors are orthogonal to the real steering vectors. Similarly, cos2(θ)= 1 represents that the
estimated steering vectors are matched to the real steering vectors. If the filter is steered in
the wrong direction, only a fraction of the total output SCNR is usable. The adaptive search
of the target steering vector is a time-consuming process, and the resolution is limited
by the sample number, number of satellites, and the baselines’ length. Except for some
traditional causes, the presence of partially correlated speckle and additive noise has the
effect of increasing the variance of the target steering vector.

3.2. Integration of A Priori Knowledge

Except for some military applications of GMTI, a great deal of targets may travel
strictly on the road with a specific moving direction and velocity range. These types of
prediction maybe interpreted as a priori knowledge that can be acquired, analyzed, and
stored independent of image acquisition. In this paper, road network databases serve as
a basic source for acquiring a priori knowledge. These databases contain road axes in
the form of polygons and attributes, such as road width, maximum velocity, and road
direction. S.V. Baumgartner et al. [16–18] proposed a method to transform the geographical
coordinates of each road point to corresponding azimuth beam center coordinates in the
airborne radar range/azimuth plane. The azimuth beam center position of the detected
moving vehicle is then directly given by the intersection of the vehicle signal with the
mapped road point. The road network stored in the databases may represent all possible
moving target positions in a real scene. In this paper, based on the road network database
and SAR images, the displacement map and moving target interferometric phase map
around the roads can be computed pixel by pixel [11–14,22,23].
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In the single SAR transmits and several SAR receive modes, the moving target inter-
ferometric phase ψ can be expressed as [11–14,22,23],

ψ =
2πvrB1,2

λvs
(12)

where vr is the target ground radial velocity and vs is the satellite velocity. The azimuth
displacement ∆a is defined as [11–14,22,23],

∆a = at − aroad (13)

where at is the moving target azimuth position in the SAR image and aroad is the corre-
sponding road segment position. The azimuth displacement is also caused by the target’s
across-track motion, which occurred due to SAR focusing. ∆a is always exploited to
compute the targets’ interferometric phase and across-track velocities [11–14,22,23].

∆a =
2vrvg

λ fr
=

ψvgvs

π frB1,2
(14)

where fr is the Doppler frequency modulation rate and vg is the radar beam velocity on
the ground.

For the master satellite SAR, which both transmits and receives the radar signal, fr
can be computed as,

fr = −2v2
g/λrt (15)

∆a = −vrrt

vg
= − rtψλ

4πB12
(16)

Firstly, based on the road network database and radar parameters, the displacement
measurements of every pixel around its corresponding road segments in the SAR images,
which is called as displacement map, can be computed according to Equation (13). Sec-
ondly, the moving target’s interferometric phase map can be computed directly using the
displacement map according to Equation (14). Finally, the moving target steering vectors
estimation can be computed using Equation (2). In Equation (6), the searched moving target
steering vectors can be directly replaced by estimation results from the interferometric
phase map, which can reduce the steering vector mismatch effectively. The expected mov-
ing target steering vectors, which are derived from the interferometric phase map, can be
directly integrated to the adaptive clutter cancellation processor. The estimation accuracy
has been analyzed in the paper [11–14,22]. In Section 4, the expected steering vectors can
also be directly integrated into the two kinds of adaptive detection techniques, in which
the searched steering vectors are also replaced by the estimation results derived from the
interferometric phase map.

Compared with the traditional adaptive clutter cancellation technique according to
Equations (1)–(4), the proposed a priori knowledge-based adaptive clutter cancellation
technique replaced the moving target steering vector searched results with the estimated
results. The estimated results of the moving target steering vector are based on the road
network database, the SAR images, the displacement map, and the moving targets interfero-
metric phase map. According to Equations (12)–(16), the displacement map and the moving
targets interferometric phase map are computed based on the road information, the SAR
images, and the radar or satellite parameters. On one hand, the road information can be
computed according to the road network database. On the other hand, the road recognition
results of the SAR images and the road information can be combined to determine the road
location in the SAR images.

In reality, the road network is so dense that the ∆a and ψ estimation may overlap for
different roads. A target detected in such an area has several possible ∆a and ψ estimates.
The moving target steering vector estimation may be ambiguous for different positions and
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orientations of the roads [11–14].The multiple hypothesis testing technique is proposed to
resolve the potential ambiguities and detect the moving targets.

4. Multiple Hypothesis Testing Technique
4.1. Adaptive Detection Techniques

Research in the area of moving targets detection in the presence of clutter has resulted
in a number of adaptive detection algorithms. AMF [31,32] and ABORT [29,30] are the
two well-known techniques. The AMF exhibits robust behavior with respect to steering
vector mismatches and more computational efficiency than many other detectors as the
generalized likelihood ratio test (GLRT) and adaptive coherence estimator (ACE) [15,22,23].
The ABORT can reject interference signals orthogonal to the nominal steering direction,
which modifies the null hypothesis to the unwanted signal assumed to be orthogonal to the
nominal steering vector [29,30]. Traditional AMF can be expressed in the formula as [28–32],

ΛAMF =

∣∣∣∣∣⇀̂S H

R̂−1
⇀
Z

∣∣∣∣∣
2

⇀̂
S

H

R̂−1
⇀̂
S

=

∣∣∣∣∣⇀̂WH⇀
Z

∣∣∣∣∣
2

⇀̂
W

H

R̂
⇀̂
W

H1
≷
H0

ηAMF (17)

where
∣∣∣∣⇀WH

R̂−1
⇀
W
∣∣∣∣ is often known as the normalization coefficient. ηAMF is the threshold

which is chosen according to the desired false alarm probability. As shown in [30], we
choose to replace R̂, ΛAMF with R̂′, Λ′AMF for performance analysis ease.

R̂′(m, n) =
km=Km

∑
km=−Km ,km 6=0

kn=Kn

∑
kn=−Kn ,kn 6=0

(
⇀
Z(m− km, n− kn) ·

⇀
Z(m− km, n− kn)

H
)
= KmnR̂(m, n) (18)

Λ′AMF =

∣∣∣∣∣⇀̂S H

R̂′−1
⇀
Z

∣∣∣∣∣
2

⇀̂
S

H

R̂′−1
⇀̂
S

H1
≷
H0

η′AMF (19)

where Kmn = 2Km ∗ 2Kn, which is the number of the neighboring samples to estimate R, R′.
ηAMF = Kmnη′AMF, ΛAMF = KmnΛ′AMF. R̂′(m, n) is replaced by R̂′ for ease of expression.

The test statistic of the ABORT is [30],

ΛABORT =

1+

∣∣∣∣∣⇀̂S H
R̂′−1⇀Z

∣∣∣∣∣
2

⇀̂
S

H
R̂′−1

⇀̂
S

1+
⇀
Z

H
R̂′−1

⇀
Z−

∣∣∣∣∣⇀̂S H
R̂′−1⇀Z

∣∣∣∣∣
2

⇀̂
S

H
R̂′−1

⇀̂
S

= τ +

∣∣∣∣∣⇀̂S H
R̂′−1

⇀
Z

∣∣∣∣∣
2

⇀̂
S

H
R̂′−1

⇀̂
S
•τ

H1
≷
H0

ηABORT or

ΛABORT = 1+Λ′AMF

1+
⇀
Z

H
R̂′−1

⇀
Z−Λ′AMF

= τ + Λ′AMF•τ
H1
≷
H0

ηABORT

(20)

Define the loss factor τ as [30],

τ =
1

1 +
⇀
Z

H
R̂′−1

⇀
Z −Λ′AMF

, 0 ≤ τ ≤ 1 (21)

The Pd (probability of detection) and Pfa (probability of false alarm) are given as [23,30],

Pd(•) =
∫ 1

0
Pd(•)|τ · Pτdτ, Pf a(•) =

∫ 1

0
Pf a(•)|τ · Pτdτ (22)

where (•) denotes AMF and ABORT. As shown in Equations (19) and (20), when the
moving target steering vector mismatch exited as θ 6= 0, τ follows the complex non-central
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beta distribution [23,29,30]. When the moving target steering vector mismatch did not exit,
τ follows the complex central beta distribution. The conditional Pfa Pf a(•)|τ and Pd Pd(•)|τ
can also be expressed as,

Pf a(•)|τ =
∫ η̃(•)

0
Pr
(

Λ(•)|τ
)

dΛ(•), Pd(•)|τ =
∫ +∞

η̃(•)
Pr
(

Λ(•)|τ
)

dΛ(•) (23)

The alternative threshold η̃(•) for AMF and ABORT are defined as,

η̃AMF = τη′AMF, η̃ABORT = ηABORT − τ (24)

As shown in [23,29,30], the Pf a(•)|τ can also be expressed in the simple formulation,

Pf a(•)|τ = 1/
(

1 + η̃(•)

)L
(25)

Pd(•)|τ is [23,29,30],

Pd(•)|τ = 1− 1(
1 + η̃(•)

)L

L

∑
l=1

(
L
l

)
· η̃l

(•)Gl

(
SCNRoutτ

1 + η̃(•)

)
(26)

where Gl(∗) is the incomplete Gamma function L = Kmn − K + 1. According to the
Equations (19)–(26), we can analyze the detection performance loss for AMF and ABORT
under different mismatch angles θ.

Figure 1 is a plot of the Pd versus cos2(θ) of the above two detection algorithms with
parameters L = 49, K = 6, Pf a = 10−5, SCNRout = 20dB. As shown in Figure 1, with the
increase of the mismatch angle θ, the Pd of the two detection algorithms decrease quickly.
AMF is much more robust for target steering vector mismatches and has similar detection
performance to ABORT for the large cos2(θ) case. For ABORT, if the mismatch angle θ is so
large, then the Pd may approximate to zero. Figure 2 shows the ROC (Receiver Operating
Characteristic) curves, which are Pd versus Pfa in log scale with parameters L = 49, K = 6,
SCNRout = 10dB, θ = 0, pi/5. Figure 2 shows that AMF and ABORT have approximate
detection performance for the θ = 0 case, especially under low Pfa. For the θ = pi/5
case, AMF has a much better detection performance than the ABORT. With the increase of
mismatch angle θ, the performance of the ROC for the two detection algorithms decrease
very obviously.
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Figure 2. ROC(Pd versus Pfa in log scale) for AMF and ABORT.

As shown in Figures 1 and 2, when the steering vector mismatch increases, the
detection performance for the two adaptive detection techniques decreases largely. AMF
has much better mismatch discrimination capabilities than ABORT. In this paper, based
on the a priori knowledge of the road network database, the expected steering vectors are
derived directly from the interferometric phase map and azimuth displacement map. In
Equations (19) and (20), the searched moving target steering vectors are replaced by steering
vector estimation results from the interferometric phase map and displacement map.

4.2. Multiple Hypothesis Testing Technique

For most motorways and less dense road networks, the moving targets’ interferomet-
ric phases can easily be determined using their azimuth displacement. For dense road
networks, the roads are so close that the azimuth displacement intervals overlap. A moving
target in such an area may have several possible azimuth displacement and interferometric
phase estimates because the ∆a and

⇀
a (ψ) estimations are linked by the position and orien-

tation of the roads. The wrong road assignments and steering vector estimates may lead to
false detections, velocity estimation ambiguities, and false relocations. Since the moving
target steering vector estimation is linked to the position and orientation of the roads, they
can be exploited as a likelihood ratios test (LRT) function indicating the probability of
moving target detection and the true corresponding road that the detected targets belong to.
The multiple hypothesis testing technique [23,33,34] is proposed in this paper to robustly
resolve potential ambiguities in the moving target phase estimation.

Define the M + 1 hypotheses as H0 and Hk,k=1......M. H0: clutter plus noise. Hk: the kth
signal plus clutter and noise, and the target belongs to the kth road. Therefore, the signal
model in Equation (1) can be modified as,

Hypothesis H0 :
⇀
Z(m, n) =

⇀
C(m, n) +

⇀
N(m, n)

Hypothesis Hk :
⇀
Z(m, n) =

⇀
S k(m, n) +

⇀
C(m, n) +

⇀
N(m, n), k = 1 . . . M

(27)

In Equation (27),
⇀
S k(m, n) = β

⇀
a k(ψ) �

⇀
S Nor(m, n).

⇀
a k(ψ) is the moving target’s

spatial steering vector and the target belongs to the kth road.
⇀
a k(ψ) can be estimated

from road network database and radar parameters using Equations (12)–(14). A priori
probability of hypothesis Hk is denoted by P(Hk) = Probability{Hk} k = 1 . . . M. We
assume that P(Hk), k = 1 . . . M are unknown, but those pertaining to the target classes
are all the same. As such, Pk = (1− P0)/M, k = 1 . . . M, where P0 is the probability of the
hypothesis H0.
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In this paper, we propose a detection, classification, and relocation scheme, which
can detect the presence of a target and correctly classify it to corresponding roads. Based
on road network database and SAR image, the detected and classified targets can be
relocated to corresponding locations on the road. We propose to exploit the multiple
hypothesis testing strategy, which needs to calculate all the likelihood ratios between each
pair of hypotheses and compare each likelihood ratio with a proper threshold. For the
MHT strategy, to compute the H0 versus Hj and Hj versus Hj′ , we may exploit the AMF
technique as Equation (19) and the ABORT technique as Equation (20).

Λ0,k(AMF) =

∣∣∣∣∣⇀̂S H

k R̂′−1
⇀
Z

∣∣∣∣∣
2

⇀̂
S

H

k R̂′−1
⇀̂
S k

=

∣∣∣∣∣⇀̂WH⇀
Z

∣∣∣∣∣
2

⇀̂
W

H

R̂′
⇀̂
W

Hk
≷
H0

η0,k(AMF)k = 1 . . . M (28)

Λ0,k(ABORT) =

1 +

∣∣∣∣∣⇀̂S H

k R̂′−1
⇀
Z

∣∣∣∣∣
2

⇀̂
S

H

k R̂′−1
⇀̂
S k

1 +
⇀
Z

H
R̂′−1

⇀
Z −

∣∣∣∣∣⇀̂S H

k R̂′−1
⇀
Z

∣∣∣∣∣
2

⇀̂
S

H

k R̂′−1
⇀̂
S k

H1
≷
H0

η0,k(ABORT)k = 1 . . . M (29)

In Equation (28), Λ0,k(AMF), k = 1 . . . M are computed according to Equation (19).
For ease of expression, Λ′AMF, η′AMF are replaced with Λ0,k(AMF), η0,k(AMF). We defined
the detection results as DT0,k(•), k = 1 . . . M. For detection results Hk, DT0,k(•) = 1. For
detection results H0, DT0,k(•) = 0. According to Equations (19) and (20), for Hj against Hj′ ,

Λk,k′(AMF) =

∣∣∣∣∣⇀̂S H

k′ R̂′−1
⇀
Z

∣∣∣∣∣
2

⇀̂
S

H

k′ R̂′−1
⇀̂
S k′∣∣∣∣∣⇀̂S H

k R̂′−1
⇀
Z

∣∣∣∣∣
2

⇀̂
S

H

k R̂′−1
⇀
S k

Hk′
≷
Hk

1⇔ Λk,k′(AMF) =

∣∣∣∣∣⇀̂S H

k′ R̂′−1
⇀
Z

∣∣∣∣∣
2

⇀̂
S

H

k′ R̂′−1
⇀̂
S k′

−

∣∣∣∣∣⇀̂S H

k R̂′−1
⇀
Z

∣∣∣∣∣
2

⇀̂
S

H

k R̂′−1
⇀̂
S k

= Λ0,k′(AMF) −Λ0,k(AMF)

Hk′
≷
Hk

0
k, k′ = 1 . . . M,

k 6= k′
(30)

Λk,k′(ABORT) = Λ0,k′(ABORT) −Λ0,k(ABORT)

Hk′
≷
Hk

0

⇔
1+

∣∣∣∣∣⇀̂S H
k′ R̂′−1⇀Z

∣∣∣∣∣
2

⇀̂
S

H
k′ R̂′−1

⇀̂
S k′

1+
⇀
Z

H
R̂′−1

⇀
Z−

∣∣∣∣∣⇀̂S H
k′ R̂′−1⇀Z

∣∣∣∣∣
2

⇀̂
S

H
k′ R̂′−1

⇀̂
S k′

−
1+

∣∣∣∣∣⇀̂S H
k R̂′−1⇀Z

∣∣∣∣∣
2

⇀̂
S

H
k R̂′−1

⇀̂
S k

1+
⇀
Z

H
R̂′−1

⇀
Z−

∣∣∣∣∣⇀̂S H
k R̂′−1⇀Z

∣∣∣∣∣
2

⇀̂
S

H
k R̂′−1

⇀̂
S k

Hk′
≷
Hk

0

k, k′ = 1 . . . M,
k 6= k′

(31)

where the symbol “⇔” means that the two equations are equivalent.
As shown in Figure 3, the scheme includes the detection of the moving targets, as-

signment, and relocation of the detected targets to the true road positions. In Figure 3, for
the first detection step, the steering vector estimation results are directly integrated into
the MHT technique with Equation (28) or (29), which are derived from the interferometric
phase map. After the first detection step, when max

(
DT0,1(•), DT0,2(•), . . . , DT0,M(•)

)
< 0

for no target is declared, the detection strategy goes to the next image pixel. When
max

(
DT0,1(•), DT0,2(•), . . . , DT0,M(•)

)
> 0 for one or more targets is declared, the sec-

ond step is classification to decide the true corresponding road that the detected targets
belong to with Equation (30) or (31). For the third step, the detected targets are relocated to
their real positions, based on the detection and classification results.
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Figure 3. Detection, classification, and relocation scheme of multiple hypothesis testing technique.

To evaluate the performance of the proposed scheme, we calculate the Pfa, the Pd,
and the probability of correct classification (Pc). The Pfa is defined as the probability to
decide one of the M hypotheses when H0 is true. The “total” Pfa can be expressed using the
inclusion–exclusion principle [35,36],

Pf a = P
{(

Λ0,1(•) > η0,1(•)|H0

)
∪
(

Λ0,2(•) > η0,2(•)|H0

)
. . . . . . ∪

(
Λ0,M(•) > η0,M(•)|H0

)}
=

M
∑

i=1
P
(

Λ0,i(•) > η0,i(•)|H0

)
− ∑

1≤i<j≤M
P
(

Λ0,i(•) > η0,i(•), Λ0,j(•) > η0,j(•)|H0

)
+ ∑

1≤i<j<k≤M
P
(

Λ0,i(•) > η0,i(•), Λ0,j(•) > η0,j(•), Λ0,k(•) > η0,k(•)|H0

)
− . . . . . .

+(−1)M−1P
(

Λ0,1(•) > η0,1(•), . . . , Λ0,M(•) > η0,M(•)|H0

)
(32)

In Equation (32), the LRT functions Λ0,1(•), · · · , Λ0,k(•), k = 2, . . . , M may be not mutu-
ally independent, which makes it very difficult to calculate the joint pdf of Λ0,1(•), · · · , Λ0,k(•),
k = 2, . . . , M under hypothesis H0 and the “total” Pfa. Based on the Figure 3, the “total” Pfa

needs to be assigned to the M independent detectors Λ0,k(•), k = 1 . . . M. P
(

Λ0,k(•) > η0,k(•)|H0

)
,

k = 1, . . . , M can be called “local” probabilities of false alarm. In the spaceborne SAR-GMTI
applications, we always need the “total” Pf a ≤ 10−5. Therefore, the joint terms, such as

P
(

Λ0,i(•) > η0,i(•), Λ0,j(•) > η0,j(•)|H0

)
, 1 ≤ i < j ≤ M, in the second part of Equation (32),

are much less than the first “local” probabilities of false alarm items, which is generally
negligible.

To compute the “total” Pfa, we would use the approximation as follows,

Pf a ≈
M

∑
i=1

P
(

Λ0,i(•) > η0,i(•)|H0

)
(33)

We assume that the “local” Pfa pertaining to the different roads are all the same. For
given probabilities of false alarm, such as Pf a ≤ 10−5, the “total” Pfa can be divided equally
to the “local” Pfa. The threshold η0,k(•), k = 1, . . . , M are selected in order to provide the
desired “total” and “local” Pfa. The thresholds η0,k(•), k = 1, . . . , M and “local” Pfa can
be determined by the Equations (18)–(26). Since the “local” Pfa is assumed the same, the
thresholds η0,1(•) = η0,2(•) = . . . η0,M(•), according to Equations (18)–(26).

The Pd is defined as the probability to decide any one of the M hypotheses, when any
one of these M hypotheses is true. The Pd can be expressed as [33,35,36],
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Pd =
P{(Λ0,1(•)>η0,1(•) |H1 )∪...∪(Λ0,M(•)>η0,M(•) |H1 )}P(H1)+...+P{(Λ0,1(•)>η0,1(•) |HM )∪...∪(Λ0,M(•)>η0,M(•) |HM )}P(HM)

P(H1∪H2 ......∪HM)

=
P{(Λ0,1(•)>η0,1(•) |H1 )∪...∪(Λ0,M(•)>η0,M(•) |H1 )|H1 }P(H1)+...+P{(Λ0,1(•)>η0,1(•) |HM )∪...∪(Λ0,M(•)>η0,M(•) |HM )}P(HM)

P(H1)+P(H2)+......+P(HM)

=
Pd|H1

P(H1)+Pd|H2
P(H2)+...+Pd|HM

P(HM)

P(H1)+P(H2)+......+P(HM)

(34)

Under the assumption P(H1) = P(H2) = . . . . . . = P(HM), Equation (34) can be
expressed as,

Pd =
1
M

M

∑
l=1

Pd|Hl
(35)

Pd|Hl
= P

{(
Λ0,1(•) > η0,1(•)|Hl

)
∪
(

Λ0,2(•) > η0,2(•)|Hl

)
. . . . . . ∪

(
Λ0,M(•) > η0,M(•)|Hl

)}
=

M
∑

i=1
P
(

Λ0,i(•) > η0,i(•)|Hl

)
− ∑

1≤i<j≤M
P
(

Λ0,i(•) > η0,i(•), Λ0,j(•) > η0,j(•)|Hl

)
+ ∑

1≤i<j<k≤M
P
(

Λ0,i(•) > η0,i(•), Λ0,j(•) > η0,j(•), Λ0,k(•) > η0,k(•)|Hl

)
− . . . . . .

+(−1)M−1P
(

Λ0,1(•) > η0,1(•), . . . , Λ0,M(•) > η0,M(•)|Hl

)
, l = 1, . . . , M (36)

We can use the notation as follows [35,37],

PL1 =
M

∑
i=1

P
(

Λ0,i(•) > η0,i(•)|Hl

)
(37)

PLk = ∑
1≤i1<...<ik<...≤M

P
(

Λ0,i1(•) > η0,i1(•), . . . , Λ0,ik(•) > η0,ik(•)|Hl

)
, k = 2, . . . , M (38)

Then the “local” Pd can be expressed as,

Pd|Hl
=

M

∑
i=1

(−1)i−1PLk (39)

To simplify the computation of Equations (36) and (39), we can use the expression as
follows [38,39],

Pd|Hl
= P

{(
Λ0,1(•) > η0,1(•)|Hl

)
∪
(

Λ0,2(•) > η0,2(•)|Hl

)
. . . . . . ∪

(
Λ0,M(•) > η0,M(•)|Hl

)}
= 1− P

(
Λ0,1(•) < η0,1(•), . . . , Λ0,M(•) < η0,M(•)|Hl

) (40)

Λ0,1(•), Λ0,2(•), . . . , Λ0,M(•) may not be mutually independent, which makes it very dif-
ficult to calculate the joint probability density function and the probability in Equation (40).
Performance is investigated by means of numerical analysis and Monte Carlo simulation
in terms of Pd. Firstly, we set Pf a = 10−5 and assume that the “local” Pfa pertaining
to the different roads are all the same. For given probabilities of false alarm, the “to-
tal” Pfa can be divided equally to the “local” Pfa. We calculated the “local” thresholds
η0,1(•), η0,2(•), . . . η0,M(•) by using Equations (18)–(26) and (33). Then, we employed the
Monte Carlo technique to approximate the integration in Equation (40) and calculate “total”
and “local” Pd by running 100,000 Monte Carlo runs.

The probability of correct classification Pc is defined as the probability of deciding for
the correct hypothesis when a target is present and belongs to one of the M roads, that is,

Pc =
P(Ĥ1|H1 )P(H1)+P(Ĥ2|H2 )P(H2)...+P(ĤM |HM )P(HM)

P(H1)+P(H2)...+P(HM)

=
Pc|H1

P(H1)+Pc|H2
P(H2)+...+Pc|HM

P(HM)

P(H1)+P(H2)+......+P(HM)

(41)
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Under the assumption P(H1) = P(H2) = . . . . . . = P(HM), Equation (41) can be
expressed as,

Pc =
1
M

M

∑
l=1

Pc|Hl
(42)

As shown in the front part, for given probabilities of false alarm, the “total” Pfa can be
divided equally to the “local” Pfa. The thresholds η0,1(•) = η0,2(•) = . . . η0,M(•). So Pc|Hl

can
be expressed using the inclusion–exclusion principle [35,36],

Pc|Hl
= P

{(
Λ0,l(•) > η0,l(•)|Hl

)
,

M
∩

i=1,i 6=l

(
Λi,l(•) > 1|Hl

)}
or Pc|Hl

= P
(

Λ0,l(•) > η0,l(•), Λi,l(•) > 1, . . . , ΛM,l(•) > 1|Hl

)
i = 1, . . . , M, l = 1, . . . , M, i 6= l

(43)

As shown in the front part, it is very difficult to calculate the joint probability density
function and the probability in the Equations (42) and (43). For performance analysis, we
resorted to numerical integration to calculate them, which is a show of good performance
under the Monte Carlo simulation.

Figure 4 shows plots of the Pd and Pc versus input SCNR (SCNRin) of the proposed
MHT technique based on the AMF and the ABORT with parameters L = 49, K = 6,
M = 4, and Pf a = 10−5. The “total” probabilities of false alarm are divided equally to
the “local” Pfa. The Monte Carlo runs are 100,000. Moving targets are modeled as point
targets of the Swerling 0 case. In Figure 4a, Pd versus SCNRin of the two detection tech-
niques for ψH1 = 1.0rad, ψH2 = 1.5rad, ψH3 = 1.1rad,−1.2rad, ψH4 = −1.5rad are shown.
In Figure 4b, Pc versus SCNRin for ψH1 = 1.0rad, ψH2 = 1.5rad, ψH3 = 1.1rad,−1.2rad,
ψH4 = −1.5rad is shown. In Figure 4c, Pd versus SCNRin for ψH1 = 1.0rad, ψH2 = 1.5rad,
ψH3 = 1.1rad,−1.2rad, ψH4 = 0.9rad is shown. In Figure 4d, Pc versus SCNRin for
ψH1 = 1.0rad, ψH2 = 1.5rad, ψH3 = 1.1rad,−1.2rad, ψH4 = 0.9rad is shown. The fig-
ures show that Pd and Pcincrease with SCNRin and it is easier to detect the presence of
a target rather than classify them to the corresponding road. Pd and Pc increase with the
phase difference for different corresponding roads and it is easier to detect and classify
the targets for larger phase differences. The figures also show that AMF has a similar
detection and classification performance to ABORT. From computational considerations,
it is less costly to compute the AMF statistic since it does not require the computation
of the term ZH R̂−1Z. Therefore, we may use the AMF statistic to the proposed multiple
hypothesis testing technique. In Figure 4, the probability of correct classification increases
with the enlargement of the interferometric phase difference. It is more difficult to classify
the detected targets to the corresponding roads when the interferometric phase or steering
vectors are very close to each other.

For the ordinary SAR-GMTI techniques [2–5,11–14], the search results of the steering
vectors and the interferometric phase estimation are always exploited to estimate the ∆a
and relocate the detected targets, which may include ambiguities and estimation errors.
In this paper, based on the priori knowledge of the road network, ∆a can be directly
applied to relocate the detected targets. Based on the proposed detection, classification, and
relocation scheme, as shown in Figure 3, the detected targets can be classified and relocated
to the corresponding road segments. There may be some kinds of errors which influence
the estimation accuracy of the target’s true position within the stationary SAR images.
For example, the road axis position errors determined by the accuracy of road network
database may propagate to the azimuth displacement estimation. The azimuth resolution
and sample interval can influence the relocation accuracy. These errors have been analyzed
and presented in many SAR-GMTI techniques [2–5,11–14]. In the proposed technique, the
detected targets may be classified to the wrong road segments because the probability
of correct classification Pc is very small under low-input SCNR or the steering vectors
corresponding to different roads are very close as shown in Figure 4. The classification
error is the major error which influences the relocation accuracy in the proposed technique.
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Figure 4. Pd and Pc versus SCNRin of the proposed multiple hypothesis testing technique based
on ABORT and AMF. (a) ψH1 = 1.0 rad, ψH2 = 1.5 rad, ψH3 = 1.1rad,−1.2 rad, ψH4 = −1.5 rad;
(b) ψH1 = 1.0 rad, ψH2 = 1.5 rad, ψH3 = 1.1rad,−1.2 rad, ψH4 = −1.5 rad; (c) ψH1 = 1.0 rad,
ψH2 = 1.5 rad, ψH3 = 1.1rad,−1.2 rad, ψH4 = 0.9 rad; (d) ψH1 = 1.0 rad, ψH2 = 1.5 rad,
ψH3 = 1.1 rad,−1.2 rad, ψH4 = 0.9 rad.

5. Simulation Experimental Results

Compared with a two-channel or multichannel spaceborne SAR system, such as
the Italian COSMO-SkyMed [40], the German TerraSAR-X [11–14], and the Canadian
Radarsat-2 [27], the distributed SAR systems provide the possibility to detect slowly mov-
ing targets based on large along-track baselines and enhance the moving target velocity
estimation accuracy based on multiple baselines. Satellite formation, radar system and
raw data simulation, and SAR-GMTI signal processing are the crucial problems to verify
distributed spaceborne SAR system design and analyze signal processing technique per-
formance. The SBRAS is an economical software developed by our lab [15,22–25], and the
capabilities include satellites simulation, radar system simulation, SAR raw data simulation,
monostatic/bistatic/multistatic SAR imaging, InSAR (interferometric synthetic aperture
radar) processing, Digital Elevation Model (DEM) generation, GMTI/SAR-GMTI signal
processing, system and signal processing performance analysis, and many other functions.
The main SAR-GMTI simulation flow chart based on SBRAS is shown in Figure 5. To
verify the above clutter suppression and moving target detection algorithm, some sim-
ulation experiments and analyses are developed on SBRAS [15,22–25]. The multistatic
SAR images, which include moving targets, are simulated based on SBRAS. We use the
proposed method to the clutter cancellation, moving target detection, target relocation, and
performance analysis.
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Figure 5. Distributed spaceborne SAR-GMTI simulation flow chart.

The simulated SAR image, the interferometric phase map derived from the road
database, and azimuth displacement map are presented in Figure 6. The simulation
parameters are: satellite speed vs = 7.5 Km/s, altitude H = 514 Km, the number of
satellites K = 6, antenna size (length × width) 7 m× 0.5 m, wavelength λ = 0.0563 m,
PRF = 2.9 KHz, chirp bandwidth BW = 50 MHz, incidence angle θinc = 300, and pulse
width PW = 35 µs. The satellites fly on the SAR-Train formation with uniform along-track
baseline B = 150 m.

The master satellite does both transmit and receive, while other slave satellites only
receive the radar echo. The simulated static scene is composed of several fields with
different kinds of mean RCS, which include trees, buildings, roads, and so on. Additionally,
there are eighteen simulated targets driving along the road, which are modeled as point
targets. Figure 6a shows the simulated master satellite SAR image. In Figure 6a, the
moving targets are buried within the clutter, which cannot be directly detected. Figure 6b
shows the road map, which is derived from the road network database and the master
satellite SAR image. In Figure 6c, the interferometric phase map is derived according to
Equations (12)–(14), which only shown within [−pi,+pi] to see with ease. In Figure 6d,
the azimuth displacement map can also be derived from Equations (12)–(14) pixel by pixel,
which also only show within small range corresponding to the interferometric phase map.
For the proposed MHT technique, the entire phase map and displacement map should be
applied to steering vector estimation and clutter suppression.
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Figure 6. Master satellite SAR image, road map, interferometric phase map, and azimuth displace-
ment map derived from road database. (a) Master satellite SAR image; (b) road map; (c) interferomet-
ric phase map; (d) azimuth displacement map derived from road database.

The SAR-GMTI signal processing simulation results are shown in Figure 7, in which
the simulation static scene, satellites, and radar parameters are the same as in Figure 6.
Some SAR-GMTI signal processing steps, which include monostatic/bistatic SAR imaging,
coregistration, and channel balance, exploited the techniques developed on SBRAS. In
the simulations of Figure 7, the proposed MHT technique uses the AMF statistic for
computational considerations.

Figure 7a shows the real positions (or priori positions) as the “red dots” of the eighteen
simulated moving targets. There are five targets moving on road-1 with ground radial
velocities vr = 2, 4,−4,−8,−12 m/s, according to the road marking in Figure 6b; six targets
moving on road-2 with vr = 6, 9, 12− 1,−5,−10 m/s; two targets moving on road-4 with
vr = 1.5, 8 m/s; one target moving on road-5 with vr = 4.5 m/s; and four targets moving
on road-6 with vr = 1, 3, 5, 13.5 m/s. Figure 7b shows the traditional AMF technique
detection results use Equations (20) and (21) with Pf a = 10−5. In Figure 7b, the “red dots”
represent the accurate detection results and the “green dots” represent the false alarms. In
Figure 7b, it can be observed that some “green dots” for the residual clutter regions and the
eighteen real moving targets have been detected completely. Figure 7c shows the detection
results of the proposed method with Pf a = 10−5, in which the “red dots” represent the
accurate detection results and the “green dots” represent the false alarms. It can be observed
that the eighteen moving targets have been detected completely with some false alarms.
Figure 7d shows the relocation results of the proposed method, whose detection results
are shown in Figure 7c. In Figure 7d, the “red dots” represent the accurate detection and
relocation results and “green dots” represent the false alarms. The “blue dots” represent
the accurate detection and false relocation results. A bit of accurately detected results and
false alarms, whose relocated positions are the same, have been marked by “red dots”. It
can be observed that sixteen moving targets have been correctly relocated and two targets
have been relocated in the wrong roads because the probability of correct classification is
low for low input SCNR cases. Based on the proposed technique, the false alarms are also
relocated to the corresponding roads. Some false alarms, whose relocated positions are
very close to each other or close to the false relocation dots, have been overlapped by each
other or overlapped by the “blue dots”.
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Figure 7. The SAR-GMTI signal processing results for AMF and the proposed method. (a) real
positions of the eighteen simulated moving targets (red dots); (b) traditional AMF technique detection
results (red dots represent the accurate detection results, green dots represent the false alarms);
(c) detection results of the proposed method (red dots represent the accurate detection results, green
dots represent the false alarms); (d) relocation results of the proposed method (red dots represent the
accurate detection and relocation results, green dots represent the false alarms, blue dots represent
the accurate detection and false relocation results).

6. Discussion

For military use, spaceborne SAR-GMTI systems can detect ground moving vehicles
and estimate their parameters. For civilian use, spaceborne SAR-GMTI systems can monitor
the traffic situation in urban and motorway areas. For traffic monitoring use, a ground
vehicle may move strictly on the road with a maximum or minimum velocity limitation
and velocity direction limitation. For SAR-GMTI processing, the ground moving vehicles
may be detected and relocated to a certain road. The road network information can be
exploited as a priori knowledge to improve the SAR-GMTI signal processing performance.

The proposed method has many advantages. Firstly, most of the existing SAR-GMTI
processing methods assume that no prior information can be used, which is appropriate
for military use. For civilian applications, especially for traffic monitoring use, the off-
road moving targets can be ignored based on the a priori known road network. This
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operation in the SAR-GMTI processing may reduce the signal processing complexity and
computational load.

Secondly, the Pd versus cos2(θ) is shown in Figures 1 and 2 for AMF and ABORT. Pd
and Pc versus SCNRin of the proposed multiple hypothesis testing technique is shown
in Figure 4, which is based on ABORT and AMF. For the large mismatch angle θ, the Pd
may decrease quickly and approximate to zero. Based on the priori knowledge of the road
network database, the moving target steering vectors may be estimated accurately. As
shown in Figure 4, even under low input SCNR, the Pdis still high enough to detect the
presence of a target. The proposed technique eliminated the influence of the steering vector
mismatch for the detection performance of the adaptive clutter suppression technique.

Thirdly, the integration of a priori knowledge into SAR-GMTI processing may improve
the moving vehicles parameter estimation accuracy. Due to the relation of the along-track
interferometric phase and the target velocity in the across-track direction, the interferomet-
ric phase is always exploited to estimate the moving target velocity parameters and relocate
the moving target to its real position. However, as shown in Figure 7, the traditional AMF
technique may not relocate the detected targets because the target’s interferometric phase
estimation may be wrapped within [−pi,+pi] for large radial velocities. The interferomet-
ric phase may also be influenced by clutter and noise. The proposed method performs
velocity estimation based on the along-track displacement of detected vehicles from their
corresponding roads. The multiple hypothesis testing technique and the azimuth displace-
ment map are exploited to resolve the potential ambiguities. The incorporated road data
not only improves the estimation accuracy but also limits the search space. As shown in
Figure 7, based on the priori knowledge of road network information, the proposed method
may detect the moving targets effectively and relocate them to the real positions with a
small number of relocation errors because of the corresponding road classification errors.

7. Conclusions

In this paper, we have proposed ana priori knowledge-based adaptive clutter cancel-
lation and moving target detection technique for SAR-GMTI applied to the distributed
spaceborne SAR systems. A priori knowledge, such as the road network database, is inte-
grated into the adaptive processor to reduce any moving target steering vector mismatch.
Two kinds of adaptive detection techniques are exploited for moving target detection. The
MHT technique is proposed to detect the moving targets and resolve the moving target
steering vector estimation ambiguity for the dense road network cases. For the MHT
technique, AMF and ABORT have similar detection and classification performance. SBRAS
developed by our research group has been exploited to simulate the multistatic spaceborne
SAR transmitted signals and received echoes. Based on the SBRAS, the SAR-GMTI signal
processing simulation results have shown that the proposed method can efficiently detect
the moving targets with a small number of relocation errors.

In fact, apart from the road mapping data, other knowledge of the external environ-
ment can also be integrated into the proposed adaptive clutter cancellation and moving
target detection techniques. They may include the knowledge of clutter statistics of nonho-
mogeneous terrain and the characteristics of the moving targets. As a remark, although the
distributed spaceborne SAR system is employed in the paper, the method can also be mod-
ified to other multistatic or multi-aperture (multi-antenna or multi-channel) SAR-GMTI
systems. For example, the SAR satellite formations with nonuniform baselines and the
spaceborne/airborne multi-channel SAR systems.
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Abbreviations
The following abbreviations are used in this manuscript:
SAR synthetic aperture radar
GMTI ground moving target indication
DOF degreeoffreedoms
AMF adaptive matched filter
ABORT adaptive beamformer orthogonalrejection test
MHT multiple hypothesis testing
MDV minimum detectable velocity
ATI along track interferometric
DPCA displaced phase center antenna
TSX TerraSAR-X
TDX TanDEM-X
SCNR signal-to-clutter plus noise ratio
SBRAS SpaceBorne Radar Advanced Simulator
i.i.d. independent and identically distributed
ML maximum likelihood
STAP space time adaptive processing
RCS radar cross-section
GLRT generalized likelihood ratio test
ACE adaptive coherence estimator
ROC Receiver Operating Characteristic
Pd probability of detection
Pfa probability of false alarm
LRT likelihood ratios test
Pc probability of correct classification
InSAR interferometric synthetic aperture radar
DEM digital elevation model
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