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Abstract: Like its outdoor counterpart (e.g., GPS), an indoor tracking system can bring about disrup-
tive changes in how we live and work. This paper proposes a location and tracking system using a
single WiFi link based on channel state information. The system can realize real-time, decimeter-level
localization and tracking. In this system, phase calibration and static path elimination are realized by
multiplying the conjugate signals of different antennas. Then, a three-dimensional MUSIC algorithm
is employed to estimate the angle of arrival (AOA), the time of flight (TOF), and the velocity of a
target. A scheme is then developed to adjust the MUSIC search range and reduce the computation
time from about ten hours to tens of seconds. The Widar2.0 data set from Tsinghua University are
used for the experiments; the proposed system is found to have an average tracking error of 0.68 m
in the three environments of classroom, office, and corridor, which is better than the existing single
link localization and tracking system.

Keywords: angle of arrival (AOA); channel state information (CSI); Doppler; indoor tracking; Kalman
filter; MUSIC; time of flight (TOF); tracking; velocity; WiFi

1. Introduction

Location technology can play a very important role in how we work and live. For
outdoor positioning, the global positioning system (GPS) and the Beidou satellite navigation
system have been in place and used widely for many years. However, they do not work
indoors because high walls and buildings block electromagnetic or radio signals. As a
result, an indoor location and tracking system is desirable.

An effective indoor location and tracking system can find many applications. For
example, it can be used to detect the fall of elders, observe abnormal behaviors of prisoners,
emergency management [1], smart energy management [2], HVAC controls [3], occupancy
detection [4], and the management of storage locations of valuable goods. Therefore,
many indoor positioning technologies have been developed. They include Bluetooth,
ultrasound-based techniques, UWB radar, infrared, RFID, ZigBee, and cameras. However,
Bluetooth [5,6] is usually limited to a short range of about ten meters. Although Bluetooth
Low Energy (BLE) technologies are more power-efficient than WiFi technologies [7], their
positioning accuracy can only achieve 1–5 m. The ultrasonic-based technology [8,9] suffers
from multipaths caused by indoor obstacles. The UWB-based indoor positioning tech-
nology [10,11] is relatively expensive and complex. The RFID-based indoor positioning
technology [12–14] has a poor anti-jamming ability. With the prevalence of WiFi signals,
WiFi-based technology has been proposed to achieve indoor positioning, as described in
the literature [15–17].

The WiFi systems have two types: one is the fingerprint-based location system, and
the other is the parameter-based positioning system. The fingerprint-based system re-
quires measurement data to train the system beforehand, which is accurate but largely
environment-dependent. Once the environment changes (e.g., the movement of large
furniture or moving to another room), the WiFi data need to be re-measured and collected
for the training of the system [18–21]. The parameter-based positioning method does not
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need training and can save a lot of human and material resources. To this end, SpotFi
uses channel state information (CSI) to position and track [22]. It applies the MUSIC
algorithm to estimate the angle of arrival (AOA) and time of flight (TOF). Then, the angle
information of a moving target is found by applying the fact that the signal variance in
the dynamic path is larger than that of the static path. As an example, Spotfi can achieve
decimeter accuracy, but it requires users to carry mobile phones, which is not suitable
for many specific occasions. In addition, it requires computational time to carry out the
two-dimensional search for the MUSIC algorithm, which may make real-time operation
impossible in some situations. A dynamic MUSIC method is then proposed [23]: AOA
and TOF estimations are performed by combining static paths into one coherent path.
Since the TOF obtained may not be accurate, the AOA information from two groups of
receiving antennas is used to compute the position. Widar is proposed in [24], which uses
Doppler velocity to find locations. However, since only radial Doppler information can
be obtained from the CSI signal, six groups of receiving antennas are needed to determine
the magnitude and direction of the target’s movement speed. Subsequently, Indo-Track is
developed [25], in which a speed MUSIC algorithm is described. Two sets of the receiving
antennas are used to determine the final velocity and position of a target. The algorithm
uses the position at the previous moment as the initial position of the current moment to
derive the current location. So, it results in error accumulation. The improved version of
Widar, Widar2.0, is further developed [26]. It is the first time that a single link has been
used for positioning. It uses a four-dimensional maximum likelihood estimation of AOA
and TOF for localization. However, Widar2.0 needs to use a path matching algorithm and
smoothing algorithm for all parameters. They take time to compute, so it is difficult for
Widar2.0 to achieve real-time positioning. A sparse reconstruction algorithm is presented
to estimate both AOA and Doppler velocity [27]. The algorithm uses AOA information
from two sets of links to determine the initial position of a target. Then, it uses speed and
time intervals to achieve target tracking. However, the two sets of links are still complex
and not suitable in many applications. Moreover, the algorithm uses the position of the
previous moment to determine the position of the next moment, which may incur relatively
significant error accumulations.

Can we use a single link to achieve real-time positioning without error accumulation?
This paper addresses the question by presenting a single-link, real-time positioning system.
Our proposed system can have decimeter-level positioning and tracking without error
accumulation with only one set of transceiver antennas. We realize phase calibration and
static path elimination by multiplying the conjugate signals of different antennas. Then,
a three-dimensional (3D) MUSIC algorithm based on adaptive range adjustment is used
to estimate a moving target’s angle, time of flight, and radial velocity. By dynamically
adjusting the search range of the MUSIC algorithm, the computational time can be reduced
from about ten hours to tens of seconds. A particle filter is employed to achieve the final
trajectory tracking. The specific process is shown in Figure 1.
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In short, in comparison with the existing techniques, our proposed system presents
the following aspects of novelty:
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(1) A 3D MUSIC algorithm is proposed, which can estimate AOA, TOF, and radial
velocity information of moving targets simultaneously; an adaptive range adjustment
algorithm is implemented to reduce the search time from about ten hours to tens
of seconds;

(2) The adaptive Kalman filter is used to improve the performances;
(3) The particle filter is used to realize real-time trajectory tracking.

2. Materials and Methods

As shown in the previous section, the proposed system involves CSI modeling, phase
calibration, static path elimination, a 3D range-adaptive MUSIC algorithm, Kalman filtering,
and tracking. The section describes each operation.

2.1. CSI Modeling

WiFi signals propagate and are scattered by any objects they encounter in an indoor
environment. Therefore, WiFi signals’ CSI embodies the information about static and
dynamic objects (and thus paths) in an environment.

We consider the receiving array of M elements, as shown in Figure 2.
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We denote the kth subcarrier signal of the ith packet received by the mth antenna
element as h(i, m, k, t). It will contain the signal coming from the static paths due to the
stationary objects or from the dynamic paths due to a moving target. The lsth static
path signal is denoted as hls(i, m, k, t) and the ldth dynamic path signal as hld(i, m, k, t).
Mathematically, we have:

h(i, m, k, t) =
Ls
∑

ls=1
hls(i, m, k, t) +

Ld
∑

ld=1
hld(i, m, k, t) + N(t)

=
Ls
∑

ls=1
als(i, m, k, t)e−j2π fiτls(i,m,k,t)+

Ld
∑

ld=1
ald(i, m, k, t)e−j2π fiτld(i,m,k,t) + N(t)

(1)

where Ls represents the total number of static paths, and Ld represents the total number
of dynamic paths in the environment. hls(i, m, k, t) represents the kth subcarrier signal of
the ith packet received by the mth element from static path ls. hld(i, m, k, t) represents the
kth subcarrier signal of the ith packet received by the mth element from dynamic path ld.
als(i, m, k, t) represents the magnitude of the kth subcarrier signal of the ith packet received
by the mth element from static path ls. τls represents the signal flight time along static
path ls. ald(i, m, k, t) represents the magnitude of the kth subcarrier signal of the ith packet
received by the mth element from dynamic path ld. τld(i, m, k, t) represents the flight time
along dynamic path ld. N(t) represents noise in the path.

Now, we consider the phase difference between the first subcarrier signal h(1, 1, 1, t)
of the first packet received by the first antenna and the kth subcarrier signal h(i, m, k, t)
of the ith packet received by the mth antenna element. The phase difference is due to
three factors: different propagation distances between the elements, the different subcarrier
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frequencies, and Doppler frequency shifts due to the movement of a target. They are
elaborated as follows:

(1) The phase difference due to the different propagation distances between the elements

It is well known or can be easily inferred from Figure 2 that the phase difference due
to the different propagation distances between the mth element and the 1st element is:

ϕg = 2π fk(m− 1)
d sin φl

c
with l = ls or l = ld (2)

where fk is the frequency of the kth subcarrier, d(m − 1) is the extra propagation distance
for the mth antenna in reference to that for the first antenna, c is the speed of light, and φls
or φld are the AOAs of static path ls or dynamic path ld.

As seen, the phase difference (2) between different antennas contains AOA information
φl of different paths.

(2) The phase difference due to the different subcarrier frequencies

Figure 3 shows the schematic diagram of the subcarrier interval. The phase shift be-
tween the two subcarrier frequencies received by the same antenna element is
ϕs(τl) = 2π · ∆ f · τl , where ∆ f is the frequency difference between the two adjacent
subcarriers. For equally spaced OFDM subcarriers, the phase difference between the kth
subcarrier and the first subcarrier is

ϕs = 2π · ∆ f · τl = 2π · ∆ fk · τl (3)

where ∆ f = ∆ fk = (k − 1)δ f and δ f is the frequency difference between the adjacent
subcarriers.
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As seen, the phase difference (3) between different subcarriers contains TOF informa-
tion τl .

(3) The phase difference due to the Doppler frequency shift

If a target or an object is moving, it will incur a Doppler frequency shift, say fD. The
phase difference between the ith packet signal and the first packet signal received by an
element is:

ϕD = 2π · fD(ti − t1) = 2π · v · fc(ti − t1)/c (4)

where fD refers to the Doppler frequency shift, fc refers to the central frequency of the
packet signal, and ∆ti = ti − t1 refers to the time difference between the ith packet and the
first packet. v is the velocity of the moving target. c is the speed of light.

As seen, the phase difference (4) due to the Doppler effect contains the velocity
information v of the moving target.

(4) The total phase difference between the CSI subcarriers

With (2), (3), and (4), we can find the total phase difference phase between the kth
subcarrier h(i, m, k, t) of the ith packet received by the mth antenna and the reference
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subcarrier (which is the first subcarrier signal h(1, 1, 1, t) of the first packet received by the
first antenna in our case). The difference can be expressed as:

ϕ(i, m, k, t) = ϕg + ϕs + ϕD = 2π( fk(m− 1)
d sin φl

c
+ ∆ fkτl + fD∆ti) (5)

As seen, the above phase difference (5) contains the location information of a target.
Once it is measured, the location information of a target can be estimated or extracted,
including AOA, TOF, and velocity v.

In a real-world situation, imperfect hardware clock synchronization exists and can
result in unwanted time offset, frequency shifts, and initial phases, which can cause errors.
Therefore, phase calibration is required to remove the errors. In addition, since we are
interested in tracking moving targets and dynamic information, we need to remove the
static path information, specifically in AOA, TOF, and velocity determination. They are
elaborated in the following subsections.

2.2. Phase Calibration and Static Path Elimination

The received analog signal is converted to a digital signal for processing. As a result, a
time offset tSFO will be produced; it leads to the undesired phase bias of 2π f · tSFO, which
needs to be eliminated. Packet Detection delay (PDD), denoted as tPDD, will also occur
when the packet detector processes the signal; the delay in time is presented by phase
deviation in the frequency domain. Therefore, the phase errors induced are

2π f (tSFO + tPDD). (6)

In addition to the two offsets above, the center frequency at the receiving and sending
ends may also be out of sync. After subsequent frequency offset compensation, a new center
frequency offset (CFO) will be introduced, resulting in phase deviation ϕCFO. Therefore,
the overall phase offset of the kth subcarrier signal is:

2π · δ f · (k− 1) · (tSFO + tPDD) + ϕCFO, (7)

δ f is the frequency difference between adjacent subcarriers.
To remove the above unwanted phase offset or noises, two common phase-calibrated

techniques have been developed: the first is the linear fitting algorithm [22,23,27], and the
other is the conjugate multiplication of different antenna signals [25,26]. They are applied
to pre-process the received signals before the actual estimation algorithms (MUSIC in our
case) are applied. In the following paragraphs, we compare the performances of the two
different algorithms for location estimation.

The linear fitting algorithm is described in [22,23,27], and the other is the conjugate
multiplications of the signals received by different elements; it is described in [25,26]. To
see which algorithm is more suitable for the trajectory tracking algorithm, the following
experiments are carried out. After the phase calibrations with the two different algorithms,
a MUSIC algorithm is applied to estimate AOA and TOF.

Figure 4 shows the AOAs estimated with the linear fitting algorithm for the static
and dynamic paths. The black curves are the true AOAs of the moving target. The blue
asterisks are the estimated AOAs corresponding to the first peak of the MUSIC power
spectrums. The red asterisks are the AOAs corresponding to the second peak point of
the power spectrum. They represent the two paths, one being static and the other being
dynamic. The AOAs of the static and dynamic paths are indistinguishable when the time is
less than 1 s (the abscissa is less than 10). As shown in the red circle in Figure 4, static and
dynamic paths are among each other and not distinguishable. One of the reasons for this is
that there are only three receiving antennas and the resolution is low.

Figure 5 shows the AOAs estimated with the conjugate multiplication. The black line
represents the true AOAs of the moving target. The blue asterisks are the estimated AOAs.
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In comparisons of Figures 4 and 5, we can see the conjugate method presents better results
than the linear fitting algorithm. In the following subsections, we use the conjugate method.

2.3. The Proposed System with the Three-Dimensional MUSIC Algorithm of Dynamic Step Size

The above work has been limited to the two-dimensional AOA estimations. We now
extend it to three-dimensional estimations of AOA, TOF, and Doppler velocities of moving
targets with MUSIC algorithms. The specific process of the algorithm is as follows:

It can be seen from Formula (5) that the phase difference of different subcarriers
contains TOF information, the phase difference of different antennas contains AOA infor-
mation, and the phase difference of different times contains Doppler information. CSI data
collected within T seconds contain 90 × I packets (I = T × RS, RS is the sampling rate):
90 = 3 (antennas) × 30 (subcarriers)). The AOA and TOF information is included in 90 (row
of matrix 90 × I). The speed information is contained in the I of 90 × I.

Because the MUSIC algorithm requires a sufficient number of snapshots, I cannot
be always used to estimate Doppler velocity. Therefore, the matrix is reconstructed and
sampled for every set of P packets (equivalent to I/P array antennas used to estimate
the velocity). The resulting matrix is [90 × (I/P)] × P; P is the number of snapshots, and
(90 × (I/P)) is 3 (estimated AOA) × 30 (estimated TOF) × (I/P) (estimated Doppler). The
accuracy and resolution of the MUSIC algorithm are directly related to the number of
antennas. The number of antennas in this algorithm is 90 × (I/P). However, there are only
30 measured subcarriers in our case, the same as those in the literature [22,27] (2 antennas
and 15 subcarriers for each antenna). The superiority of the algorithm in this paper can be
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seen from the subsequent analysis of the results. The constructed covariance matrix R is
as follows:

R = E

 Ld

∑
ld=1

hld ·
Ld

∑
ld=1

hld

H
 (8)

Here, E denotes the expectation. hld is the CSI time domain signal after removing the
static signal. The feature space decomposition of R can be obtained as follows:

R = Us · Σs ·Us
H + Un · Σn ·Un

H (9)

where Us is the signal space of the matrix. Un is the noise space of the matrix. Σs are
the eigenvalues of signal space. Σn are the eigenvalues of noise space. Let us sort the
eigenvalues (eig_matrix). The formula for calculating the decrease ratio is as follows:

dec_ratio =
eig_matrix(ii+1, ii+1)

eig_matrix(ii, ii)
, (ii= 1, 2, · · · , I I) (10)

where II is the total number of rows or columns in the feature space of R. We compute the
decrease factors between each adjacent pair of eigenvalues, except the first decrease. We
find the largest decrease ratio that occurs between the eigenvalues. Taking the maximum
decline rate as the cut-off point, the characteristic space corresponding to the characteristic
value is divided into Un and Us. We also need the steering vector in the MUSIC algorithm.
The signal’s steering vector of a path with the signal composed of the packet, the subcarrier,
and the antenna can be expressed as:

→
a (θl) = [

Packet 1︷ ︸︸ ︷
antenna1︷ ︸︸ ︷

1, Φ(τl), · · · , Φ(τl)
I−1, Φ(θl), · · · , Φ(θl)Φ(τl)

I−1︸ ︷︷ ︸
antenna2

,

antennaM︷ ︸︸ ︷
Φ(θl)

(M−1), · · · , Φ(τl)
I−1Φ(θl)

(M−1),

Packet p+1︷ ︸︸ ︷
antenna1︷ ︸︸ ︷

1, Φ(τl), · · · , Φ(τl)
I−1, Φ(θl), · · · , Φ(θl)Φ(τl)

I−1︸ ︷︷ ︸
antenna2

,

antennaM︷ ︸︸ ︷
Φ(θl)

(M−1), · · · , Φ(τl)
I−1Φ(θl)

(M−1), · · ·

Packet (I−P+1)︷ ︸︸ ︷
antenna1︷ ︸︸ ︷

1, Φ(τl), · · · , Φ(τl)
I−1, Φ(θl), · · · , Φ(θl)Φ(τl)

I−1︸ ︷︷ ︸
antenna3

,

antennaM︷ ︸︸ ︷
Φ(θl)

(M−1), · · · , Φ(τl)
I−1Φ(θl)

(M−1)]T

(11)

The steering vector for all multipath paths is

⇀
A = [

⇀
a (θ1),

⇀
a (θ2), · · · ,

⇀
a (θl), · · · ,

⇀
a (θL)]

T
. (12)

Estimates of AOA, TOF, and velocity can be obtained by searching for the peaks of PMUSIC:

PMusic =
1 /(AHUnUH

n A)
. (13)

The search is full-scale three-dimensional: AOA from −90 degrees to 90 degrees, TOF
from −10 ns to 100 ns, and the velocity from −4 m/s to 4 m/s. Without an optimization
algorithm, it would take about 10 h to complete a three-dimensional search; such a long
computation time is unacceptable.

In this paper, with the consideration that AOA, TOF, and radial velocity information
of target motion are usually continuous in adjacent time, a dynamic convolving step search
is proposed. The search is carried out within a small range centered at the parameters
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estimated at the previous time. The search range of AOA depends on the estimated value
of AOA at the previous time. More specifically, it is a small range centered on the estimated
value of AOA at the previous moment. The search ranges for the TOF and the velocity are
similar to that for AOA. With the above search method, the computational time required
is reduced from a few hours to tens of seconds. We figured out the running time for both
algorithms under the same computer and software platform. The algorithm in this paper
is based on the principle that the parameters of human body position are continuous in a
short time. The algorithm improves the efficiency by reducing the parameter search range.
The original algorithm required 180 × 110 × 80 searches. The improvement only requires
5 × 8 × 12 searches. So, this is about a 3000-fold increase in efficiency.

The above method is very much dependent on the previous estimations. If a previous
estimation is wrong, the current estimation can be incorrect. We have conducted another
experiment, and the result is shown in Figure 6. In the figure, the purple line is the true
AOA, and the colored asterisks are the AOA obtained with the above parametric value that
defines the search range. As seen, an error occurred at time 5 s (abscissa 50), resulting in
the subsequent incorrect results.
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To solve the above problems, the search range needs to be changed adaptively. The
first thing we have to do is set up a judging criterion that can identify the starting location
of the wrong estimation. Once the location is identified, we can adaptively increase the
search range by creating the parametric value. In this paper, the difference between the
estimated phase and the original phase is used as the criterion:

φ̃(i, k, m, t) = 2π( fk(m− 1)
d sin φ̃l

c
+ ∆ fkτ̃l + f̃D∆ti), (14)

where φ̃(i, k, m, t) is the estimated phase, and τ̃l , Φ̃l , and f̃D are the parameters obtained by
using the MUSIC algorithm with a fixed parametric value. The estimate deviation var is
defined as:

var(t) = φ̃(i, k, m, t)− φ(i, k, m, t). (15)

If var(t) ≥ Tφ, we increase the search range and conduct the research.

2.4. Adaptive Kalman Filtering

To further improve the quality of the signals received, we apply the adaptive Kalman
filter to filter the signals received.

In general, the Kalman filter’s parameters need to be determined adaptively via
continuous trial and error. A Kalman filter with adaptive parameter adjustment is proposed
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in this paper. The variances in observation noise and state noise can be adjusted adaptively
according to the accuracy of the current measured value. The specific process is as follows:

Q1(t) = abs(var(t) ∗ α) and (16)

R1(t) = abs(β−Q1(t)), (17)

where Q1(t) and R1(t) are the variances in state noise and observation noise, respectively.
α and β are the parameters.

The prediction steps of AOA are as follows:

φ̃l,t = F1 · φ̃l,t−1, (18)

Pt = F1 · Pt−1 · F1′ + Q1(t), (19)

where F1 is the state transition matrix. φ̃l,t−1 is the estimated AOA of path l at time t − 1.
φ̃l,t is the previously estimated AOA of path l at time t. Pt and Pt−1 are the median values
of the filter. The updated steps of AOA are as follows:

K1 = (Pt · H1′) · inv(H1 · Pt · H1′ + R1(t)), (20)

φ̃l,t = φ̃l,t + K1 · (φl,t − H1 · φ̃l,t), (21)

Pt = (1− K1 · H1) · Pt. (22)

where K1 is the filter gain and H1 is the transition matrix from state variables to measure-
ments (observations). inv() is the inverse function.

TOF and velocity estimates are filtered in the same way. The results of the proposed
system are shown in Figure 7: it can be seen that the parameter values estimated using the
above algorithm are closer to the real purple curve.
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Figure 7. Conjugate multiplication for different antenna signals before AOA estimation with the
Kalman filter.

The initial estimation is very important for subsequent estimations. In our case, the
starting estimation is determined by the center point of the full-range search with stride
lengths at multiple times.

The specific algorithm is shown in Algorithm 1, where T is a pre-defined threshold
according to experience. The results of the algorithm can be seen in the comparison of
Figures 6 and 7.
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Algorithm 1: Real-time tracking system algorithm.

In put: hld, intalv, intalaoa, intaltof
Output: location
1: Convert hld matrix;
2: Compute R;
3: Obtained un;

Dopple: intalv-v:0.2: intalv + v;
AOA: intalaoa-aoa:2: intalaoa + aoa;
TOF: intaltof -t:2 e−9: intaltof + t;

4: Use Formula (12) to calculate PMUSIC;
Find parameters corresponding to the three maximum peaks

5: Take the mean value of the parameters obtained in step 4;
6: Filter Formulas (16)–(22);
7: Substitute result of step 6 into Formula (13) to ∅̃(i, k, m);
8: plug ∅̃(i, k, m) into Formula (14);

if abs(var) > T,
Re-search PMUSIC with the full range
Repeat steps 4, 5, and 6, 7, 8

end
9: Localization by particle filter

Figure 8a–c are the estimated AOA, TOF, and velocity with the proposed system. It
can be seen from the results that the variance in the estimated results is smaller than that in
Figure 5.
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2.5. Trajectory Tracking

As shown in Figure 9, the red line represents the TOF of the target. The purple line
represents AOAs with respect to the green coordinates. With the determinations of AOAs
and TOFs, a unique position can be determined within the detection area enclosed by the
eclipse, which corresponds to the search area.
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3. Results

We conducted our experiment with our proposed system and Widar2.0 system for
comparisons. The readers can gain a better understanding of the rooms’ layouts and the
possible effects of the multipath phenomenon from [26]. It uses one pair of transceiver
antennas, a laptop for the receiver, and another laptop for the sender. Every receiving end
has three sets of receiving antennas, forming a linear antenna array with the spacing of
0.026 cm (half wavelength) between them. The WiFi transmitter has one antenna. The WiFi
signal is channel 165 with a center frequency of 5.825 GHz. Then, the velocity, AOA, TOF
estimation error, and trajectory tracking error are analyzed and compared.

3.1. Accuracy of Doppler Velocity Estimation

Figure 10 shows the comparison of the radial velocity accuracy between the proposed
system and Widar2.0 in the three environments (classroom, office, and the corridor). The
average velocity error of all trajectories in the proposed system in all environments is
0.4527 m/s, and that of Widar2.0 is 0.6574 m/s. Figure 10 shows that the system is not
making any velocity errors above 3 m/s, while 70% of the time, the error is less than 1 m/s.
The proposed system’s accuracy of velocity estimation is better than Widar2.0. With the
proposed system, the system can detect speed information in real time.

3.2. Accuracy of the TOF Estimation

Figure 11 shows the comparison of TOF accuracy between the proposed system and
Widar2.0 in the three environments. The average error of all trajectories in the proposed
system in all environments is 3.9550 ns, and the average error of Widar2.0 is 4.0217 ns. The
proposed system’s accuracy of TOF estimation is better than Widar2.0. Figure 11 shows that
the system is not making any TOF errors above 17 ns, while 70% of the time, the error is
less than 5 ns. In addition, the system in this paper can detect TOF information in real time.

3.3. Accuracy of AOA Estimation

Figure 12 shows the comparison of AOA accuracy between the proposed system and
Widar2.0 in the three environments. The average error of all trajectories in the proposed
system in all environments is 8.0115◦, and the average error of Widar2.0 is 8.734◦. The
proposed system’s accuracy of AOA estimation is better than Widar2.0. Figure 12 shows
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that the system does not make any AOA errors above 42◦, while 70% of the time, the error
is less than 10◦. In addition, the proposed system can detect AOA information in real time.
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3.4. Estimation of Trajectory Accuracy

The example of location results for the three environments is shown in Figure 13.
Figure 13a is for the classroom environment, Figure 13b is for the office environment,
and Figure 13c is for the corridor environment. In the narrow corridor environment, the
multipath phenomenon is more prominent.
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Figure 14 shows the analysis of all the trajectory tracking errors of the proposed system
in comparison with Widar2.0. The average error of the proposed system is 0.68 m, and that
of Widar2.0 is 0.75 m. The maximum error of this algorithm is greater than Widar2.0. This
is because to achieve real-time tracking, the proposed system only uses the information of
the previous estimation and the current observation value to determine the final position.
Widar2.0 uses the path matching algorithm, Hampel filtering, and smoothing filtering for
all time data, so the results are more stable.
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4. System Performance

In order to further understand the system performance of the proposed system, we
perform analyses with respect to three different affecting factors: environments, data
sampling rates, and trajectory shapes.

4.1. The Influence of Environments on Tracking Accuracy

In this experiment, we analyze the errors of the three test environments of Widar2.0.
Figure 15 is the CDF of the error accumulations of the three environments. The error is
greatest in the classroom environment. This is because there are more multipath interfer-
ences on the signal, and the two antennas in the classroom are spaced more widely and can
detect weaker Doppler speeds. In addition, the error is related to the detection area. The
classroom’s detection area is 30 square meters, the hallway is 20 square meters, and the
office is 10 square meters. The larger the detection area, the greater the error.
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4.2. The Influence of Sampling Rates on Tracking Accuracy

Figure 16 shows the errors at different packet rates: 100/s, 200/s, 500/s, and 1000/s.
As the sampling rate decreases, the errors do not change much. The proposed system can
still obtain good results at a low sampling rate of 100 packets per second.
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4.3. The Influence of the Shapes of Trajectory on Tracking Accuracy

We compared the errors under three different trajectories: Z-shaped, rectangular, and
vertical. Figure 17 shows that the overall error of the vertical line is the smallest. This is
because when a target moves in a straight line, the TOF information is more continuous,
and the results are more accurate. For the Z shape, there will be more information at the
turn, so the error is the largest. The errors associated with the rectangle are in between
those with the vertical and the Z shape.
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5. Conclusions and Discussion

This paper proposes a single-link, real-time location system based on WiFi signals.
The system uses a three-dimensional MUSIC algorithm to estimate AOA, TOF, and radial
velocity information. By applying the adaptive determination of the search range, the
proposed system avoids a full three-dimensional search, reducing the computation time
from about ten hours to tens of seconds. In comparison with Widar2.0, the proposed system
does not need to perform path matching and smoothing filtering. Rather, the proposed
system makes the estimations based on those of the previous ones at the previous moments.
The average tracking error is 0.68 m, which is better than those of the existing systems. At
present, the algorithm in this paper can only track the motion of one person. For the case of
multiple people moving at the same time, the estimated parameters will be superimposed
and cannot be distinguished, and the trajectory cannot be accurately tracked. Multi-person
tracking based on Wi-Fi is one of the future research directions.
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