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Abstract: The subtropical forests in China play a pivotal part in the global and regional carbon–water
cycle and in regulating the climate. Ecosystem water-use efficiency (WUE) is a crucial index for
understanding the trade-off between ecosystem carbon gain and water consumption. However,
the underlying mechanisms of the WUE in forest ecosystems, especially the different subtropical
forests, have remained unclear. In this paper, we developed a simple framework for estimating forest
WUE and revealing the underlying mechanisms of forest WUE changes via a series of numerical
experiments. Validated by measured WUE, the simulated WUE from our developed WUE framework
showed a good performance. In addition, we found that the subtropical forest WUE experienced
a significant increasing trend during 2001–2018, especially in evergreen and deciduous broadleaf
forests where the increasing rate was greatest (0.027 gC kg−1 H2O year−1, p < 0.001). Further analysis
indicated that the atmospheric CO2 concentration and vapor pressure deficits (VPD), rather than leaf
area index (LAI), were the dominant drivers leading to the subtropical forest WUE changes. When
summed for the whole subtropical forests, CO2 and VPD had an almost equal spatial impact on
annual WUE change trends and accounted for 45.3% and 49.1% of the whole study area, respectively.
This suggests that future forest management aiming to increase forest carbon uptake and protect
water resources needs to pay more attention to the long-term impacts of climate change on forest
WUE.

Keywords: subtropical forests; water use efficiency; vapor pressure deficit; elevated CO2 concentration;
a modified analytical WUE model

1. Introduction

WUE is defined as carbon assimilation per unit of water loss and is a prominent
pointer for understanding vegetation carbon–water coupling between photosynthesis and
transpiration [1,2]. The ecosystem WUE is expressed as the ratio of gross primary produc-
tivity (GPP) to evapotranspiration (ET) [3]. Generally, vegetation returns water vapor to the
atmosphere through transpiration, which profoundly influences the regional climate and
water yield or runoff [4,5]. Consequently, quantifying the variations in WUE over space and
time and revealing its driving mechanisms is essential for comprehending the vegetation
carbon–water interactions, predicting and adapting to future climate change [5–7], and
providing valuable guidance for policy makers in water resources’ management [4,8].
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As one of the major terrestrial ecosystems, forest ecosystems, which cover about
30% of the land area [9], are one of the largest conduits for transferring carbon from the
atmosphere to the terrestrial ecosystems through photosynthesis [10,11] and reformulating
the global or regional climate via water consumption of transpiration [5,12,13]. The Chinese
subtropical forest ecosystems, with an area of nearly 1.4 × 106 km2, are an extremely
important component of the global forest ecosystems and are hence crucial to the global
carbon cycle and regional climate change. Moreover, the subtropical region is one of the
most developed areas in China, with over 8% of the world’s population, and the forests
in this region can provide important ecosystem services for human beings, such as water
resources, carbon sequestration, oxygen production and timber [14,15].

During the past two decades, a series of nationwide vegetation restoration programs
related to subtropical forest ecosystems were implemented by the China’s central and
district governments to prevent land degradation and mitigate climate change, such as the
Grain for Green Program (GGP, launched in 2000), the Yangtze and Pearl River Basin Shel-
terbelt programs, and the Natural Forest Protection Project (NFPP, launched in 1998) [16].
Evidence from the remotely sensed observations and nationwide field samplings showed
an increase in vegetation coverage and greening in southern China [17–19]. The changed
land surface properties such as the LAI have profoundly affected the available water-energy
allocation [4]. As a consequence, the balance between carbon uptake and water consump-
tion (i.e., WUE) has varied with vegetation restoration. In addition, climate change also
changed dramatically over the past few decades; the temperature (TEM) in this region has
increased by more than 1.0 ◦C, which exceeds the global average [20]. The precipitation
(PRE) shows obvious spatial heterogeneity due to the complex topography and plant
types [21]. Therefore, the forest WUE in this region is significantly regulated by changes in
temperature and precipitation over space and time. The VPD, as another key driver of the
ecosystem WUE, also influences the WUE at different spatiotemporal scales [22].

Moreover, with the rapid economic development and large trace gas emissions (e.g.,
CO2), not only has the annual mean atmospheric CO2 concentration in China reached new
high levels (e.g., 407 ppm in 2017) [23], but air pollution in this region has been reported
in the last two decades, which, in turn, affects the solar net radiation, thereby impacting
the forest WUE. A previous study reported that the rising CO2 concentration enhanced the
plant photosynthetic rates and thereby increased the WUE [24]. As China’s subtropical
forest WUE has experienced unprecedented variations caused by multiple factors, it is
crucial to elucidate how subtropical forest WUE varies and what the dominant drivers
are over space and time. Many studies have explored the spatial–temporal pattern and
mechanisms of forest WUE changes at the global scale [3,6,25], regional scale [26–30], and in
the south of China [31,32]. Despite substantial efforts, conclusions regarding the drivers of
changes in forest WUE remain inconsistent. For example, at the global scale, many previous
studies have suggested that the increasing CO2 concentration was the main driving factor
for the increase in global WUE [1,6], while there were also studies [5,33] that challenge this
hypothesis. At the regional scale, Ding et al. [32] estimated the effects and implications of
ecological restoration projects on ecosystem WUE in the karst region of Southwest China
and reported a significant upward trend in WUE and suggested that ecological restoration
projects were the main driver of the WUE increase. In the karst areas of southern China,
Xiao et al. [34] indicated that the WUE showed an insignificant decreasing trend, and the
precipitation was the dominant driver of the WUE changes. In addition, most studies
treated different forests as a single forest type; thus, the relative impacts of different factors
on forest WUE changes in specific forest types remain unclear, particularly in subtropical
forest ecosystems.

Methodologically, different techniques have been used to estimate vegetation WUE
and to unravel its drivers over multiple spatiotemporal scales. The flux tower can offer
reliable carbon–water flux observations for estimating WUE in forest ecosystems, while
field measurements of WUE by flux towers are scarce in the Chinese subtropical forest
region [35]. Moreover, the footprint of a flux tower is limited from a few kilometers in the
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best case, which limits our understanding of forest WUE and its driving factors over large
spatial scales [35]. Additionally, methods based on statistics and modelling were frequently
utilized to understand the WUE variations and their drivers. For example, previous studies
used model-simulated (e.g., light utilization efficiency (LUE) model) or remote-sensing-
derived GPP and ET to calculate the WUE, and then traditional statistical or regression
methods were adopted to explore the drivers of WUE dynamics [8,26,36]. However, the es-
timated WUE could involve some uncertainty and ignore the photosynthesis–transpiration
coupling due to using the independent GPP and ET data [3]. Moreover, the correlation does
not necessarily imply causality, which can lead to biased results and conclusions due to
spurious correlations [7]. Process-based models are by far one of the most popular methods
for estimating WUE [4,7]. Process-based models can explicitly represent the biophysical
processes in vegetation and their interaction with the environment, which is regarded as
the better tool for understanding the driving mechanisms of WUE changes. Nevertheless,
process-based models usually have a complex model structure and require more detailed
and strict inputs, as well as pre-calibrated parameters based on the field measurements,
which may hinder their application in data-scarce regions, especially in the subtropical
regions of China where only a few flux observations are available.

Recently, the analytical WUE model [6] was widely used to simulate and diagnose
the driving mechanism of WUE changes [6,37,38]. The analytical WUE model has the
advantages of a solid biophysical foundation and a simple model structure. It requires few
parameters and model inputs (e.g., only a few remote sensing data) [6,37,39]. Moreover, in
contrast to the traditional ecosystem WUE model based on the ratio of GPP and ET [1,3,26],
the analytical WUE model directly upscales WUE from the leaves to the ecosystem without
pre-estimating GPP, thus tremendously reducing the uncertainty [6,38]. Therefore, this
method has huge potential to simulate the subtropical forest WUE and investigate its mech-
anisms. The model, however, still needs further improvement because of its limitations in
detecting some important driving mechanisms of forest WUE changes.

In this study, the analytical WUE model was first modified, and further used to
simulate the spatiotemporal variations in the WUE of different subtropical forests. The
mechanisms across subtropical forest region were further explored using a range of model-
ing experiments. The purpose of this paper is to address the following questions: (1) What
is the spatial–temporal pattern of the WUE of the Chinese subtropical forests? (2) How
has the annual WUE of different subtropical forests varied during the past two decades?
(3) What are the dominant drivers of annual WUE change trends in different subtropical
forests? The results of this study may offer valuable information for policy makers in forest
and water resources’ management.

2. Materials and Methods
2.1. Study Area Description

In this study, we focus on the subtropical forests [40,41] situated in the south of
China, which can be demarcated by coordinates 21.33–33.91◦N and 91.39–122.49◦E, with a
coverage of nearly 1.4 × 106 km2. This region has a typical subtropical monsoon climate.
The average annual temperature is about 15.5 ◦C. The annual precipitation is mainly
concentrated in the growing season and shows great spatial heterogeneity, ranging from
more than 2000 mm (south) to 800 mm (north). Due to its special climate conditions and
geographical position compared with regions at the same latitude, this region has formed
unique subtropical forest ecosystems, which are an important part of the global forests [42].
The major forest types in subtropical China include evergreen broad-leaved forest (EBF),
evergreen coniferous forest (ENF), deciduous broad-leaved forest (DBF), and mixed forest
(MXF) (Figure 1).
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Figure 1. The map shows the location of the study area and the distribution of the flux towers in
China’s subtropical forests. The black dots represent that only WUE data are available, while the gray
dots provide both ET and WUE data.

2.2. Model Description and Improvement
2.2.1. The Analytical WUE Model

The analytical WUE model [6] in our study was adopted to simulate the annual
subtropical forest WUE at a resolution of 0.05◦ and to unravel its drivers at the annual scale.
The ecosystem WUE is expressed as ecosystem carbon assimilation (i.e., GPP) per unit of
ecosystem water consumption through evapotranspiration (ET), expressed as follows:

WUE =
GPP
ET

(1)

In Equation (1), the ET includes the following three components:

ET = Et + Ei + Es (2)

where Et is transpiration, which links carbon assimilation and water vapor loss via leaf
stomata. Ei and Es are interception evaporation and soil evaporation, respectively. During
the growing season, the GPP and ET are above zero, as suggested by Cheng et al. [6].
Therefore, Equation (1) can be rephrased as three terms:

WUE =
GPP
ET

=
GPP

Et
× Et

Et + Es
×
(

1− Ei

ET

)
(3)

In Equation (3), the first term is the transpiration WUE; the second term represents
the partitioning between Et and Es during the carbon uptake period; the third term is
determined by the ratio of Ei to ET. As indicated by the previous studies [6,43], the leaf
WUE (WUEL) is independent of the growth environment, and thus WUEL can be directly
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upscaled to the canopy transpiration WUE by linking CO2 concentration (Ca), air pressure
(pa), and VPD. Therefore, GPP/Et in Equation (3) can be approximated by WUEL as follows:

GPP
Et

=

∫
Adt∫
Tdt
≈WUEL =

A
T

=
Capa

1.6×
(

VPD + g1

√
VPD

) (4)

where A denotes the leaf net photosynthetic carbon assimilation rate (µmol (CO2) m−2 s−1);
T represents the leaf transpiration rate (µmol (H2O) m−2 s−1); Ca is the ambient atmospheric
CO2 concentration (µmol(CO2)/mol (air)); VPD and pa, respectively, represent the vapor
pressure deficit (kPa) and air pressure (kPa); g1 is an empirical parameter from the Ball
stomatal conductance model (kPa0.5) (Ball et al., 1987), which was used in the WUE model
for different land cover types and detailed in Cheng et al. [6]. For the second term in
Equation (3), the Et

Et+Es
can be estimated by Beer’s Law [44]:

Et

Et + Es
= 1− exp(−kL) (5)

where the L denotes the leaf area index (LAI) (m2/m2); the k (unitless) is the extinction
coefficient of radiation (k = 0.6) [6]. Eventually, the expression of the analytical WUE model
is as follows.

WUE =
Capa

1.6×
(

VPD + g1

√
VPD

) × [1− exp(−kL)]× (1− fEi) (6)

where fEi is the ratio of Ei to ET (Ei/ET).
However, the original analytical WUE model, as shown in Equation (6), is mainly de-

termined by the five controlling factors, namely the Ca, pa, VPD, L, and fEi, especially the fEi,
calculated based on the published global Ei and ET data sets in the original analytical WUE
model [6]. Some key drivers, such as precipitation, temperature, net radiation (RN), VPD,
and LAI, can also significantly affect Ei and ET, thereby influence forest WUE [6,37–39].
Therefore, ignoring these drivers may hinder our understanding of the real mechanisms of
WUE changes when using the original analytical WUE model. In this study, we attempt
to incorporate the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model [45] into the
original analytical WUE model and to estimate the fEi. Here, we used the PT-JPL model
because it not only has the merits of a high-efficiency model structure and high-accuracy
estimation of ET and its components (Et, Ei, and Es), but also considers different physical
processes with interactions of the key biotic (i.e., LAI) and environmental factors (e.g.,
temperature, net radiation, VPD) [45]. Therefore, we can adopt the coupled analytical WUE
model to diagnose the effects of different driving forces on WUE change trends [39].

2.2.2. The PT-JPL Model

The PT-JPL model was developed by Fisher et al. [43], and has been adopted to
estimate the total ET and three parts of ET, as in Equation (2). In the PT-JPL model, the
calculations of the Et and Es can be shown as follows:

Et = (1− fwet)fgftfmα
∆

∆ + γ
Rnc (7)

Es = (1− fwet + fsm)(1− fwet)α
∆

∆ + γ
(Rns −G) (8)

where fwet is the relative surface wetness (unitless), fg is the green canopy fraction (unitless),
ft is the plant temperature constraint (unitless), fm is the plant moisture constraint (unitless),
and fsm is the soil moisture constraint (unitless); Rnc and Rns, respectively, denote the net
radiation to the canopy (W/m2) and the soil (W/m2). G denotes the ground heat flux
(W/m2), which can be neglected on a monthly or yearly scale [46–48]. The Priestley–Taylor
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coefficient (α) was set as a constant value of 0.8 for forests [47], ∆ denotes the slope of the
saturated vapor pressure curve (kPa/◦C), and γ represents the psychrometric constant
(kPa/◦C). The calculations of the fwet, fg, ft, fm, fsm, Rnc, and Rns can be found in Table S2
and the previous studies [45,49].

In the PT-JPL model, the Ei is generally evaluated by Ei = fwet × α× [∆/(∆ + γ)]×Rnc,
which mainly depends on the Rnc and relative humidity (RH). However, only considering
the Rnc and RH may ignore the effect of precipitation on Ei, especially in the subtropical
forests with dense trees, which have a strong interception and affect the precipitation
reaching the ground, influencing the total ET. Moreover, the original Ei equation in the
PT-JPL model means that Ei will occur as long as the RH is greater than 70%, even without
precipitation [45]. This assumption may be unsuitable for the humid subtropical region
because RH and precipitation are usually uncorrelated, particularly in a humid region
such as China’s subtropics, where the RH almost exceeds 70% during the year, but not
necessarily with precipitation. Therefore, the original equation in the PT-JPL model may
significantly overestimate the Ei, as reported by previous studies [50,51], especially in
subtropical regions of China, by up to three-fold [38,52]. Therefore, in this study, we
adopted the modified Gash model [53,54] to replace the original equations in the PT-JPL
model and calculate the Ei. Meanwhile, we also compared the Ei calculated by the original
equation in the PT-JPL model and the modified Gash model, with the other two Ei products
(i.e., the GLEMA Ei and PML-V2 Ei), further confirming that the overestimation of Ei in the
original PT-JPL model (see Figure S1). The key equations used in the modified Gash model
for Ei estimation are as follows (Equations (9) and (10)).

Ei =

{
fv × P, if P < Pwet

fvPwet + fER × (P− Pwet), if P ≥ Pwet
(9)

with

Pwet = −ln
(

1− fER

fv

)
× Sv

fER
, Sv = Sl × LAI, fER = fv × F0 (10)

where P and Pwet are the daily precipitation (mm/day) and the reference threshold rainfall
amount if the canopy is wet (mm/day); fv denotes the fractional area covered by intercept-
ing leaves (unitless), which can be calculated by fv = 1− exp(−0.2 ∗ LAI); fER denotes the
ratio of average evaporation rate over average precipitation intensity storms (unitless); Sv
represents the canopy rainfall storage capacity (mm/day); Sl (mm) is the water storage
capacity per unit leaf; F0 is the specific ratio of average evaporation rate over average
rainfall intensity during storms per unit canopy cover (unitless). In this study, the key
parameters of Sl and F0 referred to the study of Zhang et al. [55]. The performance of the
modified PT-JPL model (PT-JPLmod) will be validated by measured ET, and the PT-JPLmod
will also be compared to the original PT-JPL model (PT-JPLraw) when simulating ET.

Firstly, we use the improved PT-JPL model to calculate ET and Ei, where Ei is calculated
using the improved Gash model. It is worth noting that we do not directly use the Gash
model to calculate Ei in the analytical WUE model and further simulate the WUE, because
Ei in this study is also used to calculate ET, thereby affecting the total ET. Then, we use
the ratio of Ei to ET to calculate fEi (i.e., fEi = Ei/ET) in the original analytical WUE model.
Eventually, the modified analytical WUE model is generated, as shown in Figure 2. The
simulated WUE was first validated by the measured WUE, and the framework of the hybrid
analytical WUE model was further used to distinguish the effects of different drivers on
China’s subtropical forest WUE change trends.
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2.3. Data Acquisition and Preprocessing

To evaluate the models’ performance, we acquired the daily eddy covariance (EC)-
derived GPP and ET from four flux tower stations within or near the study area (see
Figure 1 and Table S2), which underwent strict data quality control, such as gap filling
and flux partitioning and are available from the ChinaFLUX network [56]. Accordingly,
the WUE from the flux towers was obtained by the ratio of GPP to ET. We also obtained
the subtropical forest WUE from the published literature (see Table S3) to validate our
analytical WUE model.

We used the published ET products to compare the estimation of the Ei in the PT-JPL
model. We also utilized the Ei and ET products to drive the original analytical WUE model
for WUE simulation, which was further used to compare with the simulated WUE using
our improved WUE model. Most currently available ET products simply provide a total
ET estimation but do not offer the Ei and Et products. Thus, two commonly used ET
products are considered in our study for comparison (i.e., the Global Land Evaporation
Amsterdam Model (GLEAM) V3.6a ET products and PML_V2 ET products). The GLEAM
data integrated a set of algorithms to calculate different components of ET, including
transpiration, bare-soil evaporation, interception loss, etc [47,57]. The GLEAM products
have a spatial resolution of 0.25◦ and span from 1980 to 2021. The PML_V2 products (2001–
2019 and spatial resolution: 0.05◦) were generated by a water-carbon-coupled model [55,58]
and provided the ET partitioning. Here, all datasets during the period 2001–2018 were
used and further aggregated into 0.05◦ × 0.05◦.

We obtained the Global Land Surface Satellite (GLASS) LAI product (2001–2018) from
the University of Maryland. These data were generated using the general regression neural
networks (GRNNs) with a spatiotemporal resolution of 0.05◦ and 8-day [59]. The GLASS
LAI was utilized in the present study because it has been validated and showed a higher
accuracy compared to other satellite LAI products in subtropical forests [60,61].

The air temperature, precipitation, relative humidity, and air pressure were derived
from the Climate Meteorological Forcing Dataset (CMFD) [62]. The CMFD has a high
spatiotemporal resolution of about 0.1◦ daily or hourly, which was evaluated against the in
situ meteorological data [62] and has been widely used in previous studies [63–65]. Con-
sidering the large spatial heterogeneity and uncertainty of precipitation, we also obtained
precipitation products from the Multi-Source Weighted-Ensemble Precipitation (MSWEP)
Version 2.2 [66]. The MSWEP precipitation data have a spatial resolution of 0.1◦ and
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were generated by merging multiple satellite-based products, reanalysis-based data, and
ground-gauge data, which were considered to be the best-gridded precipitation product in
China [67]. The CMFD and MSWEP were resampled to 0.05◦ to be consistent with other
drive data using the bilinear interpolation method. The mean precipitation of CMFD and
MSWEP data was used in our study. The VPD was estimated by TEM and RH [68]. We also
obtained the GLASS net radiation product (spatial resolution: 0.05◦) from the University of
Maryland, which was validated against 142 ground-based measurements worldwide and
showed satisfactory overall accuracy [69].

The yearly (from 2001 to 2018) land cover data sets (300 m) were obtained from the
European Space Agency (ESA) [70]. The overall global accuracy of CCI land cover data is
nearly 75.4%, with a higher accuracy for forests [70]. In this study, we first used the CCI LC
user tool to aggregate the original CCI land cover data into 0.05◦. We further referred to
the classification of the previous study [71] to extract the main forest types in our study
area, including the evergreen broad-leaved forest (EBF), evergreen needleleaf forest (ENF),
deciduous broad-leaved forest (DBF), and mixed forest (MF). In addition, the annual mean
atmospheric CO2 concentration data during 2001–2018 were obtained from the Mauna Loa
observatory (MLO) (Figure S2).

2.4. Experiment Design

We designed different experiments to quantify each driver’s effect on subtropical
forest WUE change trends. The first experiment (i.e., Baseline in Table 1) was designed to
allow all driving factors varying from 2001 to 2018, regarded as the actual estimated WUE
(WUEactual). The other seven scenario experiments were designed to diagnose the effect
of different driving factors on WUE (WUEfactor). In each scenario experiment (Table 1),
a certain driving factor was fixed at the 2001 level, while other drivers varied during
2001–2018. Eventually, the impact of each factor on annual WUE can be identified as
follows [7]:

δWUEfactor,i = WUEactual,i −WUEfactor,i (11)

where i varies from 2001 to 2018; WUEactual,i denotes the yearly forest WUE driven by
all real inputs in the year i; WUEfactor,i means the results of the seven modelling scenario
experiments that only fixed one factor in the year 2001. The δWUEfactor,i represents the
difference between actual estimated WUE and the driving-factor-induced WUE in the year
i. In the present study, the driving factors included PRE, TEM, RH, RN, VPD, LAI, and
CO2 (Table 1).

Table 1. Design of the factorial experiments for model simulations. The # denotes that the inputs
change during 2001–2018; the • denotes the inputs fixed at the 2001 level.

Experiments
Drivers

PRE TEM RH RN VPD LAI CO2

Baseline # # # # # # #
S1 • # # # # # #
S2 # • # # # # #
S3 # # • # # # #
S4 # # # • # # #
S5 # # # # • # #
S6 # # # # # • #
S7 # # # # # # •
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2.5. Statistical Analysis

Two commonly used statistical metrics, the coefficient of determination (R2) and
the root mean square error (RMSE), were used to assess the performance of the PT-JPL
model and the analytical WUE model in the simulation of ET and WUE. Moreover, the
average ET or WUE values of 3 × 3 pixels centered at the flux site were used to validate the
predicted ET and WUE, noting that these pixels have the same forest cover type and other
land-cover types were excluded [72,73]. Additionally, the Theil–Sen slope method with
Mann–Kendall test [74] was used to detect the trend of inter-annual changes in forest WUE.
The contribution of the seven drivers to forest WUE trends can be expressed as follows:

βfactor,j =

∣∣∣Trendfactor,j

∣∣∣
∑7

j=1

∣∣∣Trendfactor,j

∣∣∣ × 100% (12)

where Trendfactor,j denotes the annual trend of δWUE induced by the jth driving factor;
βfactor,j is the contribution of the jth driving factor to forest WUE change trends. Here, the
largest β is regarded as the dominant driver of changes in forest WUE.

3. Results
3.1. Model’s Performance

Four flux-site-derived ET data sets (i.e., monthly and 8-day average ET) (Table S2) were
used to validate the modified PT-JPL (PT-JPLmod) model in our study (Figures 3 and S3).
The performance of the PT-JPLmod model in simulating ET was also compared with that
of the original PT-JPL (PT-JPLraw) model. As seen, all the PT-JPL models showed a good
performance in simulating the subtropical forest ET (Figure 3). However, compared to the
PT-JPLraw model, the PT-JPLmod model improved the accuracy of the ET simulation at
the 8-day scale and monthly scale (Figures 3 and S3). For the 8-day scale, the mean of R2

and RMSE for the PT-JPLraw model in simulation of ET at the four flux tower sites was
0.55 and 0.69 mm day−1 (Figures 3(a1–a4) and S3), respectively, while the accuracy of the
ET simulations based on the improved PT-JPL model is relatively improved (R2 = 0.61 and
RMSE = 0.51 mm day−1) (Figures 3(a1–a4) and S3). A similar enhancement of the accuracy
at the monthly scale was also observed (Figures 3(c1–c4) and S3).

We incorporated the PT-JPLmod model into the raw analytical WUE model, and
this was used to simulate the annual WUE of the subtropical forests. The observed WUE
derived from the flux towers and the published literature (see Tables S2 and S3 and Figure 1)
was utilized to validate the simulated WUE in this study. The simulated WUE based
on our improved analytical WUE model was highly correlated with the observed WUE
(R2 = 0.76 and RMSE = 0.41 gC kg−1 H2O) (Figure 4a). The original PT-JPL model was also
coupled to the WUE model to simulate WUE and further compared with our improved
WUE model on simulated WUE. The evaluation also demonstrated that the accuracy of
our simulated WUE can be improved in terms of R2 and RMSE (Figure 4a,b). To further
confirm the simulation accuracy of our model, we calculated the ratio of Ei to ET in the
analytical WUE model based on the PML and GLEAM datasets, which were respectively
used to simulate annual WUE. The simulated WUE (PML) and WUE (GLEAM) also showed
relatively lower R2 (0.69 and 0.67) and higher RMSE (0.46 gC kg−1 H2O and 0.45 gC kg−1

H2O) (Figure 4c,d) than our simulated WUE (R2 = 0.76 and RMSE = 0.41 gC kg−1 H2O)
(Figure 4a), suggesting that the simulated WUE can achieve a higher accuracy by using our
developed WUE framework. Additionally, these results also indirectly demonstrated that
the original PT-JPL model can be improved by incorporating the modified Gash model.
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Figure 3. Comparison of simulated and observed ET at the four flux tower stations. (a1–a4,b1–b4)
The first two columns compare the simulated ET with the measured ET at the 8-day scale.
(c1–c4,d1–d4) The last two columns compare the simulated ET with the measured ET at a monthly
scale. The results in the first (a1–a4) and third columns (c1–c4) were derived from our PT-JPLmod
model, and the results in the second (b1–b4) and fourth (d1–d4) columns were derived from the
PT-JPLraw model. The red line is the 1:1 line.



Remote Sens. 2023, 15, 2441 11 of 25Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 26 
 

 

 
Figure 4. Validation of annual simulated WUE using observed WUE (n = 32). (a) The simulated 
WUE was driven by the fEi (i.e., Ei/ET) output from our PT-JPLmod model; (b) The simulated WUE 
was driven by the fEi output from the PT-JPLraw model; (c) The simulated WUE was driven by the 
PML products (i.e., Ei/ET); (d) The simulated WUE was driven by the GLEAM products (i.e., Ei/ET). 
Note that all other parameters and inputs are the same when driving the WUE model. 

3.2. Spatial Pattern and Temporal Changes in Subtropical Forest WUE 
The multi-year (2001–2018) mean WUE of China’s subtropical forests showed spatial 

heterogeneity (Figure 5a). WUE values greater than 3.0 gC kg−1 H2O were mainly located 
in the east, while those less than 2.5 gC kg−1 H2O were mainly found in the west (Figure 
5a). Spatially, the WUE values between 2.5 and 3 gC kg−1 H2O accounted for the largest 
proportion (38.72%) of the total area. Different forest types also showed different WUE 
values in the subtropical region. The mixed forest had the highest WUE (3.65 ± 0.86 gC 
kg−1 H2O) (mean ± std dev.), followed by the deciduous broad-leaved forest (2.72 ± 0.57 
gC kg−1 H2O), evergreen needle-leaved forest (2.63 ± 0.62 gC kg−1 H2O), and evergreen 
broad-leaved forest (2.61 ± 0.49 gC kg−1 H2O) (Figure 5b). The regional-averaged value of 
the forest WUE was 2.84 ± 0.75 gC kg−1 H2O. 

From 2001 to 2018, a significant increasing trend (0.025 gC kg−1 H2O year−1; p < 0.001) 
in the WUE of China’s subtropical forests was found (Figure 6a). The WUE of EBF and 
DBF showed the largest increasing trend, with a growth rate of 0.027 gC kg−1 H2O year−1 
(p < 0.001) (Figure 6b,c), compared with the trends in ENF (0.021 gC kg−1 H2O year−1; p < 
0.001) and MXF (0.025 gC kg−1 H2O year−1; p < 0.001) (Figure 6d,e). Spatially, the increased 
WUE accounted for 87.1% (significant increase trends accounted for 63.8%) of the total 
area (Figure 6f), which was distributed throughout the study area from east to west. Con-
versely, the declined WUE (12.9%) mostly occurred in the west and northwest (Figure 6f). 

Figure 4. Validation of annual simulated WUE using observed WUE (n = 32). (a) The simulated WUE
was driven by the fEi (i.e., Ei/ET) output from our PT-JPLmod model; (b) The simulated WUE was
driven by the fEi output from the PT-JPLraw model; (c) The simulated WUE was driven by the PML
products (i.e., Ei/ET); (d) The simulated WUE was driven by the GLEAM products (i.e., Ei/ET). Note
that all other parameters and inputs are the same when driving the WUE model.

3.2. Spatial Pattern and Temporal Changes in Subtropical Forest WUE

The multi-year (2001–2018) mean WUE of China’s subtropical forests showed spatial
heterogeneity (Figure 5a). WUE values greater than 3.0 gC kg−1 H2O were mainly located
in the east, while those less than 2.5 gC kg−1 H2O were mainly found in the west (Figure 5a).
Spatially, the WUE values between 2.5 and 3 gC kg−1 H2O accounted for the largest propor-
tion (38.72%) of the total area. Different forest types also showed different WUE values in
the subtropical region. The mixed forest had the highest WUE (3.65 ± 0.86 gC kg−1 H2O)
(mean ± std dev.), followed by the deciduous broad-leaved forest (2.72 ± 0.57 gC kg−1

H2O), evergreen needle-leaved forest (2.63 ± 0.62 gC kg−1 H2O), and evergreen broad-
leaved forest (2.61 ± 0.49 gC kg−1 H2O) (Figure 5b). The regional-averaged value of the
forest WUE was 2.84 ± 0.75 gC kg−1 H2O.

From 2001 to 2018, a significant increasing trend (0.025 gC kg−1 H2O year−1; p < 0.001)
in the WUE of China’s subtropical forests was found (Figure 6a). The WUE of EBF and
DBF showed the largest increasing trend, with a growth rate of 0.027 gC kg−1 H2O year−1

(p < 0.001) (Figure 6b,c), compared with the trends in ENF (0.021 gC kg−1 H2O year−1;
p < 0.001) and MXF (0.025 gC kg−1 H2O year−1; p < 0.001) (Figure 6d,e). Spatially, the
increased WUE accounted for 87.1% (significant increase trends accounted for 63.8%) of
the total area (Figure 6f), which was distributed throughout the study area from east to
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west. Conversely, the declined WUE (12.9%) mostly occurred in the west and northwest
(Figure 6f).
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3.3. Variation Characteristics of Climate Variables, LAI, and Atmospheric CO2

The annual variation characteristics of the main climate variables (i.e., PRE, TEM,
RN, RH, and VPD) were investigated during 2001–2018 (Figure 7a–e). Generally, the PRE,
TEM, and RH showed gradually increasing trends in the entire forest region, with annual
change rates of 7.71 mm year−1, 0.02 ◦C year−1, and 0.23% year−1 (Figure 7a,b,d). The
same increasing trends for different forest types were also observed during 2001–2018.
Especially, the RH of the entire and different forest regions significantly increased at the
rate of 0.23% year−1 (p = 0.01) (ALL), 0.33% year−1 (p = 0.00) (EBF), 0.20% year−1 (p = 0.01)
(DBF), 0.20% year−1 (p = 0.02) (ENF), and 0.18% year−1 (p = 0.03) (MXF), respectively
(Figure 7d). However, the annual variations in RN and VPD in the entire forest region
showed a significant downward trend at a rate of 0.21 W m−2 year−1 (p = 0.03) and
0.005 kPa/year (p = 0.00), respectively (Figure 7c,e).
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Figure 7. Temporal variations in the precipitation (PRE) (a), temperature (TEM) (b), net radiation
(RN) (c), relative humidity (RH) (d), vapor pressure deficit (VPD) (e), and LAI (f) of the entire area
and different forests. The bold red lines denote the average of all forests.

Annual variations in the vegetation, as indicated by the LAI, presented a significant
upward trend during 2001–2018, with a trend of 0.009 m2 m−2 year−1 (p = 0.023) for the
entire study area (Figure 7f), as well as a trend of 0.009 m2 m−2 year−1 (p = 0.049) for EBF,
0.008 m2 m−2 year−1 (p = 0.019) for DBF, 0.010 m2 m−2 year−1 (p = 0.002) for ENF, and
0.007 m2 m−2 year−1 (p = 0.006) for MXF, respectively (Figure 7f). We also analyzed the
annual changes in the atmospheric CO2 concentration from 2001 to 2018 (Figure S2). The
CO2 concentration increased from 371.3 ppm in 2001 to 408.7 ppm in 2018, with a growth
rate of 2.14 ppm year−1 (p = 0.00).
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The annual variation in the main climatic factors and LAI presented obvious spatial
heterogeneity across the study area (Figure 8). The PRE in most areas showed an increasing
trend, accounting for 84.9% of the total study area. TEM also presented an upward trend in
a large part of the study area (78.0%) and 36.9% of the increased area showed a significant
upward trend (36.9%), while a significantly declined TEM was observed in the west
(Figure 8b). In terms of the RH, the significant increasing trend accounting for 46.5% of the
increasing area was found from the east to west; the trend of the RH in the same area in the
west was opposite to that of TEM (Figure 8b,d). Under the combined effects of the TEM
and RH, a large part (40.9%) of the VPD significantly declined during the study period,
while the areas where VPD increased significantly (23.7%) were mainly scattered in the
south, north, and west (Figure 8e). As for RN, it was almost on a downward trend (88.1%)
during 2001–2018, especially in the eastern and southern regions, where RN showed a
significant decreasing trend (38.0%) (Figure 8c). Spatially, the LAI located in the west and
some portions of the east showed a decreasing trend (29.5%). The significant degradation
of LAI in the western part of the study area is primarily due to a decrease in temperature in
a similar region (Figure 8b). At higher altitudes, where temperatures are already relatively
low, further reductions in temperature lead to a decline in vegetation vigour, thus inhibiting
vegetation growth and LAI increases. In some areas of the east, the decline in LAI may be
a result of urbanization, leading to the conversion from forest to non-forest and reduced
solar radiation (Figure 8c). However, the LAI in the subtropical forest area mainly showed
an increasing trend (70.5%), of which the significantly increased area accounted for 40.2%
(Figure 8f), indicating that the vegetation in this area has recovered significantly during the
past 20 years.

3.4. Contributions of Climate Variables, LAI, and Atmospheric CO2 to the Subtropical Forest WUE
3.4.1. Changes in WUE Induced by Different Drivers

The different drivers of trends in δWUE are illustrated in Figure 9 and Table 2. For
the subtropical forest region, the PRE, RN, and RH mainly induced the annual δWUE to
decrease. Among them, the significant decrease in WUE induced by PRE, RN, and RH
accounted for 29.3%, 43.3%, and 32.7% of the total study area, respectively (Figure 9a,c,d).
Conversely, the TEM, VPD, LAI, and CO2 mainly caused most portions of WUE to increase.
The significant increasing trends in TEM-induced and LAI-induced δWUE were 52.1% and
27.6%. Specifically, the magnitude of δWUE induced by VPD and CO2 was higher than that
of other driving factors. The obvious increasing trends in VPD-induced δWUE accounted
for 29.1% of the total area, which exceeded 60× 10−3 gC kg−1 H2O year−1 in partial regions
of the west and south (Figure 9e). Trends in CO2-induced δWUE were totally positive in
the study area (Figure 9g), and the values were mostly more than 10 × 10−3 gC kg−1 H2O
year−1, suggesting the key role of rising CO2 concentration in inducing the growth of the
forest WUE.

Table 2. The statistics show the proportion of different drivers that lead to an increase or decrease in
δWUE in the study area.

Trends
Increase Decrease

p < 0.05 p > 0.05 p < 0.05 p > 0.05

PRE-induced δWUE 0.7% 9.2% 29.3% 60.8%
TEM-induced δWUE 52.1% 32.8% 4.9% 10.2%
RN-induced δWUE 0.4% 5.5% 43.3% 50.8%
RH-induced δWUE 7.7% 18.1% 32.7% 41.5%

VPD-induced δWUE 29.1% 41.2% 7.3% 22.4%
LAI-induced δWUE 27.6% 43.3% 5.6% 23.5%
CO2-induced δWUE 98.8% 0.2% 0.0% 0.0%
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When considering the entire subtropical forest (i.e., ALL) and different forest types
(i.e., EBF, DBF, ENF, and MXF), the trends in VPD-induced and CO2-induced δWUE are
the largest (Figure 10). Moreover, the CO2-induced δWUE was larger than VPD-induced
δWUE (Figure 10c–e) for DBF, ENF, and MXF, except for EBF (the VPD-induced δWUE:
19.3 × 10−3 gC kg−1 H2O year−1 vs. the CO2-induced δWUE: 15.9 × 10−3 gC kg−1

H2O year−1) (Figure 10b). Overall, for the entire study area, the CO2-induced δWUE was
16.2 × 10−3 gC kg−1 H2O year−1 during 2001–2018, which was close to the VPD -induced
δWUE: 15.4 × 10−3 gC kg−1 H2O year−1 (Figure 10a), while the trends in δWUE induced
by other factors were relatively minor (all within ±4 × 10−3 gC kg−1 H2O year−1). We
summed up the trends in WUE that were induced by all drivers, and the total trend was
25.3 × 10−3 gC kg−1 H2O year−1, which was very close to the real trend (25.0 × 10−3 gC
kg−1 H2O year−1) of WUE that was driven by all real driving inputs (Figure 6a).
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MXF). The grey bar (i.e., Total) denotes the sum of trends driven by all factors.
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3.4.2. The Dominant Driver of the Subtropical Forest WUE Change Trends

We further calculated the relative contributions of all drivers to changes in forest WUE
(Figure 11a). The CO2 was the biggest contributor to DBF, ENF, and MXF, with a β of 41.2%,
40.1%, and 43.0% (Figure 11a). However, VPD is the dominant contributor to controlling
the WUE trend, with a β of 39.7% for the EBF (Figure 11a). Regarding different forests, the
relative contribution of VPD was 35.5%, which was almost equal to the CO2 contribution
(37.4%), indicating that the CO2 concentration and VPD were the most important and
dominant drivers of WUE changes in China’s subtropical forests. For other driving factors,
the contributions of PRE, RH, RN, LAI, and TEM to the annual trends of forest WUE are
8.5%, 7.4%, 5.0%, 5.0%, and 1.2%, respectively (Figure 11a).
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The spatial pattern of the dominant driver of the subtropical forest WUE changes
during 2001–2018 is illustrated (Figure 11b). As seen, the CO2 and VPD were staggered in
the study area, with almost equal spatial impacts on WUE change trends, and individually
accounted for 45.3% and 49.1% of the total study area. Additionally, LAI, as another
dominant driver of WUE trends, only accounted for 5.2% of the total subtropical forested
area and was mostly scattered in the northwest (Figure 11b).

4. Discussion
4.1. The Effect of Climate Change on Forest WUE Changes

The annual mean CO2 concentration increased by 37.4 ppm during 2001–2018
(Figure S2). Our study suggested that, as the largest contributor, elevated CO2 concen-
tration has a positive impact on subtropical forest WUE (Figure 10), which also was in
accordance with much of the previous research [1,6]. Using the driven- and process-based
models, Huang et al. [3] reported that the rising CO2 concentration was the largest con-
tributor to the increment of global ecosystem WUE. Some studies [75,76], based on in situ
measurements (e.g., tree ring isotope), also witnessed that the forests were very sensitive
to increasing CO2 concentration, especially evergreen trees. The impact mechanism of
increasing CO2 concentration on WUE changes mainly includes two aspects: direct and
indirect effects. Firstly, according to Equation (6) in the analytical WUE model, the CO2
concentration is positively correlated with WUE; thus, the rising CO2 concentration can
directly drive an increase in WUE to some extent. As for the indirect effects, the increasing
CO2 concentration will not only affect the photosynthesis of vegetation, but also control
its stomatal conductance and transpiration processes [1,77,78], thereby affecting WUE. For
example, an increase in CO2 concentration leads to a decrease in stomatal conductance and
transpiration rate while promoting photosynthetic rate, thus increasing WUE. Some studies
showed that the photosynthetic efficiency of vegetation did not increase after the increase
in CO2 concentration, and the increase in WUE was caused by the decrease in stomatal
conductance and transpiration [79]. Keenan et al. [1], based on flux observations, found that
the significant increase in WUE in temperate and boreal forests in the Northern Hemisphere
was due to plants’ efforts to maintain a constant ratio (i.e., Ci/Ca) of intercellular CO2 (Ci)
to atmospheric CO2 concentration (Ca). As a result, the WUE depends only on atmospheric
CO2 concentration, and an increase in CO2 concentration will directly promote the WUE
increase. However, it remains unclear to what extent forest WUE is limited by CO2, and
the long-term effects of CO2 fertilization on ecosystem WUE need further investigation.

In our study, we found that precipitation showed an upward trend and had a negative
impact on forest WUE (Figure 10). This finding is in contrast with previous studies, which
focused on water-limited areas with grassland or shrubland ecosystems, such as Central
Asia [80], Northern China [8], the Loess Plateau [81], and the Tibetan Plateau [7], and
suggested a positive impact of precipitation on WUE. The reason for this is that increases in
precipitation in water-limited regions can replenish soil moisture and mitigate the drought
stress on vegetation growth, thereby promoting the WUE [8]. However, in humid regions,
vegetation growth may not be sensitive to the sufficient water supply. In contrast, more
precipitation in water-rich areas could enhance the interception ratio and result in fEi
increases. As a result, the increase in precipitation in our study area had a negative effect
on forest WUE changes. We also found that the decline in the net radiation had a negative
impact on forest WUE (Figure 7c), which may be attributed to the increase in air pollution
in China over the past two decades [82]. The reduction in net radiation could cause the Et
and Es to decrease, and further result in the reduction in the total ET and WUE.

VPD was regarded as a determining driver of vegetation productivity and water
use [83,84]. In this study, we found that VPD, rather than the LAI, was the second largest
contributor to forest WUE increase, in agreement with previous studies [85,86]. How-
ever, some studies did not observe a similar relationship, which mainly derives from the
difference in temporal scales used in different studies [37]. In this study, we observed
the temperature, showing an insignificant increasing trend (p > 0.05) (Figure 7b), while
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the relative humidity showed a significant increasing trend (p < 0.05) (Figure 7d). The
increased magnitude of relative humidity offset the negative effect of increased temperature
on VPD [37], leading to a significant downward trend of VPD during the study period
(Figure 7e). Generally, changes in VPD can control variations in potential evapotranspira-
tion and atmospheric water demand, thereby negatively influencing soil moisture [87]. At
the season or annual scale, there also exists a strong and negative coupling between VPD
and soil moisture in the forest ecosystems [88]. Moreover, previous studies indicated that
the WUE has a positive correlation with soil moisture [89,90] but a negative correlation with
VPD [44,84,91]. Therefore, the VPD could influence the WUE via its effect on soil moisture.
In our study, we observed a significant decrease in VPD (Figure 7f), which may alleviate the
soil water stress of WUE and thus improve the WUE (Figure 10). However, the mechanism
of the impacts of VPD on WUE varied over different time scales (e.g., hourly, daily, monthly,
seasonal) and is relatively complex; thus, future studies should consider this aspect [37,88].
Importantly, our study, at the annual scale, confirmed that the CO2 concentrations and
VPD played a pivotal role in subtropical forest WUE changes (Figure 11), reminding us
that more attention should be paid to the long-term impacts of climate change on future
forest management.

4.2. The Effect of Vegetation Greening on Forest WUE Changes

Vegetation greening occurred in China over the past few decades and was mainly
attributed to several key ecological programs’ implementation [16,19,92]. Recently, the LAI
in China has significantly improved, as reported by many previous studies [17,18,93]. In
our study, we also found that the LAI of different forests exhibited significant (p < 0.05)
enhancement during 2001–2018 (Figure 7f). Many studies have estimated the impacts
of LAI on WUE and confirmed its important role in WUE changes [6,37,94,95]. In our
study, we proved that the LAI was also a positive driver of subtropical forest WUE changes
(Figure 10). Nevertheless, our findings showed that the LAI was not the dominant driver
of WUE changes in our study area (Figure 11), which is inconsistent with previous studies
based on the original analytical WUE model [6,37]. The reason for this is that these
studies only considered the positive effect of the increasing LAI on the WUE via Beer’s
Law [44], thus leading to a higher WUE. However, the WUE was also influenced by ET
partitioning (e.g., Ei). For example, changes in LAI can also affect the allocation of water
(e.g., precipitation). The increased LAI, as in our study area with dense forest coverage,
could significantly increase the interception ratio, thereby reducing the WUE [96,97]. Our
study used the improved analytical WUE model, which considered the impacts of the
precipitation and LAI on Ei and the negative contribution of LAI to WUE, thus offsetting
the overestimation of the positive impact of LAI on WUE changes. The results were
consistent with the previous study [38], which also reported that increased LAI caused
increased Ei and thus weekend the positive impact of vegetation restoration on WUE in the
subtropical forests. However, this aspect was generally ignored in previous studies, which
may enhance the role of vegetation greening in ecosystem WUE change trends. Therefore,
future ecological projects should consider a reasonable vegetation restoration strategy to
overcome the negative impact of vegetation restoration on Ei and WUE.

4.3. Model and Uncertainties

The analytical WUE model offers a unique and simple way for mechanistically es-
timating WUE to some extent, which was adopted in the present study to simulate the
WUE and to distinguish the drivers of the forest WUE change trends. We first modified
the original analytical WUE model by incorporating the improved PT-JPL model. The
coupled analytical WUE model (Figure 2) not only showed higher accuracy in validation
by using the measured WUE (Figure 4) but also overcame the shortcomings of the original
analytical WUE model that cannot be used to diagnose some other key drivers (e.g., climatic
factors) of the WUE change trends [6,37,39]. Therefore, this study improved the original
analytical WUE model and further provided a robust and simple framework for estimating



Remote Sens. 2023, 15, 2441 20 of 25

the impacts of biotic and abiotic factors on WUE changes. However, human activities,
particularly soil and water conservation measures, can influence soil moisture and veg-
etation site conditions, thereby significantly affecting photosynthesis, transpiration and
WUE. The effect of human activities on WUE was not fully considered in this study, mainly
due to the limitations of the present model structure. Therefore, soil water conditions
could be coupled into our model to quantify the effect of soil moisture on WUE changes in
future studies. Moreover, new methods could be developed to quantitatively evaluate the
individual impacts of human activities on WUE changes, such as distinguishing between
climate-change-induced LAI and human-activity-induced LAI, and using these two LAIs
to drive model to quantify the individual impact of climate change or human activities on
WUE changes.

However, this study still has some limitations. Due to a lack of reliable and spatially
explicit CO2 concentration data, especially in China, we only used annual mean CO2
concentrations from the Mauna Loa Observatory to represent the spatial variability of
CO2 concentrations in our study area and drive the WUE model. This may result in
spatially overestimations or underestimations of the effect of CO2 fertilization on forest
WUE, although it may be reasonable to use spatially homogeneous annual mean CO2
concentrations to estimate large-scale WUE [6,7,37]. In addition, we did not consider the
possible interactions and combined effects of these driving factors [98]. For instance, the LAI
can be influenced by CO2 fertilization effect and climate. Generally, the increment of CO2
concentrations can enhance the LAI; thus, the influences of CO2 concentrations and LAI on
WUE may be biased in this study. The elevated CO2 concentrations can also contribute to
regional climate warming, thereby influencing the VPD dynamics, and further impacting
the forest WUE. Overall, further studies should adopt more accurate CO2 concentrations to
represent their spatial variability and drive the model, and some new quantitative methods
should be adopted to isolate the net impact of CO2 on WUE [37]. Additionally, different
data sets were used to drive the model, which encountered a mismatch of different datasets
in terms of their spatial resolution.

5. Conclusions

In the study, we first improved the PT-JPL model by using the modified Gash model
and incorporated it into the analytical WUE model to generate a novel framework. The
developed WUE framework was used to estimate the subtropical forest WUE and to
distinguish the drivers of annual trends in WUE in different forests during 2001–2018. The
crucial questions related to the subtropical forest WUE were addressed as follows.

(1) The entire subtropical forest WUE exhibited a significant (p < 0.001) upward trend
at the rate of 0.025 gC kg−1 H2O year−1 from 2001 to 2018. The WUE of EBF and DBF
showed the largest increasing trend, with a growth rate of 0.027 gC kg−1 H2O year−1

(p < 0.001). The increased and decreased forest WUE accounted for 87.1% and 12.9% of the
total study area, respectively.

(2) The atmospheric CO2 concentration and VPD were the dominant drivers of annual
trends in WUE across the whole and different subtropical forests, mainly due to the rising
CO2 concentration and decline in VPD.

(3) For the whole subtropical forest, the relative contribution of VPD accounted for
35.5% of the total forest WUE increase, which was almost equal to the contribution of
elevated CO2 (37.4%). However, the temperature in the study area contributed little to the
changes in forest WUE.

(4) Spatially, the CO2 and VPD as the dominant drivers were staggered in the study
area, which had an almost equal spatial impact on forest WUE changes and accounted for
45.3% and 49.1% of the total study area, respectively.

Overall, our study implied that the atmospheric CO2 concentration and VPD, rather
than LAI, were the dominant drivers of annual forest WUE trends in the study area, which
was inconsistent with many previous studies that emphasized the dominant role of LAI
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in regulating the WUE changes in China. Our findings reminded us that more attention
should be paid to the long-term impact of climate change on future forest management.
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